多管并联等离子体反应器氢氧合成过氧化氢及其用于丙烯催化环氧化反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化氢(H_2O_2),作为一种绿色氧化剂,已广泛地应用在造纸、水处理及精细化学品合成领域。目前蒽醌法H_2O_2生产技术在全球市场处于主导地位,但由于工艺过程复杂及设备投资大等问题,该技术只有在大规模集中生产时才会带来较好的经济效益。所以对于大多数分散用户而言,使用H_2O_2就必须承担其安全存储及带水运输过程引入的附加成本。而近年来,以H_2O_2为氧源的钛硅沸石催化丙烯环氧化技术,作为传统环氧丙烷生产工艺的理想替代技术,在工业化过程中也受制于商品H_2O_2的高昂成本。因此,小规模、低投资、方便灵活的H_2O_2生产新工艺越来越受研究者们重视。目前此领域最活跃的研究集中在贵金属催化氢氧液相直接合成过程,但由于该体系固有的多相间传质及产物分解等问题,致使其在近百年的漫长发展后,仍难以满足市场的需要。
     氢氧等离子体直接合成H_2O_2技术,以其工艺简单、产物纯度及浓度高等特点,已成为极具潜力的H_2O_2合成新方法之一。然而,同大多数等离子体化学技术一样,该合成过程中较低的能量效率严重限制了它的工业应用。因此,为推动该技术的工业化进程,须选择适宜的放大合成路线及设计稳定高效的放大反应器。另外,作为一种方便灵活的现场H_2O_2合成方法,该过程可与丙烯液相环氧化集成生产环氧丙烷,以减少H_2O_2存储及运输过程的成本。
     为解决以上问题,本论文在前期工作的基础上,开展了氢氧等离子体合成H_2O_2的实验室放大研究及其与丙烯液相环氧化工艺的集成研究,探讨了放大合成H_2O_2过程中的反应特性及能效变化规律,并对所用的反应器进行了优化。此外,分析了H_2O_2合成过程中决定能量效率的主要因素,并对电源与反应器负载间的阻抗匹配问题做了探索研究。研究中得到的主要结果如下:
     1.利用并联连接的多个介质阻挡放电管构成的反应器,在常温常压下研究了氢氧等离子体放大合成H_2O_2过程的反应特性及能量效率。发现放电管数量的变化对氢氧等离子体的放电模式没有明显影响,H_2O_2选择性维持在64%左右,不随管数及注入功率改变。注入功率为4.9~5.0 W、原料停留时间为18 s、放电频率为14 kHz时,放大过程中H_2O_2产能由7.1 mmol/h增至20.1 mmol/h,反应器能效由50 gH_2O_2/kWh增至136 gH_2O_2/kWh。合成过程的总能效受制于极低的电源能量注入效率,后者的提升需通过优化电源与反应器负载间的阻抗匹配来实现。
     2.放电管电极间距、高压电极材质、放电区长度及放电频率对H_2O_2合成过程中的反应特性及能量效率有重要影响。采用窄极间距的金属高压电极放电管既有利于反应器能效的提高,也有利于氧转化率及H_2O_2产率的提高。适当增加放电区长度及放电频率也可提高合成过程中的氧转化率、H_2O_2产率及反应器能效。使用电极间距为1.0 mm、放电区长度为30 cm的金属高压电极放电管,原料总流速及氧浓度分别为420 ml/min和4.8vol%、电源放电频率为16 kHz、注入功率为2.9 W时,单管反应可得到高达151gH_2O_2/kWh的反应器能效。将其应用于三管放大合成,原料总流速为630 ml/min、电源放电频率为14 kHz时,最高可得到165 gH_2O_2/kWh的反应器能效和8.7 gH_2O_2/kWh的总能效。
     3.放电系统中,电源变压器漏感L与反应器负载等效电容C形成的LC电路中存在谐振问题,电源工作于谐振频率f_R时其与反应器负载间的阻抗匹配最优。电源工作频率f_W与f_R间的偏离越大,电路的阻抗匹配程度越差,电源的能量注入效率越低。为提高反应器能效,需采用窄极间距的金属高压电极反应器,且应在较高频率下放电。在此基础上设计电源时,应在一定范围内减小变压器漏感L,使f_R增大,同时调整f_W,使放电系统在较高频率范围内实现阻抗匹配。由此可同时得到较高的反应器能效和电源能量注入效率,使合成H_2O_2过程的总能效得到大幅提升。
     4.等离子体法H_2O_2直接合成过程可以安全、简洁地为选择氧化反应提供高纯度的H_2O_2氧化剂溶液。利用该法现场制备的氧化剂溶液,成功实现了氢氧等离子体合成H_2O_2技术与丙烯液相环氧化反应的集成。在常温常压下,放电反应器的注入功率为3.5W、原料停留时间为18 s、甲醇溶剂的补入速率为13.2 ml/h时,可得到流量为12 ml/h、浓度为0.70 mol/L的H_2O_2氧化剂溶液。固定床反应器进料中丙烯/H_2O_2摩尔比为4.2、反应温度为50℃、压力为3.0 MPa、进料总空速为3.7 h~(-1)时,在18 h的运转过程中,此集成装置运行平稳,H_2O_2转化率和有效利用率分别保持在92~94%及72~77%,环氧丙烷选择性与产率稳定于94~95%及63~68%。
Hydrogen peroxide (H_2O_2), as a green oxidant, is widely used in pulp bleaching, wastewater treatment and chemical synthesis. Now almost all H_2O_2 is exclusively produced by anthraquinone oxidation process, which is economically viable only on a large scale due to the complex operations and huge investment. But to most of the customers, only relatively small amounts of H_2O_2 are required at any one time, so the transportation and storage of H_2O_2 accounts for a big part of the H_2O_2 cost. Moreover, in the last decade, propene epoxidation process with H_2O_2 catalyzed by TS-1 has been intensively studied as one of the most promising alternatives to traditional technologies, but its commercialization is strongly hindered by the relatively high cost of H_2O_2. Therefore, many studies focus on the development of a green, economical, and smaller-scale technology for H_2O_2 manufacturing. One promising route to generate H_2O_2 is the direct synthesis from hydrogen and oxygen in the presence of Pd/Au supported catalyst. However, this process suffers from the decomposition of H_2O_2 which is catalyzed by the same noble metal catalysts for H_2O_2 synthesis and mass transfer problem in such a three-phase system. So this technology has not been able to meet the requirements of the market yet even though the related studies last for nearly one hundred years.
     The direct synthesis of H_2O_2 via non-equilibrium plasma, which is characterized by simple operation process, high concentration and ultra high purity of the product, provides a promising alternative route for H_2O_2 production. However, as a general problem of plasma chemistry technology, the relatively low energy efficiency severely limits its commercialization. In view of industrial application, it is necessary to develop a suitable scale-up route and design highly efficient scale-up reactor. Moreover, the direct synthesis of H_2O_2 by plasma technology can supply on-site oxidant to propene epoxidation process, thus the storage and transportation costs of H_2O_2 can be reduced effectively.
     To solve the above problems, based on our previous works, the laboratory studies on scale-up synthesis of H_2O_2 via plasma technology and integration process of H_2O_2 synthesis with propene epoxidation have been carried out. The reaction characteristics and energy efficiency in the scale-up process were discussed, and the main factors which dominated the energy efficiency were determined. Also some strategies were proposed to optimize the impendence match between the power supply and reactor load. The main results were obtained in this dissertation as follows:
     1. The scale-up synthesis of H_2O_2 from H_2/O_2 via a dielectric barrier discharge at ambient conditions was studied by using a reactor consisting of multiple parallel discharge tubes. Varying the number of tubes had no significant effect on discharge mode and reaction mechanism. H_2O_2 selectivity kept at around 64 %, and no decay occurred during the scale-up process. With the input power of 4.9-5.0 W, residence time of 18 s, discharge frequency of 14 kHz, the H_2O_2 productivity increased from 7.1 mmol/h to 20.1 mmol/h during the scale-up process, and the reactor energy efficiency was improved from 50 gH_2O_2/kWh to 136 gH_2O_2/kWh. The total energy efficiency was limited by the extremely low energy transfer efficiency of power supply, and might be enhanced by optimizing the impedance match between the power supply and reactor load.
     2. The discharge gap of reactor, material of high-voltage electrode, length of discharge zone and discharge frequency have significant effects on reaction characteristics and energy efficiency. The reactor energy efficiency, O_2 conversion and H_2O_2 yield were enhanced by using the reactor with narrow discharge gap and metal high-voltage electrode. The increase of discharge zone length and discharge frequency at a certain extent also favored the improvement of O_2 conversion, H_2O_2 selectivity and reactor energy efficiency. By using the metal high-voltage electrode reactor which had the discharge gap of 1.0 mm and discharge zone length of 30 cm, with the reactant flow rate of 420 ml/min, O_2 content of 4.8 vol %, discharge frequency of 16 kHz and input power of 2.9 W, the energy efficiency as high as 151 gH_2O_2/kWh was obtained. For the application of said reactor in scale-up setup with three parallel tubes, with the total flow rate of material gas of 630 ml/min and discharge frequency of 14 kHz, the reactor energy efficiency of 165 gH_2O_2/kWh and total energy efficiency of 8.7 gH_2O_2/kWh have been achieved.
     3. In this discharge circuit, resonance was formed by the transformer leak inductance (L) of power supply and equivalent capacitance (C) of reactor. When the power supply worked at resonance frequency (fR), the optimal impedance match between power supply and reactor load could be obtained. On the other hand, using the reactor with metal high-voltage electrode and increasing discharge frequency could enhance the reactor energy efficiency remarkably. So considering the above factors, L value should be reduced at a certain extent to obtain a relatively high fR for developing a suitable power supply, and then set the working frequency of the power supply at fR, ultimately the optimal impedance match can be obtained at a high frequency. In such an optimized discharge system, the reactor energy efficiency can be effectively improved together with the energy transfer efficiency, consequently the total energy efficiency for H_2O_2 synthesis will be enhanced significantly.
     4. The direct synthesis of H_2O_2 via plasma method can safely and simply provide selective oxidation reactions with high-purity H_2O_2 oxidant. The integration of on-site H_2O_2 synthesized by plasma route and liquid-phase propene epoxidation catalyzed by TS-1 catalyst was successfully actualized. At ambient conditions, with the input power of 3.5 W, residence time of 18 s, methanol compensating rate of 13.2 ml/h, the H_2O_2 oxidant solution with the flow rate of 12 ml/h and concentration of 0.70 mol/L was prepared. Set the molar ratio of propene/H_2O_2 in feedstock at 4.2, reaction temperature at 50℃, system pressure at 3.0 MPa, WHSV at 3.7 h~(-1), this setup worked smoothly during a period of 18 h. H_2O_2 selectivity and utilization efficiency varied in the range of 92-94 % and 72-77 % respectively, as well as propene oxide selectivity and yield maintained in the range of 94-95 % and 63-68 % respectively.
引文
[1] Campos-Martin JM, Blanco-Brieva G, Fierro JLG. Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angew. Chem. Int. Ed., 2006, 45: 6962-6984.
    
