Rho GTPase对血吸虫病肝纤维化鼠肝窦毛细血管化的调控作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分血吸虫病肝纤维化的肝窦病变实验研究
     目的研究日本血吸虫感染致肝纤维化鼠的肝窦病变。
     方法对40只日本血吸虫感染致肝纤维化鼠和10只正常鼠取肝组织行光镜和电镜观察肝窦病变;免疫组织化学技术检测CD31、FVIIIR-Ag。
     结果HE染色示汇管区可见虫卵沉积,虫卵周围炎性细胞浸润。Masson三色染色见大部分肝血窦周围Disse腔有纤细的蓝绿色胶原纤维沉积。透射电镜下见肝窦内皮受损严重,窗孔明显减少,胞饮泡减少甚至消失,细胞外侧有基底膜形成,肝细胞肝窦面的微绒毛减少或断裂。免疫组化示肝窦内皮细胞膜表达CD31、FVIIIR-Ag阳性或强阳性;正常对照组呈阴性或低水平表达。
     结论血吸虫病肝纤维化时普遍存在肝窦毛细血管化,其中肝窦内皮细胞转分化可能与其形成密切相关。
     第二部分CTGF在血吸虫病肝纤维化鼠肝窦内皮细胞表达及意义
     目的通过动态观察结缔组织生长因子(connective tissue growth factor, CTGF)在血吸虫病性肝纤维化鼠肝窦内皮细胞表达水平的时相变化,探讨CTGF、肝窦内皮细胞与肝窦内皮下基底膜形成的关系。
     方法采用腹部敷贴法感染血吸虫尾蚴建立血吸虫病性肝纤维化模型,模型组和正常对照组均为40只。于45d、60d、90d、120d取肝组织标本,HE、Masson染色和透射电镜观察模型病理变化;免疫组织化学技术检测CTGF、ColIV和LN在小鼠肝脏组织中的定位、发布,并应用彩色图像分析仪进行半定量分析;Western blotting检测CTGF蛋白;RT–PCR检测CTGFmRNA的表达。
     结果血吸虫病肝纤维化鼠肝窦内皮细胞表达CTGF蛋白阳性或强阳性,肝窦壁LN、ColIV表达水平增高,且随着肝纤维化的发展,CTGF和LN、ColIV表达逐渐增强,同步可见肝窦内皮下基底膜逐渐增厚;正常对照组呈阴性或低水平表达。图像定量分析两组平均吸光度值、平均灰度值和阳性面积比具有统计学意义(P < 0. 05)。相关分析CTGF蛋白与LN、ColIV水平呈正相关(r=0.7512、0.6417 P <0.01)。
     结论血吸虫病肝纤维化时小鼠肝窦内皮细胞调控细胞外基质产生,通过CTGF蛋白表达上调,导致ColIV、LN分泌增加,参与肝窦内皮下基底膜形成,从而引起肝内微循环障碍。
     第三部分Rho GTPase对血吸虫病鼠肝窦毛细血管化的调控作用
     目的探讨Rho GTPase在肝窦内皮细胞转分化过程中的调控作用,及其对血吸虫病性鼠肝窦毛细血管化病变的影响和可能机制。
     方法采用腹部敷贴法感染血吸虫尾蚴建立血吸虫病性肝纤维化模型,于13WBiltricide顿服杀虫,14W追加hydroxyfasudil。13W时正常对照组(A组,10只)与血吸虫病组(B组,6只),16W、19W和21W后(B组、杀虫实验对照组(C组)、血吸虫病+hydroxyfasudil组(D组)、杀虫+hydroxyfasudil组(E组)各6只)剖腹取肝组织。分别作HE、Masson染色和透射电镜观察;免疫组化检测p-moesin、CTGF、CD31、ColIV和LN;Western blotting检测p-moesin、CTGF、Rho A、ColIV和LN蛋白表达;RT–PCR检测CTGF、Rho A、ROCKII mRNA水平。
     结果与A组相比,动态观察B组肝组织Rho A、ROCKII及CTGF mRNA表达水平明显上升,p-moesin、CTGF、Rho A、ColIV和LN蛋白表达量也增高。给予干预措施后,与C组及其它组相比,E组CTGF mRNA表达于16W显著下调,同时显示CTGF、LN、ColIV蛋白水平也降低。与B组相比,D组、E组p-moesin蛋白降低,16W时最为显著,但D组于19W开始p-moesin表达量渐恢复到原水平,其中E组明显低于D组。肝窦的超微结构观察,于21W时C组分别与B、D组相比,浸润的炎性细胞明显减少,Disse腔内胶原纤维有所减少,但肝窦内皮细胞窗孔、肝窦内皮下基底膜无明显差异。E组与C组比较肝细胞器形态明显恢复,可见窗孔,未见基底膜。
     结论Rho GTPase在调控血吸虫病性鼠肝窦内皮细胞转分化过程中,通过上调CTGF和p-moesin发挥作用,抑制Rho GTPase信号通路有可能为防治肝窦毛细血管化提供新的有效靶点。
PART I Hepatic Sinusoidal Pathology of Hepatic Fibrosis Mouses Induced by Infection of Schistosoma Japonicum.
