非平衡等离子体与多孔炭材料降解染料废水的协同效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非平衡等离子体水处理技术是集羟基(·OH)等自由基和过氧化氢(H_2O_2)、臭氧(O_3)等活性物质的作用于一体的高级氧化技术,因其能耗少、处理效率高、反应迅速且无选择性、无二次污染等优势,使该技术呈现出良好的应用前景和很大的市场潜力。从目前研究的现状看,放电反应器的结构以及吸附/催化剂的合理选择是限制该技术优势充分发挥的主要障碍。为此,本论文设计了一种新型的放电反应器,以甲基橙为模拟污染物,考察了反应器电极结构及各种工艺参数对降解率、矿化度和能量效率的影响。探索了非平衡等离子体与颗粒活性炭(GAC)、活性炭纤维(ACF)、活性炭纤维复合光催化材料(TiO_2/ACF)联合处理的协同效应,考察了GAC和ACF的吸附性能、催化O_3转化成·OH的性能以及TiO_2/ACF的吸附和光催化性能;分析了脉冲放电对其孔结构和表面化学性质的影响,探讨了非平衡等离子体与上述材料联合处理的协同机制。通过一系列的实验研究和分析,取得了如下研究成果:
     高压脉冲电源向液相中的高压针电极和相中地电极施加脉冲高压后,在液相气相同时放电,液相产生·OH、H_2O_2等活性物种,相产生O_3。在地电极之上注入处理溶液并且在处理溶液中设置阻挡网,提高了O_3的利用率。循环管和蠕动泵使预氧化区和主氧化区中的溶液构成循环,使预氧化区中经O_3氧化的溶液在主氧化区进一步得到处理,实现了多种氧化技术的有机结合,提高了处理效率。主氧化区降解有机污染物的主要途径是·OH进攻,预氧化区降解有机污染物存在两种机理,即O3的亲电子进攻和O3分解产生?OH的进攻。处理40mg/L的0.1L溶液,降解率达到90%,实验误差小于3.4%。增加溶液初始浓度或处理液量能提高O3的利用率,从而提高反应器的能量效率,处理0.1L浓度为40、60、80、100mg/L的溶液,反应器的能量效率分别达到2.1、2.8、3.4、3.6g/(kWh);处理液量增大1倍,反应器的能量效率分别增加到4.1、5.4、5.9和5.9g/(kWh)。
     脉冲放电与GAC或ACF联合处理显示出很好的协同效应,协同效应的产生主要归因于GAC和ACF的吸附和催化作用。GAC和ACF是一个浓集中心,在其表面及其周围毗邻区域通过吸附创造了高浓度的环境,而GAC和ACF表面则是转化分解中心,其表面上的碱性官能团能促进O_3分解产生·OH,从而提高了甲基橙的降解率和COD的去除率。由于孔结构和表面化学性质的差异,使ACF表现出比GAC更优异的吸附和催化性能,脉冲放电与GAC联合处理浓度为60mg/L的0.2L溶液,降解率始终维持在92%左右,COD的去除率达到78%,能量效率达到6.2g/(kWh);脉冲放电与ACF联合处理浓度为80mg/L的0.2L溶液,降解率始终维持在92%左右,COD的去除率达到82%,能量效率达到8.3g/(kWh)。重复使用表明GAC和ACF的吸附和催化活性未因使用次数的增加而降低,而且GAC和ACF在脉冲放电过程中获得了原位再生,再生率分别达到80%和90%。在脉冲放电过程中,由于非平衡等离子体和O_3的共同氧化,GAC和ACF表面的酸性和碱性官能团都具有不同程度的增加,比表面积和孔容具有不同程度的增加或减少,因此,GAC和ACF在联合处理过程中起着催化O_3转化成·OH的引发剂或催化助剂的作用。
     脉冲放电与TiO_2/ACF的联合处理表现出明显的协同效应,协同效应的产生主要归因于TiO_2/ACF的吸附和TiO_2的光催化作用。由于吸附的溶解O3很容易与TiO_2表面上的电子反应,减少了TiO_2表面上电子与空穴的复合,提高了光催化反应的光量子效率,从而使反应趋于更彻底。重复使用过程中TiO_2/ACF的催化活性基本保持不变,处理0.2L浓度为80mg/L的溶液,降解率维持在97%,COD的去除达到91%,能量效率达到8.7g/(kWh),且TiO_2/ACF的再生率达到了95%。在重复使用过程中,TiO_2/ACF的表面形态和性质不受脉冲放电的影响,而孔结构仅有较小的改变。用ACF做光催化剂的载体既可达到固载的效果,同时又藉以良好的界面传质实现了吸附与催化的有机结合。
Non-equilibrium plasma water treatment is an advanced oxidation technology, which integrates effectiveness of many active species including hydroxyl radical, hydrogen peroxide, ozone, etc., and bears preferable future application and large market potential because of its advantages such as low energy consumption, high treatment efficiency, rapid and non-selective reactivity, and free of secondary pollution, etc.. The current difficulties for widely application of this technology exist mainly in structure-designing of electrical discharge reactors and selection of appropriate adsorbents and catalysts. In this work, a novel electrical discharge reactor was designed for degrading methyl orange as the model pollutant in water. The effect of electrode configuration and influence of technological parameters on degradation efficiency, mineralization and energy efficiency were investigated. The synergistic effect of non-equilibrium plasma combined with granular activated carbon (GAC), activated carbon fiber (ACF), and TiO_2/ACF composite for treatment of methyl orange in water was investigated. The performance of GAC and ACF for adsorption of pollutants and catalytic conversion of ozone to hydroxyl radical was evaluated. The effectiveness of photocatalysis by TiO_2/ACF composite was also testified with analyzing the influence of pulsed discharge on its pore structure and surface chemistry. And the synergistic mechanism of photocatalysis with non-equilibrium plasma was discussed.