    [2]栾国颜,高维平,姚平经.国内外过氧化氢生产与应用进展.化工科技市场,2005(1):15-19.
    
    [3] Tullo, A. Dow, BASF to Build Propylene Oxide. Chem. Eng. News, 2004, 82: 15.
    
    [4] Edvinsson AR, Nystrsm M, Siverstrom M, et al. Development of a monolith-based processfor H_2O_2 production: from idea to large-scale implementationCatal. Today, 2001, 69:247-252.
    
    [5] Santacesaria E, SerioMD, Russo A. Kinetic and Catalytic Aspects in the Hydrogen PeroxideProduction via Anthraquinone. Chemical Engineering Science, 1999, 54: 2799-2806.
    
    [6] Bortolo R, Bianchi D, D'Aloisio R, et al. Production of Hydrogen Peroxide from Oxygenand Alcohols, Catalyzed by Palladium Complexes. J. Mol. Catal. A: Chemical, 2000, 153:25-29.
    
    [7]胡长诚.国内外过氧化氢生产、研发现状及发展.化学推进剂与高分子材料,2006,4(1):6-10.
    
    [8]胡长诚.国外过氧化氢制备研究开发进展.化学推进剂与高分子材料,2005,3(1):1-9.
    
    [9]赵克,李书显.双氧水的生产方法与应用.氯碱工业,2000,(11):22-25.
    