     Objective To investigate the hepatic sinusoidal pathology of hepatic fobrosis mouses in duced by infection of Schistosoma japonicum .
     Methods Liver tissues from 30 hepatic cirrhotic mouses infected by Schistosoma japonicum and 10 normal mouses were removed and observed under light and electronmicroscopy for hepatic sinusoidal pathology. distribution of CD31、FVIIIRAg were detected by imunohistochemistry,.
     Results Hematoxylin and Eosin (HE) staining indicated schistosome egg aggradation in the hilum and inflammatory cell infilt ration around the schistosome eggs. Masson trichrome staining showed hyperplasia of blue-green fiber connective tissue around Disse spaces mostly. Under transmission electronmicroscopy , it was found there was serious damage of hepatic sinusoidal endothelium cells , collapse of most cells , infilt ration of inflammatory cells in hepatic sinusoidal , expansion of small bile duct , decreased or injured microfloss , and capillarization of hepatic sinusoidal. Compared with control group, CD31、FVIIIRAg protein staining of sinusoidal endothelial cell in schistosomal hepatic fibrosis mouses increased significantly .
     Conclusion Our results suggest that a transition of liver sinusoidal endothelial cells may be involved with the development of sinusoidal capillarization with schistosomal hepatic fibrosis mouses.
     PART II Expression of connective tissue growth factor in sinusoidal endothelial cell of schistosomal hepatic fibrosis mouses.
     Objective to explore the possible correlations with CTGF、liver sinusoidal endothelial cell and the formation of basal membrane under hepatic sinusoidal endothelial cell by observing the expression of connective tissue growth factor(CTGF)in sinusoidal endothelial cell of schistosomal hepatic fibrosis mouses.
     Methods the liver fibrosis model was established by abdominal infected with schistosomal cercaria in 40 mouse,and the contral group 40 yet.the dynamic changes of liver fibrosis was observed at different time points(45d、60d、90d、120d)by optic and electonmicrocopy.the distribution of CTGF、collagen type IV(ColIV)and laminin(LN)were detected by imunohistochemistry,and adopt quantitive analysis;proteins of CTGF were detected by Western blotting;CTGFmRNAs were detected by RT–PCR.
     Results Compared with control group, CTGF protein staining of sinusoidal endothelial cell in schistosomal hepatic fibrosis mouses increased significantly at 120d and companied by the increases of LN、ColIV protein in hepatic sinusoidal walls(P < 0. 05)and the expression of CTGFmRNA was significant increased, and the expression of CTGF protein was significant corrected to the level of LN、ColIV(r=0.7512、0.6417 P <0. 01)yet.
     Conclusin hepatic sinusoidal endothelial cell of schistosomal hepatic fibrosis mouses regulate producing of extracellular matrix by upregulated expression of CTGF which induced the increases of LN、ColIV levels,and involve the formation of basal membrane under hepatic sinusoidal endothelial cell.
     PART III Effects of a transition of liver sinusoidal endothelial cells regulated by Rho GTPase signaling on sinusoidal capillarization with schistosomal hepatic fibrosis mouses.
     Objective To investigate Rho GTPase mediated regulation of a transition of liver sinusoidal endothelial cells on sinusoidal capillarization with schistosomal hepatic fibrosis mouses and possible mechanism.
     Methods The liver fibrosis model was established by abdominal infected with schistosomal cercaria in 88 mouse,treated with Biltricide in 13W and hydroxyfasudil in 14W.And then they were divided into the following 5 groups,i.e. A,contral groups. B,model groups. C,treated with Biltricide groups.D,treated with hydroxyfasudil groups.E,treated with Biltricide+hydroxyfasudil groups.In 13W(A group 10 mouses and B group 6 mouses),in 16W、19W and 21W(B、D、C、E group,each group 6 mouses),the mouses were sacrificed,respectively.The relative area of liver fibrosis on pathological section was semi-quantitatively determined and assessed by HE、Masson stain、electonmicrocopy and imunohistochemistry.And p-moesin、CTGF、Rho A、ColIV and LN protein expressions were assessed by Western blotting,CTGF、Rho A、ROCKII mRNA expressions were assessed by RT–PCR.