     With pulsed voltage supplied between the high voltage needle electrode in the aqueous phase and the ground electrode in gas phase, activate species of hydroxyl radical and hydrogen peroxide were produced in liquid phase and that of ozone in gas phase. The utilization efficiency of ozone was increased by injection of pretreatment solution and setup of mesh barrier therein. The solution was circulated in pre- and main-oxidation zone driven by a peristaltic pump through circulation pipes in order to further treat the solution in main-oxidation zone which has been pre-oxidized in pre-oxidation zone. In the main-oxidation zone, the organic pollutants were mainly degraded by hydroxyl radical attack. While in pre-oxidation zone, there exist two ozone degradation passways, which were direct electrophilic attack and hydroxyl radical attack. The degradation efficiency of 0.1 L solution with concentration of 40 mg/L was 90% with experimental error lower than 4%. The ozone utilization efficiency could be enhanced by increase of solution concentration or handling capacity, by which the reactor energy efficiency was improved. The reactor energy efficiency were 2.1, 2.8, 3.4 and 3.6 g/(kWh) for 0.1 L solutions with concentrations of 40, 60, 80, and 100 mg/L, respectively, and 4.1, 5.4, 5.9, and 5.9 g/(kWh) respectively for doubled handling capacity of solutions with above mentioned concentrations.
     The combined treatment by pulse discharge with GAC or ACF showed good synergistic effect due to the adsorption and catalysis of GAC and ACF. A high concentration of methyl orange on GAC and ACF surfaces was achieved by adsorption. And the surfaces performed as conversion and decompose centers of methyl orange, where the basic functional groups on GAC and ACF accelerated the conversion of ozone to hydroxyl radical, which increased methyl orange degradation and COD removal efficiency. Due to its distinct difference of pore structure and surface chemistry to GAC, ACF showed superior adsorption and catalytic performance. The adsorption and catalytic activity of both GAC and ACF do not showed observable decrease in recycle utilization. In combined treatment of 0.2 L solution with concentration of 60 mg/L, the degradation efficiency remained around 92%, and COD removal at 82%, and energy efficiency reached 8.3 g/(kWh). The GAC and ACF used were regenerated in-situ by the pulsed discharge process, with regeneration efficiency of 80% and 90%, respectively. Owing to co-oxidation of non-equilibrium plasma and ozone, the surface acidic and basic functional groups on GAC and ACF increased to various extent, and specific surface area and pore volume changed in various degrees. Therefore, it is reasonable to assert that GAC and ACF act as initiator or promoter for ozone conversion to hydroxyl radical in the process of combined treatment.
