高压脉冲放电降解染料废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压脉冲放电技术应用于水处理领域的研究刚刚兴起,本文利用该技术对染料废水进行了较为系统的基础研究。第一部分研究了高压脉沖在水中的放电类型,及其对染料废水降解率的影响及作用机理。第二部分提出了一种新型的放电体系——、液两相同时放电,初步探讨了该体系对染料废水的降解机理。
     第一部分,首先从实验现象上定义了高压脉冲液相放电的三种基本放电类型:电晕放电、混合放电、火花放电等,系统地研究了影响放电类型的条件因素。当输入电压越大、通入量越大、电极间距越小、溶液电导率越低,放电类型越有利于火花放电转化。实验以阳离子红X-GRL为模拟污染物进行了影响因素的正交优化,确定了输入电压和溶液电导率是影响其降解率的两个主导因素。从放电类型角度来看,火花放电更有利于有机物染料的降解,混合放电次之,电晕放电较差。火花放电时,添加一定量双氧水可大幅度提高阳离子红的降解速率和最终降解率。TiO_2的加入并没有明显提高其降解率。实验还考察了溶液电导率对酸性品红降解率的影响。随着水中电导率的上升,放电形式逐渐从火花放电转向电晕放电。火花放电具有较高的能量利用率,其中OH自由基表观产率和光子产率分别为11.57 μmol/L和0.0978 photon/s。高压脉冲液相放电降解染料废水的过程中,OH自由基氧化作用并不占主导因素,随着放电类型从火花放电转向电晕放电,这种作用表现得更加不明显。
     第二部分较系统地考察、液两相同时放电体系降解酸性橙染料废水。研究表明通氧时,该体系降解酸性橙染料废水具有明显的协同作用,而且对偶氮染料具有普遍的去除性。实验还考察了输入电压、放电电极间距、放电频率等主要操作条件对酸性橙降解率和能量利用率的影响。通过比较不同载时单独相、单独液相液两相同时放电水中臭氧和双氧水的产率以及酸性橙的降解情况,可认为放电产生的臭氧在酸性橙的降解过程中起到了关键性的作用。
Over the recent years there has been a growing interest in the development of pulsed high-voltage discharge method for degrading toxic organic contaminants in water. The objective of the present work is to perform a fundamental investigation on degrading organic dyes in water using this method. It was composed of two parts: part one, three kinds of discharge types were produced and effects of them on degradation efficiency were investigated; part two, a novel technique combined with liquid and gas phase discharges for dyes degradation in aqueous solution was developed.
    Part one, corona, mixed and spark discharges in water were defined by the pulsed high-voltage discharge phenomenon. The discharge types induced by the various operation conditions have been examined. Spark discharge was easily occurred with applied voltage increasing, gas flux increasing, electrode distance decreasing and liquid conductivity decreasing. The conditions such as applied voltage and liquid conductivity have important roles on degradation efficiency of cationic red X-GRL. Higher degradation efficiency of organic dyes has been achieved by spark discharge. The degradation efficiency was greatly enhanced with a dosage of H2O2 addition and was not enhanced with TiO2. The apparent production of OH radicals and quantum yields generated by spark discharge in distilled water were 11.57 umol/L and 0.0978 photon/s, respectively. The processes of degradation showed that the oxidative effects through OH radical oxidation did not play an important role and did weaken with the discharge type changing to corona
     discharge.
    Part two, the technique of combined with liquid and gas phase discharges (LGD) using pulsed high voltage was developed. In this system, the apparent synergistic effects for acid orange II (AO) degradation in the presence of oxygen were observed. The enhancement of degradation rate for AO was around 302%. Furthermore, higher energy efficiency can be obtained in comparison with individual liquid phase discharge (LD) or gas phase discharge process (GD). Important operating conditions such as electrode distance, applied voltage, pulse repetition rate, and types of dyes
    
    
    were also investigated. The AO degradation in the presence of oxygen by LGD may proceed through the direct ozone oxidation and the decomposition of the ozone induced by the liquid phase discharges.