     Results Compared with A group,the mRNA level of Rho A、ROCKII and CTGF were significantly increased(P<0.05)and the protein expression of p-moesin、CTGF、RhoA、ColIV and LN were increased(P<0.05)in B group.After intervension with Biltricide and/or hydroxyfasudil,CTGF mRNA expression significantly decreased(P<0.05)in E group in 16W and the protein expression of CTGF、ColIV and LN were decreased(P<0.05)compared with other groups,and the expression of p-moesin in E group were markedly lower than that of D group(P<0.05).Electonmicrocopy show liver sinusoidal of the mouses in E group was significantly recovered compared with other groups.And there was no difference between B group and D group.
     Conclusin Our results suggest that an upregulation of Rho GTPase that contributes to increased CTGF expressions and phosphorylation of moesin may induce a transition of liver sinusoidal endothelial cells on sinusoidal capillarization with schistosomal hepatic fibrosis mouses.
引文
1. Ross, A GP, Bartley, P B, Sleigh, A C, et al. Schistosomiasis. NEJM 2002,346: 1212-1220
    2. Oda M,Yokomori H,Han JY. Regulatory mechanisms of hepatic microcirculation. Clin Hemorheol Microcirc. 2003;29(3-4):167-82.
    3. Ijaz S, Yang W, Winslet MC, et al. Impairment of hepatic microcirculation in fatty liver. Microcirculation. 2003 Dec;10(6):447-56.
    4. Li Tao , Yang Zhen , Ren Dahong, et al. hepatic microcirculatory pathology of hepatic cirrhotic rabbit induced by infection of Schistosoma Japonicum. J Huazhong Univ Sci Tech [ Health Sci ] 2003, 32(5):519–521
    5.Lee JM, Dedhar S, Kalluri R, et al.The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006 27;172(7):973-81.
    6.Bo Xu, Ulrika Broome, Mehmet Uzunel,et al.Capillarization of Hepatic Sinusoid by Liver Endothelial Cell-Reactive Autoantibodies in Patients with Cirrhosis and Chronic Hepatitis. AJP 2003, 163,1275–1289
    7.Anne Couvelard, Jean-Yves Scoazec, Marie-Christine Dauge,et al. Structural and Functional Differentiation of Sinusoidal Endothelial Cells During Liver Organogenesis inHumans. Blood, 1996,87:4568-4580
    8.Sandrine Etienne-Manneville, Alan Hall. Rho GTPases in cell biology. Nature 2002,420,629–635
    9.Sharmila Patel, Ken-ichro Takagi, Jun Suzuki,et al.RhoGTPase Activation Is a Key Step in Renal Epithelial Mesenchymal Transdifferentiation. J Am Soc Nephrol 2005,16:1977–1984.
    10. Meyer-ter-Vehn T,Sieprath S,Katzenberger B,et al. Contractility as a prerequisite for TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci. 2006;47(11):4895-904.
    1. Moreau R, Lebrec D.Molecular and structural basis of portal hyper- tension. Clin Liver Dis. 2006 Aug;10(3):445-57.
    2. Adeyemi O Laosebikan, Sandie R Thomson, Namasha M Naidoo. Schistosomal Portal Hypertension. J Am Coll Surg 2005,Vol. (200): 795-806.
    3. HAO Jinghua, SHI Jun, REN Wanhua,et al.Hepatic microcirculatory disturbances in patients with chronic hepatitis B。Chinese Medical Journal 2002 ; 115 ( 1) : 65—68
    4. Moriyasu F , Nishida O , Ban N , et al. Measurement of portal vascular resistance in patients with portal hypertension. Gastroenterology , 1986 , 90 : 710--717.
    5.张日平张伟辉薛东波等。四氯化碳诱导犬早期肝损害所致门静脉高压的形态学观察。中华医学杂志2004,84 (13):1118--1121 ZHANG R ping , ZHANG Wei hui , XUE Dong bo,et al Morphology of portal hypertension at the early stage of liver damage induced by CCl4 : an experimental study with dogs. Natl Med J China ,2004 ,Vol 84(13):1118-1121.
    6.Laleman W, Van Landeghem L, Wilmer A, et al. Nevens F. Portal hypertension: from pathophysiology to clinical practice. Liver International 2005: 25: 1079-1090.
    7. Garcia-Tsao, Guadalupe. Portal hypertension. Curr Opin Gastroenterol 2006, 22(3), 254–262.
    8. Rodriguez-Vilarrupla A, Fernandez M, Bosch J,et al. Current concepts on the pathophysiology of portal hypertension. Ann Hepatol. 2007;6(1) :28-36.