    [10] Ramanathan G, Williamsville NY. Electrochemical synthesis of hydrogen peroxide. US 6712949B2 (March 30, 2004)
    
    [11]栾国颜,高维平,姚平经.电子级过氧化氢的生产、市场和技术开发.化工科技市场,2004,(10): 9-11.
    
    [12]许振良,魏永明,郎万中等.超大规模集成电路用超净高纯过氧化氢的制备研究.化学试剂, 2005,27(10):633-636.
    
    [13]陈四海,龙祺,张坤林等.高纯过氧化氢的生产及应用.化工进展,2003,22(10):1122-1125.
    
    [14]栾国颜,高维平,姚平经.高纯过氧化氢生产中有机物杂质的净化技术进展.现代化工,2005, 25(4):20-24.
    
    [15]张尊英.电子级过氧化氢的质量标准、市场和生产技术.化工技术与开发,2007,36(5):30-35.
    
    [16] Henkel H, Weber W (Henkel & CIE). US 1108752, 1914. [Chem. Abstr. 1914, 8, 23927].
    
    [17] Campbell JS (ICI Ltd.). GB 1056123, 1967 [Chem. Abstr. 1967,66, 67450].
    
    [18] Dyer PN, Moseley F (Air Products & Chemicals Inc.). DE 2710279, 1977 [Chem. Abstr.1977, 88, 25030].
    
    [19] Gosser LW, Schwartz JAT (E.I. Du Pont de Nemours and Company). Hydrogen peroxideproduction method using platinum/palladium catalysts. US 4832938, 1989 [Chem. Abstr.1989, 111, 117783].
    
    [20] Huckins HA (Princeton Advanced Technologies). Method for producing hydrogen peroxidefrom hydrogen and oxygen. US 5641467, 1997 [Chem. Abstr. 1997, 127, 110968].
    [21] Devic M, Dang D (Atofina). Supported Metal Catalyst, Preparation and Applications for Directly Making Hydrogen peroxide. WO 0105501, 2001 [Chem. Abstr. 2001, 134, 106456].
    [22] Maraschino MJ (Kerr-Mc. Gee Corporation). Process for producing hydrogen peroxide. US 5169618,1992. [Chem. Abstr. 1992, 118, 105878].
    [23] Burch R, Ellis PR. An investigation of alternative catalytic approaches for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Appl. Catal. B, 2003, 42: 203-211.
    [24] Choudhary VR, Sansare SD, Gaikwad AG. Direct oxidation of H-2 to H_2O_2 and decomposition of H_2O_2 over oxidized and reduced Pd-containing zeolite catalysts in acidic medium. Catal. Lett., 2002, 84: 81-87.
    [25] Chinta S, Lunsford JH. A mechanistic study of H_2O_2 and H_2O formation from H_2 and O_2 catalyzed by palladium in an aqueous medium. J. Catal., 2004, 225: 249-255.
    [26] Paparatto G, d' IAloisio R, De Alberti G, Furlan P, Arca V, BuzQn R. New catalyst, process for the production of hydrogen peroxide and its use in oxidation processes EP 0978316, 2000. [Chem. Abstr. 2000,132, 142643].
    [27] Choudhary VR, Samanta C. Role of chloride or bromide anions and protons for promoting the selective oxidation of H2 by O2 to H2O2 over supported Pd catalysts in an aqueous medium. J. Catal., 2006, 238: 28-38.
    [28] Dissanayake DP, Lunsford JH. Evidence for the Role of Colloidal Palladium in the Catalytic Formation of H_2O_2 from H_2 and O_2. J. Catal., 2002, 206: 173-176.
    [29] Dissanayake DP, Lunsford JH. The Direct Formation of H_2O_2 from H_2 and O_2 over Colloidal Palladium. J. Catal., 2003, 214:113-120.
    [30] Lunsford JH. The Direct of H_2O_2 from H_2 and O_2 over Palladium Catalysts, J. Catal., 2003, 216: 455-160.
    [31] Blanco-Brieva G, Cano-Serrano E, Campos-Martin JM, Fierro JLG. Direct synthesis of hydrogen peroxide solution with palladium-loaded sulfonic acid polystyrene resins. Chem. Commun., 2004, 1184-1185.
    [32] Burato C, Centomo P, Rizzoli M, Biffis A, Campestrini S, Corain B. Functional resins as hydrophilic supports for nanoclustered Pd(0) and Pd(0)-Au(0) catalysts designed for the direct synthesis of hydrogen peroxide. Adv. Synth. Catal., 2006, 348, 255-259.
    [33] Olivera PP, Patrito EM, Sellers H. Hydrogen peroxide synthesis over metallic catalysts. Surf. Sci., 1994, 313, 25-40.
    [34] Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ. Direct formation of hydrogen peroxide from H_2/O_2 using a gold catalyst. Chem. Commun., 2002, 2058-2058.
    [35] Okumura M, Kitagawa Y, Yamagcuhi K, Akita T, Tsubota S, Haruta M. Direct production of hydrogen peroxide from H-2 and O-2 over highly dispersed Au catalysts. Chem. Lett., 2003, 32, 822-823.
    [36] Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ. Direct synthesis of hydrogen peroxide from H_2 and O_2 using TiO_2-supported Au-Pd catalysts. J. Catal., 2005, 236, 69-79.
    [37] Ishihara T, Ohura Y, Yoshida S, et al. Synthesis of hydrogen peroxide by direct oxidation of H_2 with O_2 on Au/SiO_2 catalyst. Appl. Catal. A, 2005, 291, 215-221.
    [38] Edwards JK, Solsona BE, Landon P, et al. Direct Synthesis of Hydrogen Peroxide from H_2 and O_2 Using TiO_2-Supported Au-Pd Catalysts. J. Catal., 2005, 236: 69-79.
    [39] Edwards JK, Solsona BE, Landon P, et al. Direct Synthesis of Hydrogen Peroxide from H_2 and O_2 Using Au-Pd/Fe_2O_3 Catalysts. J. Mater. Chem., 2005, 15 (43): 4595-4600.
    [40] Huckins HA (Princeton Advanced Technologies). Method for producing hydrogen peroxide from hydrogen and oxygen. US 5641467, 1997. [Chem. Abstr. 1997, 127, 110968].
    [41] Chen CL, Beckman EJ. Direct synthesis of H_2O_2 from O_2 and H_2 over precious metal loaded TS-lin CO_2. Green Chem., 2007, 9: 802-808.
    [42] Hancu D, Green J, Beckman E J. H_2O_2 in CO_2: Sustainable Production and Green Reactions. Acc. Chem. Res., 2002,35:757-764.
    [43] Liu QS, Bauer JC, Schaak RE, et al. Supported Palladium Nanoparticles: An Efficient Catalyst for the Direct Formation of H_2O_2 from H_2 and O_2. Angew. Chem. Int. Ed., 2008, in press.
    [44] Dissanayake DP, Lunsford JH. The Direct Formation of H_2O_2 from H_2 and O_2 over colloidal palladium. J. Catal., 2003, 214:113-120.
    [45] Choudhary VR, Gaikwad AG, Sanasare SD. Nonhazardous Direct Oxidation of Hydrogen to Hydrogen Peroxide Using a Novel Membrane Catalyst. Angew. Chem. Int. Ed., 2001, 1776-1779.
    [46] Melada S, Pinna F, Strukul G, Perathoner S, Centi G. Palladium-modified catalytic membranes for the direct synthesis of H_2O_2: preparation and performance in aqueous solution. J. Catal., 2005, 235: 241-248.
    [47] Schumb WC, Satterfield CN, Wentworth RI. Hydrogen Peroxide. New York: Reinhold publishing corp.,1955.
    