引文
1.冯晓西,乌锡康,精细化工废水治理,北京:化学工业出版社,2000
    2.李家珍 染料、染色工业废水治理,北京:化学工业出版社,1997
    3. Liu G., Wu T., Zhao J., et al. Photo-assisted degradation of dyes pollutants ⅤⅢ: irreversible degradation of AR under visible light irradiation in air-equilibrated aqueous TiO_2 dispersions. Environ. Sci. Technol. 1999, 33, 2081-2087
    4. Feng J.Y., Hu X.J. Yue P.L. et al. A novel laponite clay-based Fe nanocomposite and its photo-catalytic activity in photo-assisted degradation of Orange Ⅱ. Chemical Engineering Science 2003, 58, 679-685
    5.李胜利,李劲,王泽文等,用高压脉冲放电等离子体处理印染废水的研究,中国环境科学,1996,16,73-76
    6.雷乐成,汪大翚,湿式氧化法处理高浓度活性染料废水,中国环境科学,1999,19,79-84
    7. Poon C.S., Huang Q., and Fung P.C. Degradation kinetics of Cuprophenyl Yellow RL by UV/H_2O_12/Ultrasonication (US) process in aqueous solution. Chemosphere, 1999, 38, 1005-1014
    8. Sarasa J., Roche M.E, Ormad M.E et al. Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Res. 1998, 32, 2721-2727
    9. Sivakumar. M, Pandit A.B. Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrasonics Sonochemistry 2002, 9, 123-131
    10. Malik P.K., Saha S.K. Oxidation of direction of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology. 2003, 31,241-250
    11. Sugiarto A.T., Ito S., Ohshima T., et al. Oxidative decoloration of dyes by pulsed discharge plasma in water. J. Electrostatics 2003, 58, 135-145
    12. Pagga U. Taeger K. Development of a method for adsorption of dyestuffs on
    
    active sludge. Water Res. 1994, 28, 1051-1071
    13.雷乐成,汪大翚,水处理高级氧化技术,化学工业出版社,北京,2001
    14.张文兵,肖贤明,傅家谟等,过氧化氢高级氧化技术去除水中有机污染物,中国给水排水,2002,18,89-92
    15.钟理,詹怀宇,高级氧化技术在废水处理中的应用研究进展,上海环境科学,2000,19,568-571
    16.薛向东,金奇庭,水处理中的高级氧化技术,环境保护,2001,6,13-15
    17. Nickelsen M. G, Cooper W. J. Removal of benzene and selected alkyl-substituted benzenes from aqueous solution utilizing continuous high-energy electron irradiation. Environ. Sci. Technol. 1992, 26, 144-152
    18. Hoeben W.F.L.M., Veldhuizen E. M. van, Rutgers W. R. et al. Gas phase corona discharges for oxidation of phenol in aqueous solution. J. Phys. D: Appl. Phys. 1999, 32, L133-L137
    19. Hoeben W.F.L.M., Veldhuizen E. M. van, Rutgers W. R. et al. The degradation of aqueous phenol solutions by pulsed positive corona discharges. Plasma Sources Sci. Technol. 2000, 9, 361-369
    20. Clements J.S., Sato M., and Davis R.H. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water. IEEE Trans. Indust. Appl. 1987, IA-23,224-235
    21.李家珍,染料、染色工业废水处理[M].北京:化学工业出版社,1997
    22.庄源益,生物絮凝剂对水中染料絮凝效果探讨,水处理技术,1997,6,348-353
    23. Walker G. A. Weatherley L.R. Adsorption of acid dyes from aqueous solutionthe effect of adsorbent pore size distribution and dye aggregation. The Chemical Engineering Journal, 2001, 83, 201-206