    9. PF Lalor, WK Lai, SM Curbishley,et al.Human hepatic sinusoidal endothelial cells can be distinguished by expression of phenotypic markers related to their specialised functions in vivo World J Gastroenterol 2006; 12(34): 5429-5439
    10. Laurie D. DeLeve, Xiangdong Wang, Liping Hu, et al. Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am J Physiol Gastrointest Liver Physiol2004. 287:757-763.
    1.Ott P, Clemmesen O, Keiding S. Interpretation of simultaneous measurements of hepatic extraction fractions of indocyanine green and sorbitol: Evidence of hepatic shunts and capillarization. Dig Dis Sci, 2000, 45: 3591
    2.Scott L, Friedman .Molecular Regulation of Hepatic Fibrosis, an Integrated Cellular Response to Tissue Injury. J Biol Chem, 2000(275): 2247-2250.
    3.Bernard Perbal CCN proteins: multifunctional signalling regulators. Lancet 2004; 363: 62–64
    4.汪国运蔡卫民吴贵霞等一种肝组织切片胶原定量分析法的实验性研究.中华消化杂志1999,19:388–391.
    5.Erwin Gabele, Shimon Reif, Shigeki Tsukada,etal.The Role of p70S6K in Hepatic Stellate Cell Collagen Gene Expression and Cell Proliferation. J. Biol. Chem. 2005, 280:13374-13382.
    6.Brian Vaillant, Monica G,Chiaramonte,etal. Regulation of Hepatic Fibrosis and Extracellular Matrix Genes by the Th Response: New Insight into the Role of Tissue Inhibitors of Matrix Metalloproteinases. The Journal of Immunology, 2001, 167: 7017-7026.
    7.李涛杨镇任大宏等日本血吸虫感染致肝纤维化家兔肝脏微循环病变观察.华中科技大学学报(医学版) 2003 (32):519
    8.K. Thaler, Judith A. Mack, Mariana Berho,etal.Coincidence of Connective Tissue GrowthFactor Expression with fibrosis and angiogenesis in postoperative Peritoneal adhesion Formation. Eur Surg Res 2005,37:235–241
    9. Hishikawa K, Oemar BS, Nakaki T.Static pressure regulates connective tissue growth factor expression in human mesangial cells. J Biol Chem. 2001,276(20):16797-803
    10. Molecular Cloning: A Laboratry Manual.Joe Sambrook, David Russell. Cold Spring Harbor Lab(CSHL) Press, 2001
    11.Leask A, Abraham DJ.The role of connective tissue growth factor, a multi- functional matricellular protein, in fibroblast biology. Biochem Cell Biol. 2003 Dec;81(6):355-63.
    12. Brigstock DR.The CCN family: a new stimulus package. Endocrinol. 2003 Aug;178(2):169-75.
    13. Blom IE, Goldschmeding R, Leask A.Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy? Matrix Biol. 2002 Oct;21(6):473-82.
    14. Leask A, Holmes A, Abraham DJ.Connective tissue growth factor: a new and important player in the pathogenesis of fibrosis. Curr Rheumatol Rep. 2002 Apr;4(2):136-42.
    15. Perbal B.NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol. 2001;54(2):57-79.
    16. Grotendorst GR.Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997;8(3):171-9.
    17. Leask A, Abraham DJ.TGF-beta signaling and the fibrotic response. FASEB J. 2004;18(7):816-27.
    18. Ihn H.Pathogenesis of fibrosis: role of TGF-beta and CTGF. Curr Opin Rheumatol. 2002;14(6):681-5.
    19.Tabibzadeh S.Homeostasis of extracellular matrix by TGF-beta and lefty. Front Biosci. 2002 May 1;7:d1231-46.
    20.Rockey DC.Hepatic fibrosis, stellate cells, and portal hypertension. Clin Liver Dis. 2006 Aug;10(3):459-79.
    1.Bo Xu, Ulrika Broome, Mehmet Uzunel,et al.Capillarization of Hepatic Sinusoid by Liver Endothelial Cell-Reactive Autoantibodies in Patients with Cirrhosis and Chronic Hepatitis. AJP 2003, 163,1275–1289
    2.Lee JM, Dedhar S, Kalluri R, et al.The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006 27;172(7):973-81.
    3.Sandrine Etienne-Manneville, Alan Hall. Rho GTPases in cell biology. Nature 2002,420,629–635
    4.Sharmila Patel, Ken-ichro Takagi, Jun Suzuki,et al.RhoGTPase Activation Is a Key Step in Renal Epithelial Mesenchymal Transdifferentiation. J Am Soc Nephrol 2005,16:1977–1984.