    [48] Kobozev NI, Semiokhin IA, Sindyukov VG. Russ. J. Phys. Chem., 1960, 34: 367.
    [49] Semiokhin IA, Kobozev NI, Pitskhelauri EN. Russ. J. Phys. Chem., 1961, 35: 1375.
    [50] Morinaga BK. The Reaction of Hydrogen and Oxygen through a Silent Electric Discharge. K. Bull. Chem. Soc. Japan, 1962, 35: 345, 625, 627.
    [51] Baldwin RR, et al. Trans. Faraday Soc., 1960, 56: 80, 93, 103.
    [52] Shinji E, Keisuke N, Shigenori Y, Kazahiko M. Method and Apparatus for Producing Hydrogen Peroxide. US 5378436, 1995.
    
    [53] Zhou JC, Guo HC, Wang XS, Guo MX, Zhao JL, Chen LX, Gong WM. Direct and continuous synthesis of concentrated hydrogen peroxide by the gaseous reaction of H_2/O_2 non-equilibrium plasma. Chem. Commun., 2005, 12: 1631-1633.
    
    [54]周军成,苟建霞,陈黎行,郭洪臣,王祥生.用氢氧的非平衡等离子体直接合成过氧化氢. 化工学报,2006,57:821-823.
    
    [55]苟建霞,周军成,郭洪臣,苏际,陈黎行,王祥生,宫为民.氢和氧介质阻挡放电合成 过氧化氢的研究.现代化工,2006:26:194-197.
    
    [56]周军成.氢氧等离子体法直接合成过氧化氢及其在丙烯相环氧化中的应用:(博士学位论 文).大连:大连理工大学,2007.
    
    [57] Venugopalan M, Jones RA. Chemistry of dissociated water vapor and related systems.Chem. Rev., 1966, 66: 133-160.
    
    [58] Fujii T, Iijima S, Iwase K, et al. The Production of H2O2 in the Microwave DischargePlasma of CH_4/O_2. J. Phys. Chem. A, 2001, 105: 10089-10092.
    
    [59]厦门大学化学化工学院《物理化学》网络课程.
    
    [60] Forst W, Giguere PA. Inhibition by hydrogen peroxide of the second explosion limitof the hydrogen-oxygen reaction. J. Phys. Chem., 1958, 62: 340-343.
    
    [61] Yamanaka I, Onizawa T, Takenaka S, Otsuka K. Direct and continuous production ofhydrogen peroxide with 93 % selectivity using a fuel-cell system. Angew. Chem., 2003,115: 3781-3783. Angew. Chem. Int. Ed., 2003, 42: 3653-3655.
    
    [62] Yamanaka I, Onizawa T, Suzuki H, Hanaizumi N. Electrocatalysis of heat-treatedMn-porphyrin/carbon cathode for synthesis of H_2O_2 acid solutions by H_2/O_2 fuel cellmethod. Chem. Lett., 2006, 35: 1330-1331.
    
    [63] Yamanaka I, Murayama T. Neutral H_2O_2 Synthesis by Electrolysis of Water and O_2. Angew.Chem. Int. Ed., 2008, 47(10): 1900-1902.
    
    [64] Zudin VV, Likholobov VA, Yermakov YI. Kinet. Ratal., 1979, 20: 1559-1600.
    
    [65] Bianchi D, Bortolo R, D'Aloisio R, et al. A Novel Palladium Catalyst for the Synthesisof Hydrogen Peroxide from Carbon Monoxide . J. Mol. Catal. A, 1999, 150: 87-94.
    
    [66] Feng W, Cao Y, Yi N, et al. Direct Production of Hydrogen Peroxide from CO, O_2, andH_2O over a Novel Alumina-supported Cu Catalyst. New J. Chem., 2004, 28:1431-1433.
    
    [67] Song W, Li J, Liu JL, Shen WJ. Production of hydrogen peroxide by the reaction ofhydroxylamine and molecular oxygen over activated carbons. Catal. Commun., 2008, 9:831-836.
    
    [68] Yalfani MS, Contreras S, Medina F, et al. Direct generation of hydrogen peroxide fromformic acid and O_2 using heterogeneous Pd/γ-Al_2O_3 catalysts. Chem. Commun., 2008, inpress.
    
    [69]代斌.等离子体催化二氧化碳经甲烷化制C_2烃反应的研究:(博士学位论文).大连:大连理 工大学,2002.
    
    [70] Dai B, Zhang XL, Gong WM, et al. Effect of Hydrogen on the Methane Coupling under Non-equilibrium Plasma. Plasma Sci Technol., 2001, 3(1): 637-639.
    
    [71]代斌,张秀玲,张琳等.Study on the Hydrogenation Coupling of Methane.中国科学(B 辑),2001,44(2):191-195.
    
    [72] Zhu AM, Gong WM, Zhang XL. Coupling of Methane under Pulse Corona Plasma(1). ScienceChina B, 2000, 43(2): 208-214.
    
    [73] Li XS, Shi C, Xu Y, Wang KJ, Zhu AM. A process for a high yield of aromatics from theoxygen-free conversion of methane: combining plasma with Ni/HZSM-5 catalysts. GreenChem., 2007, 9, 647-653.
    