    24.贾省芬,杨惠芳,假单胞菌S-59对多种染料的脱色和降解,微生物通报,1990,339-343
    25.闵一珏,ZE-1号印染废水脱色菌群的选育及适用条件的研究,环境污染与防治,1992,14,14-16
    
    
    26.黄民生,程永前,白腐真菌对染料的脱色与降解,上海环境科学,2000,19,124-128
    27. Brown D. Laboureur P. The degradation of dyestuffs: Part I Primary biodegradation under anaerobic conditions, Chemosphere. 1983, 12, 397-404
    28.闫庆松,厌氧+好氧+煤渣吸附处理偶氮染料废水的研究,工业水处理,2000,20,19-22
    29.阎存仙,罗浸,粉煤灰吸附去除活性艳蓝X-BR,上海交通大学学报,1998,32.126-129
    30.杨宇翔,陈荣三,硅藻土脱色机理及其在印染废水的应用研究,工业水处理,1999,19,15-17
    31. Ting H. L., Matsuurat, Sourirajon S. Effect of membrane material sand average pore sizes on reverse osmosis separation of dyes. Ind. Eng. Chem. Prod. Res. Dev. 1993, 22, 77-85
    32.斐振琦,韩式荆,用聚砜滤膜从染色废水中回收染料,环境科学,1985,4,1-4
    33.鲍廷镛,方孟伟,反渗透法处理锦纶染色废水,水处理技术,1981,7,19-21
    34.吴开芬,用超滤法处理靛蓝废水,环境科学进展,1998,6,124-127
    35.郭明远,杨牛珍,纳滤膜分离活性染料溶液的研究,水处理技术,1996,22,97-99
    36. Chen G. H., Hu X. J., Yue P. L. et al. Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation. J. Membrane Science, 1997, 127, 93-99
    37.王振余,郭树才,炭膜处理染料水溶液的研究,膜科学与技术,1997,17,7-10
    38. Somac C., Rumeau M., and Sergent C. Use of mineral membranes in the treatment of textile effluents. Intl. Conf. Inorganic Membranes. France. 1989, 523-526
    39.卢建杭,刘维屏,印染废水混凝脱色与染料结构及混凝剂种类间的关系,工业水处理,1997,19,28-30
    40.王连军,靳建永,染料废水的内电解脱色处理研究,重庆环境科学,1999,21.27-30
    
    
    41.赵国方,赵红斌,废水高温深度氧化处理技术,现代化工,2001,21,47-50
    42.谢磊,杨瑞昌,周书天,高浓度甲基橙溶液的低压湿式催化氧化处理,环境工程,1999,17,69-71
    43. Neppolian B., Choi H. C., Sakthivel S. et al. Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere. 2002, 46, 1173-1181
    44. Houas A., Lachheb H., Ksibi M., et al. Photecatalytic degradation pathway of methylene blue in water. Applied Catalysis B: 2001, 31,145-147
    45. Chen F., Xie Y. D., Zhao J. C. et al. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere. 2001, 44, 1159-1168
    46.王怡中等,光催化氧化与生物氧化组合对染料化合物降解研究,环境科学学报,2000,20,772-776
    47. Wang Y. Z. Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension. Water Res. 2000, 34, 990-994
    48.岳林海,樊邦棠,半导体复合体系光催化水溶性染料研究,环境污染与防治,1994,16,2-5
    49.毛立群,杨建军,郭泉辉等,活性艳红X-3B水溶液的光化学与光催化协同脱色反应,催化学报,2001,22,181-184
    50.杨曦,余刚,孔令仁等,酸性红3B的杂多酸光催化降解动力学,环境科学,2002,23,40-43
    51.孙亚兵,任兆杏,何于江,低温等离子体技术在三废处理中的应用与研究,环境保护科学,1997,23,45-48
    52.齐政,万辉,雷燕等,放电等离子体水处理技术中的若干问题,高电压技术,2003,29,32-34
    53. http://www.phys.tue.nl/EPG/YTRID/
    54. Hayashi D., Hoeben W.F.L.M., Dooms G., et al. LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution J. Phys. D. 2000, 33, 1484-1486
    
    
    55.朱承驻,董文博,潘循皙等,等离子体降解水相中有机污染物的机理研究,环境科学学报,2002,22,428-433
    56.朱承驻,董文博,侯惠奇等,等离子体技术降解茜素红水溶液的机理研究,上海环境科学,2003,22,760-764
    57.李胜利,李劲,王泽文等,脉冲放电对印染废水脱色效果的实验研究,环境科学,1996,17,13-16