     The combination of pulsed discharge and TiO_2/ACF showed more distinctive synergistic effect, which was mainly ascribed to the adsorption of TiO_2/ACF and photocatalysis. The easy reaction of dissolved ozone with electrons on TiO_2 surface decreased the recombination of surface electrons with cavities, and increased photon quantum efficiency of photocatalysis to impel the reactions to complete conversion. The catalytic activity of TiO_2/ACF kept unchanged during recycling. In the combined treatment of 0.2 L solution with concentration of 80 mg/L, the degradation efficiency maintained at 97%, and COD removal reached 91%, with energy efficiency of 8.7 g/(kWh) and TiO_2/ACF regeneration efficiency of 95%. The surface morphology and property of TiO_2/ACF did not influenced by pulse discharge with minor change in pore structure. Therefore, with ACF as support of photocatalyst, adsorption and photocatalysis was combined to obtain favorable performance by interfacial mass transfer.
引文
[1] HoignéJ., Bader H. Ozone of water: role of hydroxyl radical reaction in ozonation processes in aqueous solutions[J]. Water Res., 1976, 10: 377-386.
    [2]薛向东,金奇庭.水处理中的高级氧化技术[J].环境保护,2001,6:13-15.
    [3] Fernando S., Einschlag G., Carlos L., et al. Competition kinetics using the UV/H2O2 process: a structure reactivity correlation for the rate constants of hydroxyl radicals toward nitroaromatic compounds[J]. Chemosphere, 2003, 53: 1-7.
    [4]雷乐成,汪大翚.水处理高级氧化技术[M].北京:北学工业出版社,2001:200-210.
    [5] Steven T., Summerfelt. Ozonation and UV irradiation-an introduction and examples of current applications[J]. Aquacural Engineering, 2003, 28: 21-36.
    [6] Chu W., Ching M. H. Modeling the ozonation of 2,4-dichlorophoxyacetic acid through a kinetic approach[J]. Water Res., 2003, 37: 39-46.
    [7] Benitez F. J. Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes[J]. J. Hazardous Materials, 2002, 89: 51-65.
    [8] Roberto A., Vincenzo C., Raffaele M., et al. Paracetamol oxidation from aqueous solutions by means of azonation and H2O2/UV system[J]. Water Res., 2003, 37: 993-1004.
    [9]刘志刚.负载型TiO2光催化剂在脉冲放电水处理技术中的应用[D].大连:大连理工大学,2005.
    [10] Grela M. A., Coronel M. E. J., Colussi A. J. Quantitative spin-trapping studies of weakly illuminated titanium dioxide sols.Implications for the mechanism of photocatalysis[J]. J. Phys. Chem. A: 1996, 100: 16940-16946.
    [11] Xu Y., Langford C. H. A comparison of acetophenone photoxidation in aqueous media via direct photolysis and TiO2 photocatalysis[J]. J. Adv. Oxid. Technol., 1997, 2: 408-412.
    [12]汤红妍.水中酚类污染物的多能场协同降解的研究[D].武汉:武汉理工大学,2005.
    [13]朱元右.等离子体技术在废水处理中的应用[J].工业水处理,2004,24 (9):13-16.
    [14] Hipler R., Pfai S., Schmidt M., et al. Low temperature plasma physics: fundamental aspects and applications[M]. Berlin: 2001: 530.
    [15]张仁熙,候健,候惠奇.等离子体技术在环境保护中的应用(上)[J].上海化工,2000,20:4-5.
    [16]陈杰瑢.低温等离子体化学及应用[M].北京:科学出版社,2001:1-7.
    [17]孙明.OH, NH2自由基提高脉冲放电等离子体烟脱硫效率的研究[D].大连:大连理工大学,2004.
    [18] Locke B. R., Sato M., Sunka P., et al. Electrohydraulic discharge and nonthermal plasma for water treatment[J]. Ind. Eng. Chem. Res., 2006, 45: 882-905.