    [74] Li XS, Shi C, Wang KJ, Zhang XL, Xu Y, Zhu AM. High Yield of Aromatics from CH4 ina Plasma-Followed-by-Catalyst (PFC) Reactor. AIChE, 2006, 52: 3321-3324.
    
    [75]王保伟,许根慧,刘昌俊.等离子体技术在天然化工中的应用.化工学报,2001,52(8): 659-665.
    
    [76] Xing Y, Liu ZX, Couttenye RA, et al. Generation of hydrogen and light hydrocarbonsfor automotive exhaust gas purification: Conversion of n-hexane in a PACT (plasma andcatalysis integrated technologies) reactor. J. Catal., 2007, 250: 67-74.
    
    [77] Chen X, Suib SL, Hayashi Y, et al. H_2O Splitting in Tubular PACT (Plasma and CatalystIntegrated Technologies) Reactors. J. Catal., 2001, 201, 198-205.
    
    [78] Brock SL, Marquez M, Suib SL, et al. Plasma Decomposition of CO_2 in the Presence ofMetal Catalysts. J. Catal., 1998, 180: 225-233.
    
    [79] Liu CJ, Wang JX, Yu KL, et al. Floating double probe characteristics of non-thermalplasmas in the presence of zeolite. J. Electrostat., 2002, 54: 149-158.
    
    [80] Liu CJ, Vissokov GP, Jang BWL. Catalyst preparation using plasma technologies. Catal.Today, 2002, 72: 173-184.
    
    [81] Liu CJ, Yu KL, Zhang YP, et al. Characterization of plasma treated Pd/HZSM-5 catalystfor methane combustion. Appl. Catal. B, 2004, 47: 95-100.
    
    [82] Zhu XL, Huo PP, Zhang YP, Liu CJ. Characterization of Argon Glow Discharge PlasmaReduced Pt/Al_2O_3 Catalyst. Ind. Eng. Chem. Res., 2006, 45: 8604-8609.
    
    [83] Zou JJ, Liu CJ, Zhang YP. Control of the Metal-Support Interface of NiO-LoadedPhotocatalysts via Cold Plasma Treatment. Langmuir, 2006, 22: 2334-2339.
    
    [84] Bai MD, Zhang ZT, Bai MD. Effects of hydroxyl radicals on introduced organisms of ship' sballast water based micro-gap discharge. Plasma Sci. Tec, 2007, 9: 206-210.
    
    [85] Zhang ZT, Bai MD, Bai MD. Killing of red tide organisms in sea enclosure using hydroxylradical-based micro-gap discharge. IEEE Trans. Plasma Sci., 2006, 34: 2618-2623
    
    [86] Sun Q, Zhu AM, Yang XF, et al. Formation of NOx from N-2 and O-2 in catalyst-pelletfilled dielectric barrier discharges at atmospheric pressure. Chem. Commun., 2003,12: 1418-1419.
    
    [87] Mok YS, Jo JO, Whitehead JC. Degradation of an azo dye Orange II using a gas phasedielectric barrier discharge reactor submerged in water. Chera. Eng. J., 2008, in press.
    
    [88] Wang HJ, Li J, Quan X, Wu Y. Enhanced generation of oxidative species and phenoldegradation in a discharge plasma system coupled with TiO_2 photocatalysis. Appl. Catal.B, 2008, in press.
    
    [89] Yao S, Okumoto M, Madokoro K, Yashima T. Pulsed Dielectric Barrier Discharge Reactorfor Diesel Particulate Matter Removal. AIChE, 2004, 50: 1901-1907.
    
    [90] Zhao GB, Garikipati Janardhan SVB, Hu XD, et al. Effect of Reactor Configuration onNitric OxideConversion in Nitrogen Plasma. AIChE, 2005, 51: 1813-1821.
    
    [91] Kogelschatz U. Industrial innovation based on fundamental physics. Plasma Sources Sci.Technol., 2002, 11: A1-A6.
    
    [92]卡罗 JS,哈特 M,约尔根森 N等.电晕放电反应器.CN 1264744C
    
    [93]孙明.OH,NH_2自由基提高脉冲放电等离子体烟脱硫效率的研究:(博士学位论文).大连:大 连理工大学,2004.
    
    [94]聂勇.脉冲放电等离子体治理有机废放大试验研究:(博士学位论文).杭州:浙江大学, 2004.
    
    [95]陈壁光,沈能士编著.电器试验和测量技术.北京:中国电力出版社,1999.
    
    [96]刘钟阳.放电等离子体合成臭氧及应用中一些问题的研究:(博士学位论文).大连:大连理工 大学,2002.
    
    [97] Chung JW, Cho MH, Son BH. Study on reduction of energy consumption in pulsed corona discharge process for NOx removal. Plasma Chem. Plasma Pro., 2000, 20: 495-509
    
    [98] Wang RY, Zhang BA. et al. Apparent energy yield of a high efficiency pulse generator with respect to SO_2 and NOx removal. J. Electrostatics, 1995, 34(4): 355-366.
    
    [99] Zhu YM, Wang RY. Matching between generator and reactor for producing pulsed corona discharge. J. Electrostatics, 1998, 44(1-2): 41-45.
    
    [100] Yan K, et al. Elements of pulsed corona induced non-thermal plasmas for pollution control and sustainable development. J. Electrostatics, 2001, 51-52: 218-224.
    
    [101]夏连胜,李远,李劲,章林文,戴光森.高压脉冲延迟线实验研究.高电压技术,2002,28 (2):37-38.
    
    [102]聂勇,李伟,施耀,谭天恩.等离子体反应器的改进及其与脉冲电源间的匹配.电工电能新 技术.2004,23:64-67.
    
    [103]孟志强.大功率介质阻挡放电臭氧发生电源的关键技术研究与实现:(博士学位论文).长沙: 湖南大学,2005.
    
    [104]陈茹.丙纶织物的常压辉光放电等离子体表面改性.(硕士学位论文).大连:大连理工大学, 2003.
    
    [105]杨波,王燕,初庆东,张芝涛,白希尧.测量介质阻挡放电功率的一种新方法.大连海事大学学 报,2002,68:92-96.
    
    [106]刘钟阳,吴彦,王宁会.DBD等离子体反应器放电功率测量的研究.仪器仪表学报.2001,22: 78-79.
    