    58.郭香会,李劲,脉冲放电等离子体处理硝基苯废水的实验研究,电力环境保护,2001,17,37-38
    59.郭香会,李劲,叶齐政等,脉冲放电等离子体处理硝基苯废水的实验研究,高电压技术,2001,27,42-44
    60.何正浩,邵瑰玮,王万林等,脉冲电晕放电处理焦化废水的研究,高电压技术,2003,29,29-31
    61.周爱妓,陶涛,李胜利等,等离子体技术用于垃圾渗滤液预处理,中国给水排水,2003,19,59-61
    62. Yee D.C., Chauhan S., Yankelevich E. et al. Degradation of perchloroethylene and dichlorophenol by pulsed-electric discharge and bioremediation. Biotechnology and Bioengineering 1998, 59, 438-444
    63.叶齐政,张家聪,张越非等,水中放电的电极结构研究,高电压技术,2003,39,16-18
    64.叶齐政,齐军,顾温国等,液混合体直流放电的初步研究,高电压技术,2001,27,26-28
    65.叶齐政,齐军,顾温国等,EHD喷雾电晕放电现象研究,高电压电器,2000,36,13-16
    66.杨长河、叶齐政,李劲等,EHD水处理装置放电现象的研究,高电压技术,2001,27,11-12
    67.叶齐政,万辉,李劲等,EHD液混合两相体电晕特性的研究,高压电器,2003,39,19-21
    68.李劲,叶齐政,郭香会等,电流体直流放电降解水中硝基苯的研究,环境科学,2001,22,99-101
    
    
    69.张越非,叶齐政,越纯等,味精厂废水混合二相体放电预处理的研究,高电压技术,2002,28,39-41
    70.李为,李劲,余龙江等,放电等离子体与饲养酵母联合处理味精废水的初步研究,环境污染与防治,2003,25,68-70
    71.胡祺昊,王黎明,黄兴华等,高压脉冲放电降解染料废水的实验研究,清华大学学报(自然科学学版),2002,42,1148-1150
    72.胡祺昊,王黎明,关志成等,脉冲电流处理印染废水的研究,高压电器,2001,37,11-13,
    73.李培芳 金方勤 液中放电理论和应用研究概况,静电杂志,1992,7,23-29
    74.苏建龙,黄卫东,液电脉冲等离子体降解高浓度有机废液的机理研究,环境科学动态,1997,2,13-16
    75. Robinson J.W., Ham M., Balster A.W. Ultraviolet radiation from electronical discharges in Water. J. Appl. Phys. 1973, 44, 72-76
    76.卢新培,潘坦,刘克富等,水中放电等离子体辐射特性研究,华中理工大学学报,2000,28,85-87
    77.卢新培,潘坦,水中放电等离子体特性的理论研究,应用基础与工程学科学报,2000,8,310-316
    78.卢新培,潘坦,刘克富等,水中放电等离子体状态方程的理论研究,高压物理学报,2001,15,103-110
    79.卢新培,潘坦,张寒虹等,水中脉冲放电的电特性与声辐射特性研究,物理学报,2002,51,1549-1553
    80.卢新培,张寒虹,潘坦等,水中脉冲放电的压力特性研究,爆炸与冲击,2001,21,282-286
    81.卢新培,潘坦,张寒虹等,水中脉沖放电等离子体通道特性及泡破裂过程,物理学报,2002,51,1768-1772
    82.Lu X. P.,Pan Y,Liu K.F.et al.Early stage of pulsed discharge in water. Chin. Phys.Lett.2001,18,1493-1495
    83.刘晓春,冯长根,朱祖良等,水中高压脉冲放电的光辐射研究,北京理工大学学报,1999,19,8-12
    84. Clements J.S., Sato M. Davis R.H. Preliminary investigation of prebreakdown
    
    phenomena and chemical reactions using a pulsed high-voltage discharge in water. IEEE Trans. Ind. Appl. 1997, IA-23,224-235
    85. Appleton A. T., Lukes P., Finney W.C. et al. Study on the effectiveness of different hybrid pulsed corona reactors in degrading aqueous pollutants. International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone ⅤⅢ) Pühajrve, 2002, 313-317
    86. Mizuno A. and Hori Y.J. Destruction of living cells by pulsed high-voltage application. IEEE Trans. Ind. Appl. 1998, 24, 387-394
    87. Willberg D.M., Lang P.S., Hochemer R.H. et al. Degradation of 4ochlorophenol, 3,4-dichloroaniline, and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor, Environ. Sci. Tectmol. 1996, 30, 2526-2534
    88. Lang P.S., Ching W.K., Willberg D.M. et al. Oxidative degradation of 2,4,6-trinitrotoluene by ozone in an electrohydraulic discharge reactor. Environ. Sci. Technol, 1998, 32, 3142-3148