    [19] Kirkpatrick M. J., Locke B. R. Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge[J]. Ind. Eng. Chem. Res., 2005, 44: 4243-4248.
    [20] Wang H., Li J., Quan X. Decoloration of azo dye by a multi-needle-to-plate high-voltage pulsed corona discharge system in water[J]. J. Electrostatics, 2006, 64: 416-421.
    [21] Mok Y. S., Koh D. J., Kim K. T., et al. Nonthermal plasma-enhanced catalytic removal of nitrogen oxides over V2O5/TiO2 and Cr2O3/TiO2[J]. Ind. Eng. Chem. Res., 2003, 42 (13): 2960-2967.
    [22] Clements J. S., Sato M., Davis R. H. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high voltage discharge in water[J]. IEEE Transactions on Industry Applications, 1987, IA-23 (2): 224-235.
    [23]杨黎明.高压放电等离子体水处理研究[D].大连:大连理工大学,2001.
    [24]卞文娟.高压脉冲液相放电技术处理水中难降解有机污染物的研究[D].杭州:浙江大学,2005.
    [25]张若兵.双向窄脉冲放电染料废水脱色技术研究[D].大连:大连理工大学,2005.
    [26]蒲陆梅.低温辉光放电等离子体技术在水体中酚类降解中的应用[D].兰州:西北师范大学,2005.
    [27] Shin W.-T., Sotira Y., Costas T., et al. Pulseless corona-discharge process for the oxidation of organic compounds in water Source[J]. Ind. Eng. Chem. Res., 2000, 39 (11): 4408-4414.
    [28] Suarasana L., Ghizdawb L., Ghizdawc L., et al. Experimental characterization of multi-point corona discharge devices for direct ozonization of liquids[J]. J. Electrostatics, 2002, 54: 207-214.
    [29] Engelko V. I., Bolshakov E. P., Istomin U. A., et al. High frequency mufti-purpose pulse generator[J]. IEEE Conference Record of Power Modulator Symposium, 2002, 1: 396-398.
    [30] Yan K., Heesch, Nair S. A., et al. A triggered spark-gap switch for high-repetition rate high-voltage pulse generation[J]. J. Electrostatics, 2003, 57: 29-33.
    [31] Pokryvailo A., Wolf M., Yankelevich Y., et al. A compact high-power pulsed coronasource for treatment of pollutants in heterogeneous media[A]. XXVIIth ICPIG[C]. Eindhoven, the Netherlands: 2005: 18-21.
    [32] Mok Y. S. Efficient energy delivery condition from pulse generation circuit to corona discharge reactor[J]. Plasma Chemistry and Plasma Processing, 2000, 20 (3): 353-364.
    [33] Li J., Wu Y., Wang N. H. Industrial scale experiments of desulfuration of coal flue gas using a pulsed corona discharge plasma[J]. IEEE Transactions on Plasma Sci., 2003, 31 (3): 333-337.
    [34]张延宗,郑经堂,陈宏刚.非平衡等离子体水处理技术研究进展[J].化工进展,2007,26 (7):2948-2954.
    [35] Leitner N. K. V., Syoen G., Romat H., et al. Generation of active entities by the pulsed arc electrohydraulic discharge system and application to removal of atrazine[J]. Water Res., 2005, 39: 4705-4714.
    [36] Lukes P. Water treatment by pulsed streamer corona discharge[D]. Prague: Institute of Chemical Technology, Czech, 2001.
    [37] Lu X., Pan Y., Liu M., et al. Spark model of pulsed discharge in water[J]. J. Appl. Phys., 2002, 91 (1): 24-31.
    [38] Lu X., Liu M. H., Jiang Z. H., et al. Effects of ambient pressure on bubble characteristics[J]. Chinese Phys. Lett., 2002, 19: 704-706.
    [39] Sugiarto A. T., Sato M. Pulsed plasma processing of organic compounds in aqueous solution[J]. Thin Solid Films, 2001, 386 (2): 295-299.
    [40] GrymonpréD. R., Finney W. C., Clark R. J., et al. Suspended activated carbon particles and ozone formation in aqueous-phase pulsed corona discharge reactors[J]. Ind. Eng. Chem. Res., 2003, 42: 5117-5134.