    [107]黄玉水,胡凌燕.一种实用的测量臭氧发生器负载参数的方法.南吕水专学报,2003,22: 24-26.
    
    [108]张丽娜,李军,余加,奚祖威,高爽.以分子氧为氧源催化丙烯环氧化制环氧丙烷.化学通报. 2006,10:755-761.
    
    [109]吕咏梅.国内外环氧丙烷生产与市场分析.中国石油和化工经济分析,2007,4:40-45.
    
    [110] Lu GZ, Zuo XB. Epoxidation of Propylene by Air over Modified Silver Catalyst. Catal. Lett., 1999, 58(1): 67-70.
    
    [111]卢冠忠,金国杰,郭杨龙等.一种丙烯相一步氧化制环氧丙烷用催化剂及其制备方法.CN 1446626A.
    
    [112] Jin GJ, Lu GZ, Guo YL, et al. Direct Epoxidation of Propylene with Molecular Oxygen over Ag-MoO_3/ZrO_2 Catalyst. Catal. Today, 2004, 93-95: 171-180.
    
    [113]Lu JQ, LuoMF, Lei H, et al. Epoxidation of Propylene on NaCl-Modified Silver Catalysts with Air as the Oxidant. Appl. Catal. A: Gen, 2002, 237: 11-19
    
    [114] Geenen P V, Boss HJ, Pott GT. Study of the Vapor-Phase Epoxidation of Propylene and Ethylene on Silver and Silver-Gold Alloy Catalysts. J. Catal., 1982, 77(2): 499-510.
    
    [115]鲁继青,罗孟飞,李灿.Cu/SiO_2催化剂上丙烯在空中的直接环氧化反应.催化学报,2004, 25:5-9.
    
    [116] Vaughan OPH, Kyriakou G, Macleod N, et al. Copper as a Selective Catalyst for theEpoxidation of Propene. J. Catal., 2005, 236:401-404.
    
    [117] Chu H, Yang L, Zhang OH, et al. Copper-Catalyzed Propylene Epoxidation by MolecularOxygen: Superior Catalytic Performances of Halogen-free K+-Modified Cu0_x/SBA-15. J.Catal., 2006, 241:225-228.
    
    [118] Guo MX, Guo HC, Wang XS, Gong WM. Gas phase epoxidation of propylene with O_2 inducedby alternating electric field. Chin. J. Chem., 2005, 23: 471-473.
    
    [119]郭明星,郭洪臣,王祥生,周军成,赵剑利,陈黎行,宫为民.高等学校化学学报,2005,26: 527-530.
    
    [120]郭明星.等离子体条件下分子氧和丙烯进行相氧化反应的研究:(博士学位论文).大连: 大连理工大学,2006.
    
    [121] Taramasso M, Perego G, Notari B. Preparation of Porous Crystalline Synthetic MaterialComprised of Silicon and Titanium Oxides. US 4410501, 1983.
    
    [122] Clerici MG, Bellussi G, Romano U. Synthesis of Propylene Oxide from Propylene andHydrogen Peroxide Catalyzed by Tianium Silicalite. J. Catal., 1991, 129: 159-167.
    
    [123]潘声成,唐忠,陶庭树.丙烯与过氧化氢合成环氧丙烷固定床工艺研究.精细石油化工进展, 2001,2(5):38.
    
    [124] Nemeth LT, MalloyTP. Epoxidation of olefins using a titania-supported titanosilicate.??US 5354875, 1994210211.
    
    [125] NemethLT, Lewis GJ, Jones RR. Titanovanadosilicalites as epoxidation catalysts for olefins. US 5744619, 1998204228.
    
    [126]高焕新,曹静,陆巍然等.丙烯氧化制环氧丙烷催化剂的合成.石油学报(石油加工),2000, 16(3): 79.
    
    [127] Guth JL, Kessler H, Wey R. Proceeding of the 7th Interational Zeolite Conference,Kodansh, Tokyo, 1986: 121
    
    [128] Muller U, Steck W. Ammonium-based Alkaline-free Synthesis of MFI-type Boron andTitanium Zeolite, Stud. Surf. Sci. Catal., 1994, 84/A: 203-210
    
    [129] Zhou JC, Wang XS. A Novel Method for Synthesis of TS-1.催化学报, 1999, 20(1): 5-6.
    
    [130] Thangaraj A, Eapan MJ, Sivasanker S, Ratnasamy R. Studies on the Synthesis of TitaniumSilicate. TS-1. Zeolites, 1992, 12(9): 943-950.
    
    [131] Tuel A, Ben Taarit Y, Naccache C. Characterization of TS-1 synthesized using mixturesof tetrabutyl and tetraethyl ammonium hydroxides. Zeolites, 1993, 13 (6): 454-461.
    
    [132]夏清华,王公慰,应慕良,郑碌彬.Ti-ZSM-5沸石的合成及表征.石油化工,1993,22(12): 781-785.
    
    [133]张雄福,王桂茹,王祥生.杂原子Ti-ZSM-5沸石合成与催化:I.Ti-ZSM-5沸石合成.石 油学报,1994,10(4):37-42.
    
    [134] Wang XS, Guo XW, Li G. Proceedings of the 12~t th international zeolite conference, Baltimore, USA, 1998:1283.
    
    [135]张义华.钛基催化材料的合成、表征和选择氧化性能研究:(博士学位论文).大连:大连理工 大学,2001.
    
    [136]李钢,郭新闻,王祥生,李光岩,赵琦,包信和,韩秀文,林励吾.TPABr-正丁胺体系中的 合成与表征.大连理工大学学报,1998,38(3):363-367.
    
    [137]李钢,郭新闻,王丽琴,王祥生.钛硅分子筛催化丙烯环氧化反应条件的研究.分子催化, 1998,12(6):436-440.
    
    [138]王祥生,李钢,陈涛等.一种复合催化剂的制备和应用.CN,01140509,2001
    
    [139] Cheng WG, Wang XS, Li G. Highly efficient epoxidation of propylene to propylene oxideover TS-1 using urea + hydrogen peroxide as oxidizing agent. J. Catal., 2008
    
    [140] Clerici, M. TS-1 and Propylene Oxide, 20 Years later. Oil Gas Eur.Mag. 2006, 32: 77.
    