    89. Sun B., Sato M., Harano A. et al. Non-uniform pulsed discharge-induced radical production in distilled water, J. Electrostatics, 1998, 43, 115-126
    90. Sun B., Sato M., Clements J.S., et al. Optical study of active species produced by a pulsed streamer corona discharge in water, J. Electrostatics, 1997, 39, 189-202
    91. Sun B., Sato M., Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution, J. Phys. D: Appl. Phys. 1999, 32, 1908-1915
    92. Sun B., Sato M. and Clements J.S., Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution, Environ. Sci. Technol., 2000, 34, 509-513
    93. Sato M., Ohgiyama T., Clements J.S. Formation of chemical species and their effects on microorganism using a pulsed high voltage discharge in water. IEEE Trans. Ind. Appl. 1996, 32, 106-112
    94. Sugiarto A.T., Sato M. Pulsed plasma processing of organic compounds in aqueous solution, Thin Solid Films, 2001, 386, 295-299
    95. Sugiarto A.T., Ohshima T., Sato M., Advanced oxidation processes using pulsed
    
    streamer corona discharge in water, Thin Solid Films, 2002, 407, 174-178
    96. Sharma A.K., Locke B.R., Arce P., et al. A preliminary study of pulsed streamer corona discharges for the degradation of phenol in aqueous solutions. Hazard. Waste. Hazard. Mater. 1993, 10, 209-220
    97. Joshi A.A., Locke B.R., Arce P., et al. Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution J. Hazard. Mater. 1995, 41, 3-30
    98. Appleton A.T., Lukes P. Finney W.C. et al. Study of the effectiveness of different hybrid pulsed corona reactors in degrading aqueous pollutants. Proc. Kakone ⅤⅢ, International Symposium on High Pressure Low Temperature Plasma Chemistry, 2002, 313-317
    99. Grymonpre D.R., Finney W.C. and Locke B.R. et al. Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison, Chemical Engineering Science, 1999, 54, 3095-3105
    100. Grymonpre D.R. Sharma A.K. Finney W.C. et al. The role of Fenton's reaction in aqueous phase pulsed streamer corona reactors Chemical Engineering Journal
    101. Sunka P., Babicky V., Clupek M. et al. Generation of chemically active species by electrical discharges in water. Plasma Sources Sci. Technol. 1999, 8, 258-265
    102. 李树杰,张毅,液电效应处理污水的实验研究,中国微生态学杂志,1996,8.63-64
    103. 许正,夏连胜,刘晓春,脉沖等离子体技术降解了NT初步研究,火炸药学报,1999,4,54-56
    104. 文岳中,高压脉冲放电降解水中有机污染物及转化CO2为CO的研究,浙江大学博士学位论文,2000
    105. Wen Y. Z. and Jiang X. Z. Degradation of 4-chorophenol by high-voltage pulse corona discharges combined with ozone, Plasma Chemistry and Plasma Processing, 2002, 22, 175-185
    106. 文岳中,姜玄珍,刘维屏,高压脉沖放电与臭氧氧化联用降解水中对氯苯
    
    酚,环境科学,2002,23,73-76