    [41] Malik M. A. Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water[J]. Plasma Sources Sci. Technol., 2003, 12: S26-S32.
    [42] Kusic H., Koprivanac N., Locke B. R. Decomposition of phenol by hybrid gas/liquid electrical discharge reactors with zeolite catalysts[J]. J. Hazardous Materials, 2005, B125: 190-200.
    [43] Lukes P., Clupek M., Sunka P., et al. Degradation of phenol by underwater pulsed corona discharge in combination with TiO2 photocatalysis[J]. Res. Chem. Intermed., 2005, 31: 285-294.
    [44] Hao X. L., Zhou M. H., Zhang Y., et al. Enhanced degradation of organic pollutant4-chlorophenol in water by non-thermal plasma process with TiO2[J]. Plasma Chem. Plasma Process, 2006, 26 (5): 455-468.
    [45] Sano N., Yamamoto T., Takemori I., et al. Degradation of phenol by simultaneous use of gas-phase corona discharge and catalyst-supported mesoporous carbon Gels[J]. Ind. Eng. Chem. Res., 2006, 45: 2897-2900.
    [46] Manolache S., Somers E. B., Wong A. C. L., et al. Dense medium plasma environments: a new approach for the disinfection of water[J]. Environ. Sci. Technol., 2001, 35 (18): 3780-3785.
    [47] Johnson D. C., Shamamian V. A., Callahan J. H., et al. Treatment of methyl tert-butyl ether contaminated water using a dense medium plasma reactor:a mechanistic and kinetic investigation[J]. Environ. Sci. Technol., 2003, 37 (20): 4804-4810.
    [48] Manolache S., Shamamian V., Denes F. Dense medium plasma–plasma-enhanced decontamination of water of aromatic compounds[J]. J. Environ. Eng., 2004, 130: 17-25.
    [49] Johnson D. C., Dandy D. S., Shamamian V. A. Development of a tubular high-density plasma reactor for water treatment[J]. Water Res., 2006, 40: 311-322.
    [50] Pawlat J., Yamabe C., Pollo I. Generation of discharges in dynamic foam for oxidants formation using various types of electrodes[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 220: 179-190.
    [51] Pawlat J., Hayashi N., Ihara S., et al. Foaming column with a dielectric covered plate-to-metal plate electrode as an oxidants' generator[J]. Advances in Environ. Res., 2004, 8: 351-358.
    [52] Anto T. S., Takayuk O., Masayuki S. Advanced oxidation processes using pulsed streamer corona discharge in water[J]. Thin Solid Films, 2002, 407: 174-178.
    [53] Sugiarto A. T., Sato M. Characteristics of ring-to-cylinder type electrode system on pulsed discharge in water[A]. In The Sixth International Conference on AdVanced Oxidation Technologies for Water and Air Remediation[C]. London, Ontario: 2000: 142.
    [54] StaráZ., Krcma F. The study of H2O2 generation by DC diaphragm discharge in liquids[J]. Czechoslovak J. Phys., 2004, 54: C1050-1055.
    [55] Yamada Y., Sun B., Ohshima T., et al. In pulsed discharge in water through pinhole[A]. Asia-Pacific Workshop on Water and Air Treatment by Advanced Oxidation Technologies: Innovation and Commercial Applications; AIST Tsukuba Research Center[C]. Tsukubu, Japan: 1998.
    [56] StaráZ., Krcma F. Influence of experimental parameters on organic compounds decomposition in DC diaphragm discharge[A]. WDS'05 Proceedings of ContributedPapers, Part II[C]. 2005: 419-422.
    [57] Liu Y. J., Jiang X. Z. Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution[J]. Environ. Sci. Technol., 2005, 39: 8512-8517.
    [58] Hoeben W. F. L. M. Pulsed corona-induced degradation of organic materials in water[D]. Eindhoven: Technische Universiteit Eindhoven, 2000.
    [59] Hayashi D., Hoeben W. F., Dooms G. L. LIF diagnostic for pulsed-corona-induced degradation of phenol in aqueous solution[J]. J. Phys. D, 2000, 33: 1484-1486.