    5.Li Tao , Yang Zhen , Ren Dahong, et al. hepatic microcirculatory pathology of hepatic cirrhotic rabbit induced by infection of Schistosoma Japonicum. J Huazhong Univ Sci Tech [ Health Sci ] 2003, 32(5):519–521李涛,杨镇,任大宏,等。日本血吸虫感染致肝纤维化家兔肝脏微循环病变观察.华中科技大学学报(医学版),2003,32(5):519–521
    6.Zhou Q, Hennenberg M, Trebicka J.et al. Intrahepatic upregulation of RhoA and Rho-kinase signaling contributes to increased hepatic vascularresistance in rats with secondary biliary cirrhosis. Gut , 2006,55(9):1296-305.
    7.Tommaso Simoncini1, Camila Scorticati1, Paolo Mannella1,et al. Estrogen Receptor Alpha Interacts with Gα13 to Drive Actin Remodeling and Endothelial Cell Migration via the RhoA/Rho Kinase/Moesin Pathway. Mol Endocrinol,2006;20(8):1756-71.
    8.Anne Couvelard, Jean-Yves Scoazec, Marie-Christine Dauge,et al. Structural and Functional Differentiation of Sinusoidal Endothelial Cells During Liver Organogenesis in Humans. Blood, 1996,87:4568-4580
    9.CHEN Yu xia, LI Zong bin, DIAO Fei,et al.Mechan ism of inh ib iting prolifera tion of human ovar ian cancer cells of the line HO28910 bydexametha sone: the role of RhoB signa ling pa thway。Natl Med J China, 2006, 86(20):1400-1404陈玉霞,李宗斌,刁飞等。地塞米松抑制人卵巢癌细胞HO28910增殖的分子机制: RhoB信号通路的作用。中华医学杂志,2006,86(20):1400-1404。
    10.Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001 12(1):27–36
    11.Tsuyoshi Hattori, Hiroaki Shimokawa, Midoriko Higashi,et al. Long-term inhibition of rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice.Circulation.2004;109(18):2234-2239.
    12.Bernard Perbal CCN proteins: multifunctional signalling regulators Lancet 2004; 363: 62–64
    13.Hishikawa K, Oemar BS, Nakaki T. Static pressure regulates connective tissue growth factor expression in human mesangial cells. J Biol Chem. 2001 18;276(20):16797-803.
    14.Juliane Heusinger-Ribeiro, Michael Eberlein, Nadia Abdel Wahab,et al.Expression of Connective Tissue Growth Factor in Human Renal Fibroblasts: Regulatory Roles of RhoA and CAMP. J Am Soc Nephrol 2001,12(9):1853–1861.
    15.Toshihiro Nagai, Hiroaki Yokomori, Kazunori Yoshimura,et al.Actin filaments around endothelial fenestrae in rat hepatic sinusoidal endothelial cells. Med Electron Microsc 2004,37(4):252–255
    16.Hiroaki Yokomori, Kazunori Yoshimura, Shinsuke Funakoshi,et al.Rho modulates hepatic sinusoidal endothelial fenestrae via regulation of the actin cytoskeleton in rat endothelial cells. Lab Invest 2004,84(7),857–864.
    17. Fan L, Sebe A, Peterfi Z,Cell Contact-dependent Regulation of Epithelial-Myofibroblast Transition via the Rho-Rho Kinase- Phospho- Myosin Pathway. Mol Biol Cell. 2007;18(3):1083-1097.
    1. Thompson MD, Burnham WM, Cole DE. The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci. 2005; 42(4):311-92.
    2. Chardin P. GTPase regulation: getting aRnd Rock and Rho inhibition. Curr Biol. 2003; 13(18): R702-4.
    3. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005; 21: 247-69.
    4. Wennerberg K, Der CJ.Rho-family GTPases: it's not only Rac and Rho (and I like it). J Cell Sci. 2004 Mar 15;117(Pt 8):1301-12.
    5.Bryan BA, Li D, Wu X, Liu M. The Rho family of small GTPases: crucial regulators of skeletal myogenesis. Cell Mol Life Sci. 2005; 62(14): 1547-55
    6. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002 ,12; 420 (6916): 629-35
    7. Hakoshima T, Shimizu T, Maesaki R.Structural basis of the Rho GTPase signaling. J Biochem (Tokyo). 2003 Sep;134(3):327-31.
    8. Garcia P, Tajadura V, Garcia I,et al. Role of Rho GTPases and Rho- GEFs in the regulation of cell shape and integrity in fission yeast. Yeast 2006 Oct 15;23(13):1031-43
    9. DerMardirossian C, Bokoch GM. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 2005 Jul;15(7):356-63.
    10. Labouesse M.Epithelium-mesenchyme: a balancing act of RhoGAP and RhoGEF. Curr Biol. 2004 Jul 13;14(13):R508-10.
    11. Hoffman GR, Cerione RA.Signaling to the Rho GTPases: networking with the DH domain. FEBS Lett. 2002 Feb 20;513(1):85-91.