    [141] Klemm E, Dietzsch E, Schwarz T. Direct Gas-Phase Epoxidation of Propene with HydrogenPeroxide on TS-1 Zeolite in a Microstructured Reactor. Ind. Eng. Chem. Res., 2008,47: 2086-2090.
    
    [142] Wells DH, Delgass WN, Thomson KT. Evidence of Defect-Promoted Reactivity forEpoxidation of Propylene in Titanosilicate (TS-1) Catalysts: A DFT Study. J. Am. Chem.Soc, 2004, 126: 2956-2962.
    
    [143] Yang G, Lan XJ, Zhuang JQ, et al. Acidity and defect sites in titanium silicalite catalyst. Appl. Catal. A: Gen., 2008, 337: 58-65.
    [144] Xi ZW, Zhou N, Sun Y, et al. Reaction-Controlled Phase-Transfer Catalysis for Propylene Epoxidation to Propylene Oxide. Science, 2001, 292(5519): 1139-1141.
    [145] Zhou N, Xi ZW, Cao GY, et al. Epoxidation of propylene by using [π-C_5H_5NC_(16)H_(33)]_3[PW_4O_(16)] as catalyst and with hydrogen peroxide generated by 2-ethylanthrahydroquinone and molecular oxygen. Appl. Catal. : A, 2003, 250(2): 239-245.
    [146] Kamata K, Yonehara K, Sumida Y, et al. Efficient epoxidation of olefins with ≥ 99% selectivity and use of hydrogen peroxide. Science, 2003, 300:964-966.
    [147] Ritter S. Tungstate-H_2O_2 system is alternative to chlorine and organic peroxides. Chem Eng News, 2003, 81(19): 11.
    [148] Hayashi T, Tanka K, Haruta M. Selective Vapor-Phase Epoxidation of Propylene over Au/TiO_2 Catalysts in the Presence of Oxygen and Hydrogen. J. Catal., 1998, 178(2): 566-575.
    [149] Uphade BS, Okumura M, Tsubota S, Haruta M. Effect of Physical Mixing of CsCl with Au/Ti-MCM-41 on the Gas-Phase Epoxidation of Propene Using H_2 and O_2: Drastic Depression of H_2 Consumption . Appl. Catal. A: Gen, 2000, 190 (2): 43-50.
    [150] Anil KS, Sindhu S, Susumu T, et al. A Three-Dimensional Mesoporous Titanosilicate Support for Gold Nanoparticles: Vapor-Phase Epoxidation of Propene with high Conversion. Angew. Chem. Int. Ed., 2004, 43: 1546-1548
    [151] Qi CX, Akita T, Okumura M, Haruta M. Epoxidation of Propylene over Gold Catalysts Supported on Non-Porous Silica. Appl. Catal. A: Gen, 2001, 218: 81-89.
    [152] Cumaranatunge L, Delgass WN. Enhancement of Au Capture Efficiency and Activity of Au/TS-1 Catalysts for Propylene Epoxidation. J. Catal., 2005, 232(1): 38-42.
    [153] Wang RP, Guo XW, Wang XS, et al. Propylene Epoxidation over Silver Supported on Titanium Silicalite Zeolite. Catal. Lett., 2003, 90 (1-2): 57-63
    [154] Wang RP, Guo XW, Wang XS, et al. Effects of Preparation Conditions and Reaction Conditions on the Epoxidation of Propylene with Molecular Oxygen over Ag/TS-1 in the Presence of Hydrogen. Appl. Catal. A: Gen, 2004, 261: 7-13
    
    [155] Clerici MG, Bellussi G. Process for producing olefin oxides. EP 526945A1 (1993).
    [156] Clerici MG, Ingallina P. Process for oxidizing organic compounds with hydrogen peroxide produced in an anthraquinone redox process. EP 549013A1 (1993).
    [157] Wang CY, Wang BG, Meng XK, et al. Study on process integration of the production of propylene oxide and hydrogen peroxide. Catal. Today, 2002,74: 15-21.
    [158] Zajacek JG, Devon PA. Integrated process for epoxide production. US 5384418. (1995).
    [159] De Frutos MP, Polo AP, Martin JMC. Method for continuous production of propylene oxide and other alkene oxides US 6429323, (2002).
    [160] Meiers R, Dingerdissen U, Holderich WF, et al. Synthesis of Propylene Oxide from Propylene, Oxygen, and Hydrogen Catalyzed by Palladium-Platinum-Containing Titanium Silicalite. J. Catal., 1998, 176: 376-386.
    [161] Jenzer G, Mallat T, Maciejewski M, et al. Continuous epoxidation of propylene with oxygen and hydrogen on a Pd-Pt/TS-1 catalyst. Appl. Catal. A, 2001, 208: 125-133.
    [162] Blanco-Brieva G, Capel-Sanchez MC, de Frutos MP, et al. New Two-Step Process for Propene Oxide Production (HPPO) Based on the Direct Synthesis of Hydrogen Peroxide. Ind. Eng. Chem. Res., 2008, in press.
    
    [163] Tullo, A. Dow, BASF to build propylene oxide. Chem. Eng. News, 2004, 82(36): 15.
    [164] Venture claims H_2O_2 advance. Chem. Eng. News, 2005, 83(11): 14-15.
    [165] Evonik Adds H_2O_2 In South Korea. Chem. Eng. News, 2008, 86(3): 25-26.
    
    [1]刘钟阳.放电等离子体合成臭氧及应用中一些问题的研究:(博士学位论文).大连:大连理工大 学,2002.
    
    [2]张芝涛.大压窄间隙DBD等离子体源与应用基础研究:(博士学位论文).大连:大连海事大学, 2003.
    
    [3] Xing Y, Liu ZX, Couttenye RA, et al. Generation of hydrogen and light hydrocarbons for automotive exhaust gas purification: Conversion of n-hexane in a PACT (plasma and catalysis integrated technologies) reactor. J. Catal., 2007, 250: 67-74.
    
    [4] Chen X, Suib SL, Hayashi Y, et al. H_2O splitting in tubular PACT (Plasma and Catalyst Integrated Technologies) reactors. J. Catal., 2001, 201, 198-205.
    
    [5] Wang XS, Li G, Yan HS, Guo XW. Epoxidation of propylene in fixed bed reactor using supported titanium silicalite catalyst. Stud. Surf. Sci. Catal., 2001, 135: 273.
    