    [60] Sano N., Kawashima T., Fujikawa J., et al. Decomposition organic compounds in water by direct contact of gas corona discharge:influence of discharge condition[J]. Ind. Eng. Chem. Res., 2002, 41: 5906-5911.
    [61] Grabowski L. R. Pulsed Corona in Air for Water Treatment[D]. Eindhoven: Technische Universiteit Eindhoven, 2006.
    [62] Grabowski L. R., Veldhuizen E. M. V., Pemen A. J. M., et al. Corona above water reactor for systematic study of aqueous phenol degradation[J]. Plasma Chemistry and Plasma Processing, 2006, 26 (1): 3-17.
    [63] Grabowski L. R., van Veldhuizen E. M., Pemen A. J. M., et al. Breakdown of methylene blue and methyl orange by pulsed corona discharge[J]. Plasma Sources Sci. Technol., 2007, 16: 226-232.
    [64] http://www.phys.tue.nl/EPG/YTRID/.
    [65] Sano N., Yamamoto D., Kanki T. Decomposition of phenol in water by a cylindrical wetted-wall reactor using direct contact of gas corona discharge[J]. Ind. Eng. Chem. Res., 2003, 42: 5423-5428.
    [66] Sano N., Yamamoto D., Nakano M., et al. Decomposition of aqueous phenol by direct contact of gas corona discharge with water: influence of current density and applied voltage[J]. J. Chem. Eng. Jpn., 2004, 37: 1319-1325.
    [67] Parka J. M., Kim Y.-H., Hong S. H. Three-dimensional numerical simulations on the streamer propagation characteristics of pulsed corona discharge in a wire-cylinder reactor[A]. The 8th International Symposium on High Pressure Low Temperature Plasma Chemistry[C]. ESTONIA.: 2002: 1-5.
    [68] Sano N., Yamamoto D. Simulation model of the decomposition process of phenol in water by direct contact of gas corona discharge in a cylindrical reactor[J]. Ind. Eng. Chem. Res., 2005, 44: 2982-2989.
    [69]朱承驻,董文博,潘循哲,等.等离子体降解水相中有机污染物的机理研究[J].环境科学学报,2002,22 (4):428-433.
    [70]朱承驻,董文博,侯惠奇,等.等离子体技术降解茜素红水溶液的机理研究[J].上海环境科学,2003,22:760-764.
    [71] Pokrevailo A., Yankelevich Y., Welleman A. A l kW pulsed corona sestem for pollution control applications[J]. IEEE Conference Record of Power Modulator Symposium, 2003, 1: 225.
    [72]邵瑰玮,李劲,王万林,等.脉冲电晕放电下焦化废水脱硫的研究[J].环境科学,2004,25 (2):77-80.
    [73]何正浩,邵瑰玮,王万林,等.脉冲电晕放电处理焦化废水的研究[J].高电压技术, 2003,29 (4):29-31.
    [74] He Z., Liu J., Cai W. The important role of the hydroxy ion in phenol removal using pulsed corona discharge[J]. J. Electrostatics, 2005, 63: 371-386.
    [75] Moras F., Séguin D., Benstaali B., et al. Interaction between a non-thermal oxygenated plasma and aqueous solutions[A]. Proceedings of 7th International Symposium on High Pressure Low Temperature Plasma Chemistry[C]. HAKONE: 2000.
    [76] Cormier J. M., Martinie O., Lefaucheux P., et al. Electrical study of gliding discharge at 33 kHz and 50 Hz[A]. Proceedings of Seventh International Conference OPTIM [C]. Romania: 2000: 177-180.
    [77] Burlica R., Kirkpatrick M. J., Finney W. C., et al. Organic dye removal from aqueous solution by glidarc discharges[J]. J. Electrostatics, 2004, 62: 309-321.
    [78] Burlica R., Kirkpatrick M. J., Locke B. R. Formation of reactive species in gliding arc discharges with liquid water[J]. J. Electrostatics, 2006, 64: 35-43.
    [79] Abdelmalek F., Gharbi S., Benstaali B., et al. Plasmachemical degradation of azo dyes by humid air plasma: yellow supranol 4 GL, scarlet red nylosan F3 GL and industrial waste[J]. Water Res., 2004, 38 (9): 2339-2347.