    12. Mertens AE, Roovers RC, Collard JG.Regulation of Tiam1-Rac signalling. FEBS Lett. 2003 Jul 3;546(1):11-6.
    13. Schmidt A, Hall A.Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002 Jul 1;16(13):1587-609
    14. Zheng Y.G protein control of microtubule assembly. Annu Rev Cell Dev Biol. 2004;20:867-94
    15. Sorokina EM, Chernoff J.Rho-GTPases: new members, new pathways. J Cell Biochem. 2005 Feb 1;94(2):225-31.
    16. Bhattacharya M, Babwah AV, Ferguson SS.Small GTP-binding protein-coupled receptors. Biochem Soc Trans. 2004 Dec;32(Pt 6):1040-4.
    17. Ivetic A, Ridley AJ.Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology. 2004 Jun;112(2):165-76.
    18. Riento K, Villalonga P, Garg R,et al. Function and regulation of RhoE. Biochem Soc Trans. 2005 Aug;33(Pt 4):649-51.
    19. Burridge K, Wennerberg K.Rho and Rac take center stage. Cell. 2004 23;116(2):167-79.
    20. Moon SY, Zheng Y.Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 2003 Jan;13(1):13-22.
    21. Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med. 2002;80(10):629-38.
    22.Neil A. Bhowmick, Mayshan Ghiassi, Andrei Bakin,Transforming Growth Factor-β1 Mediates Epithelial to Mesenchymal Transdifferenti- ation through a RhoA-dependent Mechanism. Mol Biol Cell. 2001; 12(1): 27–36.
    23.Meyer-ter-Vehn T, Sieprath S, Katzenberger B,Contractility as a prere- quisite for TGF-beta-induced myofibroblast transdifferentiation in human tenon fibroblasts. Invest Ophthalmol Vis Sci. 2006;47(11):4895-904.
    24.Kaartinen V, Haataja L, Nagy A,et al. TGFbeta3-induced activation of RhoA/Rho-kinase pathway is necessary but not sufficient for epithelio- mesenchymal transdifferentiation: implications for palatogenesis. Int J Mol Med. 2002 ;9(6):563-70.
    25. Brigitte L. Thériault, Trevor G. Shepherd,BMP4 induces EMT and Rho GTPase activation in human ovarian cancer cells. Carcinogenesis, doi:10.1093/carcin/bgm015
    26.Wiggan O, Shaw AE, Bamburg JR. Essential requirement for Rho family GTPase signaling in Pax3 induced mesenchymal-epithelial transition. Cell Signal 2006; 18(9): 1501-14.
    27.Smallhorn M, Murray MJ, Saint R.The epithelial-mesenchymal transition of the Drosophila mesoderm requires the Rho GTP exchange factor Pebble. Development.2004 Jun;131(11):2641-51.
    28.Radisky DC, Levy DD, Littlepage LERac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005 7;436(7047):123-7.
    29.Bellovin DI, Simpson KJ, Danilov T Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene. 2006 Nov 2;25(52):6959-67.
    30.Benitah SA, Valeron PF, Rui H,et al. STAT5a activation mediates the epithelial to mesenchymal transition induced by oncogenic RhoA. Mol Biol Cell 2003 Jan; 14(1): 40-53.
    1.Takasaki S, Hano H. Three-dimensional observations of the human hepatic artery (Arterial system in the liver). J Hepatol 2001; 34: 455-466
    2.Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepato 2002; 1: 1
    3.Zimmermann A, Zhao D, Reichen J.Myofibroblasts in the cirrhotic rat liver reflect hepatic remodeling and correlate with fibrosis and sinusoidal capillarization. J Hepatol, 1999, 30:646-652
    4.Tamalci S, Ueno T, Torimura T, et al..Evaluation of hyaluronic acid binding ability of hepatic sinusoidal endothelialcells in rats with liver cirrhosis. Gastroenterology, 1996 , 111: 1049-1057
    5.Nakamura S. Muro H. Suzuki S .et al..Immunohistochemical studies on endot-helial cell phenotype hepatocellular carcinoma. Hepatology,1997, 26: 407-415.