    107.文岳中,姜玄珍,吴墨,高压脉冲放电降解水中苯乙酮的研究,中国环境科学,1999,19,406-409
    108. Wen Y.Z. and Jiang X.Z. Degradation of acetophenone in water by pulsed corona discharges. Plasma Chemistry and Plasma Processing. 2000, 20, 343-351
    109. Wen Y.Z. and Jiang X.Z. Pulsed corona discharge-induced reactions of acetophenone in water. Plasma Chemistry and Plasma Processing. 2001, 21, 345-354
    110.陈银生,张新胜,袁渭康,高压脉冲放电等离子体降解苯酚废水,精细化工,2002,19,113-115
    111.陈银生,张新胜,袁渭康,高压脉冲电晕放电等离子体降解废水中苯酚,环境科学学报,2002,22,566-569
    112.陈银生,张新胜,袁渭康,高压脉冲放电低温等离子体法降解废水中4—氯 酚,华东理工大学学报(自然科学版),2002,28,232-234,244
    113.陈银生,张新胜,戴迎春等,脉冲电晕放电等离子体降解含4-氯酚废水,化工学报,2003,54,1269-1273
    114.陈银生,张新胜,戴迎春等,脉冲电晕放电等离子体降解4-氯酚废水的研究,高校化学工程学报,2003,17,71-75
    115. Braun A.M., Maurette M.T. and Oliveros E. Photochemical technology [M]. New York: John Wiley & Sons Ltd, 1991, 77-109
    116. Sellers R. M., Spectrophotometric determination of hydrogen peroxide using potassium titanium (Ⅳ) oxalate. The analyst, 1980, 150, 950-954
    117. Bader H. and Hoigne J. Determination of ozone in water by the indigo method. Water Res. 1981, 15, 449-456
    118.张乃东,郑威,UV-Vis-草酸铁络合物-H2O2体系产生羟自由基的Fe(phen)3~(2+)光度法,分析测试学报,2002,21,36-39
    119. Brand N., Mailhot G. and Bolte M. Degradation photo-induced by Fe(Ⅲ): method of alkylphenol ethoxylates removal in water. Environ. Sci. Techrmol. 1998, 32, 2715-2720
    
    
    120.史惠祥 赵伟荣 汪大翠,偶氮染料的臭氧氧化机理研究,浙江大学学报:工学版,2003,37,734-738
    121.奚旦立 环境工程手册-环境监测卷,北京:高等教育出版社,2000
    122. GehmanV.H., Gripshover R.J., Berger, T.L. et al., International Pulsed Power Conference, IEEE, 1995, 1,550-557
    123. Lei L., Hu X., Yue P.L. et al, Oxidative degradation of polyvinyl-alcohol by the photochemically enhanced Fenton reaction, J. Photochemistry and Photobiology A-Chemistry, 1998, 116, 159-166
    124.雷乐成,光助Fenton氧化处理PVA退浆废水的研究,环境科学学报,2000,20.139-144
    125.陈琳,溶解氧在光化学氧化降解对氯苯酚废水中的作用机理,浙江硕士学位论文,2003
    126.翁棣,动态紫外光辐射下臭氧协同循环流动降解磺基水杨酸的研究,高校化学工程学报,2003,17,471-475
    127. Nilsun H. I., and Gokce T. Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes and Pigments, 2001, 49, 145-153
    128. Naffrechoux E, Chanoux S, Petrier C. et al. Sonochemical and photochemical oxidation of organic matter. Ultrasonic Sonochem., 2000, 7, 255-259
    129.吴畏,李洪波,UV/O3/H2O2化学氧化活性艳蓝KN-R,辽宁化工,2004,33,10-11
    130.毛传峰,童少平,刘维屏,臭氧与TiO2/UV协同降解对氯苯酚,环境污染与防治,2003,25,259-261
    131. Liakou S., Pavlou S. and Lyberatos G. Ozonation of azo dyes. Water Sci. Tech. 1997, 35,279-286
    132.何孟兵,李劲,姚宗干 高功率脉冲放电问隙开关综述,高电压技术,2000,26.33-35
    133. Wu F., Deng N. and Hua H. Degradation mechanism of azo dye C. I. Reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere, 2000, 41,1233-1238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700