    [80] Moreau M., Feuilloley M. G. J., Orange N., et al. Lethal effect of the gliding arc discharges on erwinia spp[J]. J. Appl. Microbiol, 2005, 98 (5): 1039-1046.
    [81]杜长明,严建华,李晓东,等.液两相流滑动弧放电降解苯酚废水[J].工程热物理学报,2005,26 (3):534-536.
    [82] Sato M., Tokutake T., Ohshima T., et al. Aqueous phenol decomposition by pulsed discharge on water surface[A]. Fourtieth IAS Annual Meeting. Conference Record of the 2005[C]. 2005: 2895-2899.
    [83] GrymonpréD. R., Finney W. C., Clark R. J., et al. Hybrid gas-liquid electrical dischargereactors for organic compound degradation[J]. Ind. Eng. Chem. Res., 2004, 43: 1975-1989.
    [84] Lukes P., Clupek M., Babicky V., et al. Generation of ozone by pulsed corona discharge over water surface in hybrid gas-liquid electrical discharge reactor[J]. J. Phys. D: Appl. Phys., 2005, 38: 409-416.
    [85] Lukes P., Appleton A. T., Locke B. R. Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors[J]. IEEE Trans. Ind. Appl., 2004, 40 (1): 60-67.
    [86] Lukes P., Locke B. R. Degradation of substituted phenols in a hybrid gas-liquid electrical discharge reactor[J]. Ind. Eng. Chem. Res., 2005, 44: 2921-2930.
    [87] Sahni M., Locke B. R. Degradation of chemical warfare agent simulants using gas-liquid pulsed streamer discharges[J]. J. Hazardous Materials, 2006, B137: 1025-1034.
    [88] Lukes P., Clupek M., Babicky V., et al. Ozone formation by gaseous corona discharge generated above aqueous solution[J]. Czech. J. Phys., 2004, 54: C908-C913.
    [89]张延宗,郑经堂,陈宏刚.高压脉冲放电水处理技术的理论研究进展[J].高电压技术,2007,33 (2):136-140.
    [90] Sun B., Sato M. Characteristics of active species formation by pulsed high voltage discharge in water[J]. Kagaku Kogaku Ronbunshu, 1999, 25: 827-832.
    [91] Sugiarto A. T., Ito S., Ohshima T., et al. Oxidative decoloration of dyes by pulsed discharge plasma in water[J]. J. Electrostatics, 2003, 58 (1-2): 135-145.
    [92] Sugiarto A T, Sato M. Pulsed plasma processing of organic compounds in aqueous solution[J][J]. Thin Solid Films, 2001, 386 (2): 295-299.
    [93] Chang J. S., Urashima K., Uchida Y. Characteristics of pulsed arc electrohydraulic discharges and their application to water treatment[J]. Research Reports of the Faculty of Engineering, Tokyo Denki University, 2002, 50: 1-12.
    [94]刘晓春,朱祖良.水中高压脉冲放电的光辐射研究[J].北京理工大学学报,1999,19 (1):8-12.
    [95] Hemmert D., Shiraki K., Yokoyama T., et al. Optical diagnostics of shock waves generated by a pulsed streamer discharge in water[A]. Digest of Technical Papers-IEEE International Pulsed Power Conference[C]. 2003: 232-235.
    [96] Willberg D. M., Lang P. S., Hochemer R. H., et al. Degradation of 4-chlorophenol,3,4-cichloroaniline,and 2,4,6-trinitrotoluene in an electrohydraulic discharge reactor[J]. Environ. Sci. Technol., 1996, 30 (8): 2526-2534.
    [97] Sun B., Sato M., Clements J. S. Oxidative processes occurring when pulsed high voltagedischarges degrade phenol in aqueous solution[J]. Environ. Sci. Technol., 2000, 34 (3): 509-513.
    [98] Sunka P., Babicky V., Clupek M., et al. Generation of chemically active species by electrical discharges in water[J]. Plasma Sources Sci. Technol., 1999, 8: 258-265.