    6.Do H, Healey JF, Waller EK, Lollar P. Expression of factor VIII by murine liver sinusoidal endothelial cells. J Biol Chem 1999 274: 19587-19592
    7. Newton JP, Hunter AP, Simmons DL, Buckley CD, Harvey DJ. CD31 (PECAM-1) exists as a dimer and is heavily N-glycosylated.Biochem Biophys Res Commun 1999; 261: 283-291
    8. Neubauer K, Ritzel A, Saile B, Ramadori G. Decrease of plateletendothelial cell adhesion molecule 1-gene-expression in infl ammatory cells and in endothelial cells in the rat liver following CCl(4)-administration and in vitro after treatment with TNFalpha. Immunol Lett2000; 74: 153-164
    9.Medina J, Sanz-Cameno P, Garcia-Buey L, Martin-Vilchez S,Lopez-Cabrera M, Moreno-Otero R. Evidence of angiogenesis in primary biliary cirrhosis: an immunohistochemical descriptive study. J Hepatol 2005; 42: 124-131
    10. Unger RE, Krump-Konvalinkova V, Peters K, Kirkpatrick CJ.In vitro expression of the endothelial phenotype: comparative study of primary isolated cells and cell lines, including the novel cell line HPMEC-ST1.6R. Microvasc Res 2002; 64: 384-397
    11. Yamamoto K, de Waard V, Fearns C, Loskutoff DJ. Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo. Blood 1998; 92: 2791-2801
    12. Harrison RL, Boudreau R. Human hepatic sinusoidal endothelial cells in culture produce von Willebrand factor and contain Weibel-Palade bodies. Liver 1989; 9: 242-249
    13. Wisse E. An ultrastructural characterization of the endothelial cell in the rat liver sinusoid under normal and various experimental conditions, as a contribution to the distinction between endothelial and Kupffer cells. J Ultrastruct Res 1972; 38: 528-562
    14. Lenzi R, Alpini G, Liu MH, Rand JH, Tavoloni N. von Willebrand factor antigen is not an accurate marker of rat and guinea pig liver endothelial cells. Liver 1990; 10: 372-379
    15. Pohlmann S, Soilleux EJ, Baribaud F, Leslie GJ, Morris LS,Trowsdale J, Lee B, Coleman N, Doms RW. DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proc Natl Acad Sci USA 2001; 98: 2670-2675
    16. Tedder TF, Steeber DA, Chen A, Engel P. The selectins: vascular adhesion molecules. FASEB J 1995; 9: 866-873
    17. Fukuda Y, Nagura H, Imoto M, Koyama Y. Immunohistochemical studies on structural changes of the hepatic lobules in chronic liver diseases. Am J Gastroenterol 1986; 81: 1149-1155
    18.Lalor PF, Shields P, Grant A, Adams DH. Recruitment of lymphocytes to the human liver. Immunol Cell Biol 2002; 80: 52-64
    19. Khatib AM, Kontogiannea M, Fallavollita L, Jamison B, Meterissian S, Brodt P. Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res 1999; 59: 1356-1361
    20. Wong J, Johnston B, Lee SS, Bullard DC, Smith CW, Beaudet AL, Kubes P. A minimal role for selectins in the recruitment of leukocytes into the infl amed liver microvasculature. J Clin Invest 1997; 99: 2782-2790
    21. Makondo K, Kimura K, Kitamura T, Yamaji D, Dong Jung B, Shibata H, Saito M. Hepatocyte growth factor/scatter factor suppresses TNF-alpha-induced E-selectin expression in human umbilical vein endothelial cells. Biochim Biophys Acta 2004; 1644: 9-15
    22. Holthofer H, Virtanen I, Kariniemi AL, Hormia M, Linder E,Miettinen A. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab Invest 1982; 47: 60-66
    23. Hattori M, Fukuda Y, Imoto M, Koyama Y, Nakano I, Urano F.Histochemical properties of vascular and sinusoidal endothelial cells in liver diseases. Gastroenterol Jpn 1991; 26: 336-343
    24. De Rijke YB, Biessen EA, Vogelezang CJ, van Berkel TJ. Binding characteristics of scavenger receptors on liver endothelial and Kupffer cells for modifi ed low-density lipoproteins. Biochem J 1994; 304 ( Pt 1): 69-73
    25. Ling W, Lougheed M, Suzuki H, Buchan A, Kodama T, Steinbrecher UP. Oxidized or acetylated low density lipoproteins are rapidly cleared by the liver in mice with disruption of the scavenger receptor class A type I/II gene. J Clin Invest 1997; 100: 244-252