    [1] Zhao GB, Garikipati-Janardhan SVB, Hu XD, et al. Effect of Reactor Configuration on Nitric OxideConversion in Nitrogen Plasma. AIChE, 2005, 51: 1813-1821.
    
    [2] Kogelschatz U. Industrial innovation based on fundamental physics. Plasma Sources Sci. Technol., 2002, 11: A1-A6.
    
    [3]李毅民,孙世玉.一种低温等离子空净化催化反应器及其制备工艺.中国,发明专利,CN 1698937A.2005.
    
    [4]何正浩,李劲.电晕线串并联的脉冲电晕放电特性.高电压技术,2001,27:47-49.
    
    [5] Yao S, Zhang X, Lu B. Influence of plasma reactor structure on methanol oxidation.AIChE, 2005, 51: 1558
    
    [6] Yamamoto T, Ramanathan K, Lawless PA, et al. Control of volatile organic compounds byan AC energized ferroelectric pellet reactor and a pulsed corona reactor. 1992, IEEETrans. Ind. Appl., 28: 528-534.
    
    [7]聂勇,李伟,施耀,等。等离子体反应器的改进及其与脉冲电源间的匹配.电工电能新技术,2004, 23:64-68.
    
    [8]施耀,王鑫,杨建涛,等.脉冲等离子体反应器放电特性研究.电工电能新技术,2006,25:59-62.
    
    [9] Rea M, Yan K. Evaluation of pulse voltage generators. IEEE Trans. Ind. Appl., 1995,31: 507-512.
    
    [10] Uhm HS, Lee WM. An analytical theory of corona discharge plasmas. Phys. Plasmas, 1997, 4: 3117-3128.
    
    [11]刘钟阳.放电等离子体合成臭氧及应用中一些问题的研究:(博士学位论文).大连:大连理工 大学,2002.
    
    [12]刘钟阳,吴彦,王宁会,等.DBD型中高频臭氧发生器的动态负载特性.中国电机工程学报,2002, 22:61-83.
    
    [13] Dinelli G, Civitano L, Rea M. Industrial experiments on pulse corona simultaneous removal of NO_x and SO_2 from flue gas. IEEE Trans. Ind. Appl., 1990, 26: 535-541.
    
    [14]黄玉水,吕宏,王立乔,等.臭氧发生器电源中容性控制的研究.高电压技术,2002,28:41-53.
    
    [15]张芝涛,赵艳辉,董克兵,等.介质阻挡放电系统中谐振问题的研究.高电压技术,2004,30: 42-45.
    
    [16] Xing Y, Liu ZX, Couttenye RA, et al. Generation of hydrogen and light hydrocarbons for automotive exhaust gas purification: Conversion of n-hexane in a PACT (plasma and catalysis integrated technologies) reactor. J. Catal., 2007, 250: 67-74.
    
    [17]周军成.氢氧等离子体法直接合成H_2O_2及其在丙烯相环氧化中的应用:(博士学位论文).大 连:大连理工大学,2007.
    
    [1]张芝涛.大压窄间隙DBD等离子体源与应用基础研究:(博士学位论文).沈阳: 东北大学, 2003.
    
    [2] Kogelschatz U. Industrial innovation based on fundamental physics. Plasma Sources Sci. Technol., 2002, 11: A1-A6.
    
    [3]蔡忆昔,王军,刘志楠等.介质阻挡放电等离子体发生器的负载特性.高电压技术,2006,32: 62-64.
    
    [4]孙岩洲,邱毓昌,丁卫东.电源频率对介质阻挡放电的影响.高电压技术,2002,28(11): 43-53.
    
    [5] Gherardi N, Massines F. Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen. IEEE Trans on Plasma Science, 2001, 29(3): 536-544.
    
    [1]张芝涛,赵艳辉,董克兵等.介质阻挡放电系统中谐振问题的研究.高电压技术,2004,30: 42-45.
    
    [2]刘钟阳.放电等离子体合成臭氧及应用中一些问题的研究:(博士学位论文).大连:大连理工 大学,2002.
    
    [3]张芝涛.大压窄间隙DBD等离子体源与应用基础研究:(博士学位论文).沈阳: 东北大学, 2003.
    
    [4]蔡忆昔,王军,刘志楠等.介质阻挡放电等离子体发生器的负载特性.高电压技术,2006,32: 62-64.
    
    [5]刘钟阳,吴彦,王宁会等.DBD型中高频臭氧发生器的动态负载特性.中国电机工程学报,2002, 22:61-83.
    
    [6]孙岩洲,邱毓昌,丁卫东.电源频率对介质阻挡放电的影响.高电压技术,2002,28(11): 43-53.
    [1] Han YF, Lunsford JH. Direct formation of H_2O_2 from H_2 and O_2 over a Pd/SiO_2 catalyst: the roles of the acid and the liquid phase. J. Catal., 2005, 230: 313-316.
    [2] Liu QS, Lunsford JH. The roles of chloride ions in the direct formation of H_2O_2 from H_2 and O_2 over a Pd/SiO_2 catalyst in a H2SO4/ethanol system. J. Catal., 2006, 239:237-243.
    [3] Liu QS , Lunsford JH. Controlling factors in the direct formation of H_2O_2 from H_2 and O_2 over a Pd/SiO_2 catalyst in ethanol. Appl. Catal. A: General, 2006, 314: 94-100.
    [4] Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ. Direct formation of hydrogen peroxide from H_2/O_2 using a gold catalyst. Chem. Commun., 2002, 18: 2058-2059.
    [5] Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ. Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys. Chem. Chem. Phys., 2003, 5: 1917-1923.
    
    [6] Hashmi ASK, Hutchings GJ. Gold catalysis. Angew. Chem. Int. Ed., 2006, 45: 7896-7936.
    [7] Samanta C, Choudhary VR. Direct synthesis of H_2O_2 from H_2 and O_2 over Pd/H-beta catalyst in an aqueous acidic medium: Influence of halide ions present in the catalyst or reaction medium on H_2O_2 formation. Catal. Commun., 2007, 8: 73-79.
    [8] Zhou JC, Guo HC, Wang XS, Guo MX, Zhao JL, Chen LX, Gong WM. Direct and continuous synthesis of concentrated hydrogen peroxide by the gaseous reaction of H_2/O_2 non-equilibrium plasma. Chem. Commun., 2005, 12: 1631-1633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700