    26. Couvelard A, Scoazec JY, Feldmann G. Expression of cell-cell and cell-matrix adhesion proteins by sinusoidal endothelial cells in the normal and cirrhotic human liver. Am J Pathol 1993;143: 738-752
    27. Cui S, Hano H, Sakata A, Harada T, Liu T, Takai S, Ushigome S. Enhanced CD34 expression of sinusoid-like vascular endothelial cells in hepatocellular carcinoma. Pathol Int 1996; 46:751-756
    28. Frachon S, Gouysse G, Dumortier J, Couvelard A, Nejjari M,Mion F, Berger F, Paliard P, Boillot O, Scoazec JY. Endothelial cell marker expression in dysplastic lesions of the liver: an immunohistochemical study. J Hepatol 2001; 34: 850-857
    29. Grant AJ, Goddard S, Ahmed-Choudhury J, Reynolds G, Jackson DG, Briskin M, Wu L, Hubscher SG, Adams DH. Hepatic expression of secondary lymphoid chemokine (CCL21)promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease. Am J Pathol 2002; 160:1445-1455
    30. Schlingemann RO, Dingjan GM, Emeis JJ, Blok J, Warnaar SO,Ruiter DJ. Monoclonal antibody PAL-E specifi c for endothelium.Lab Invest 1985; 52: 71-76
    31. Niemela H, Elima K, Henttinen T, Irjala H, Salmi M, Jalkanen S.Molecular identifycation of PAL-E, a widely used endothelialcell marker. Blood 2005; 106: 3405-3409
    32. Xu B, deWaal RM, Mor-Vaknin N, Hibbard C, Markovitz DM,Kahn ML. The endothelial cell-specifi c antibody PAL-E identify as a secreted form of vimentin in the blood vasculature. Mol Cell Biol 2004; 24: 9198-9206
    33. Stan RV, Kubitza M, Palade GE. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia.Proc Natl Acad Sci USA 1999; 96: 13203-13207
    34. Medina J, Caveda L, Sanz-Cameno P, Arroyo AG, Martin-Vilchez S, Majano PL, Garcia-Buey L, Sanchez-Madrid F,Moreno-Otero R. Hepatocyte growth factor activates endothelial proangiogenic mechanisms relevant in chronic hepatitis C-associated neoangiogenesis. J Hepatol 2003; 38: 660-667
    35. Palmeri D, van Zante A, Huang CC, Hemmerich S, Rosen SD.Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem 2000;275: 19139-19145
    36. Duff SE, Li C, Garland JM, Kumar S. CD105 is important for angiogenesis: evidence and potential applications. FASEB J 2003; 17: 984-992
    37. Saad RS, Liu YL, Nathan G, Celebrezze J, Medich D, Silverman JF. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer. Mod Pathol2004; 17: 197-203
    38. Meurer SK, Tihaa L, Lahme B, Gressner AM. Identification of endoglin in rat hepatic stellate cells: new insights into transforming growth factor beta receptor signaling. J Biol Chem 2005; 280: 3078-3087
    39.Ichida T, Sugitani S, Satoh T,et al. Localization of hyaluronan in human liver sinusoids: a histochemical study using hyaluronan-binding protein. Liver. 1996 Dec;16(6):365-71.
    40.Ueno T, Inuzuka S, Torimura T,et al.Serum hyaluronate reflects hepatic sinusoidal capillarization. Gastroenterology. 1993 Aug;105(2):475-81.
    41.Plevris JN, Haydon GH, Simpson KJ, et al.Serum hyaluronan--a non-invasive test for diagnosing liver cirrhosis. Eur J Gastroenterol Hepatol. 2000 Oct;12(10):1121-7.
    42.Guechot J, Serfaty L, Bonnand AM, et al.Prognostic value of serum hyaluronan in patients with compensated HCV cirrhosis. J Hepatol.2000 Mar;32(3):447-52.
    43.Van Beers BE, Materne R, Annet L,et al.Capillarization of the sinusoids in liver fibrosis: noninvasive assessment with contrast-enhanced MRI in the rabbit. Magn Reson Med.2003 Apr;49(4):692-9
    44.Herbst H, Frey A, Heinrichs O,et al. Heterogeneity of liver cells expressing procollagen types I and IV in vivo. Histochem Cell Biol. 1997 May;107(5):399-409.
    45.Braet F. How molecular microscopy revealed new insights into the dynamics of hepatic endothelial fenestrae in the past decade. Liver Int. 2004 Dec;24(6):532-9.
    46.Xu GF, Wang XY, Ge GL,et al.Dynamic changes in the expression of matrix metalloproteinases and their inhibitors, TIMPs, during hepatic fibrosis induced by alcohol in rats. World J Gastroenterol.2004 15; 10(24): 3621-7.
    47.YaoL,YaoZM,YuT. Influence of BOL on hyaluronic acid,laminin and hyperplasiain hepatofibroticrats. World J Gastroenterol, 2001,7:872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700