    [99] R.科埃略,B.阿拉德尼兹.电介质材料及其介电性能[M].北京:科学出版社,2000:53.
    [100]关根志.高电压工程基础[M].北京:中国电力出版社,2003:3.
    [101]秦曾衍,左公宁,王永荣,等.高压强脉冲放电及其应用[M].北京:北京工业大学出版社,2000:1-3.
    [102] Lisitsyn I. V., Nomiyama H., Katsuki S., et al. Thermal processes in a streamer discharge in water[J]. IEEE Trans. Dielectr. Electr. Insul., 1999, 6 (3): 351-356.
    [103]严璋,朱德恒.高电压绝缘技术[M].第三版.北京:中国电力出版社,2001:196-201.
    [104] Goryachev V. L., Ufimtsev A. A., Khodakovsk A. M. Mechanism of electrode erosion in pulsed discharges in water with a pulse energy of ~1J[J]. J. Tech. Phys. Lett., 1997, 23 (5): 386-387.
    [105]潘亚峰.水介质传输线的耐高电压击穿技术的研究[D].北京:国防大学,2002.
    [106] Belosheev V. P. Self-consistent development and fractal structure of leader discharges along a water surface[J]. Technol. Phys., 1999, 44 (4): 381-386.
    [107] Kratel A. W. H. Pulsed power discharge in water[D]. Pasadena: California Institute of Technol., 1996.
    [108] Shneerson G. A. Estimation of the pressure in a“slow”spark discharge in a cylindrical water-filled chamber[J]. Technol. Phys., 2003, 48 (3): 374-375.
    [109] Lu X., Pan Y., Liu K. F., et al. Early stage of pulsed discharge in water[J]. Chinese Phys. Lett., 2001, 18: 1493-1495.
    [110] Marsili L., Espie S., Anderson J. G., et al. Plasma inactivation of food-related microorganisms in liquids[J]. Radiation Phys. Chem., 2002, 65: 507-513.
    [111] GrymonpréD. R., Sharma A. K., Finney W. C., et al. The role of Fenton' s reaction in aqueous phase pulsed streamer corona reactors[J]. Chem. Eng., 2001, 82: 189-207.
    [112] Kirkpatrick M., Locke B. R. Hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge[J]. Ind. Eng. Chem. Res., 2005, 44: 4243-4248.
    [113] Grabowski L. R., van Veldhuizen E. M., Pemen A. J. M., et al. Corona above water reactor for systematic study of aqueous phenol degradation[J]. Plasma Chemistry andPlasma Processing, 2006, 26 (1): 3-17.
    [114] Lukes P., Locke B. R. Plasmachemical oxidation processes in a hybrid gas liquid electrical discharge reactor[J]. Journal of Physics D: Applied Physics, 2005, 38 (22): 4074-4081.
    [115] Appleton A. T., Lukes P., Finney W. C., et al. Study of the effectiveness of different hybrid pulsed corona discharge reactors in degrading aqueous pollutants[A]. In 8th International Symposium on High Pressure, Low Temperature Plasma Chemistry (HAKONE VIII)[C]. Puhajarve, Estonia: 2002: 313.
    [116] Koprivanac N., Kusic H., Vujevi? D., et al. Influence of iron on degradation of organic dyes in corona[J]. J. Hazardous Materials, 2005, B117 113-119.
    [117] GrymonpréD. R., Finney W. C., Locke B. R. Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison[J]. Chem. Eng. Sci., 1999, 54: 3095-3105.
    [118] Jans U., HoignéJ. Atmospheric water: transformation of ozone into OH-radicals by sensitized photoreactions or black carbon[J]. Atmospheric Environ., 2000, 34: 1069-1085.
    [119] Kirkpatrick M. J., Locke B. R. Effects of platinum electrode on hydrogen, oxygen, and hydrogen peroxide formation in aqueous phase pulsed corona electrical discharge[J]. Ind. Eng. Chem. Res., 2006, 45: 2138-2142.
    [120] Mepedovic S., Locke B. R. Platinum catalysed decomposition of hydrogen peroxide in aqueous-phase pulsed corona electrical discharge[J]. Applied Catalysis B: Environ., 2006, 67: 149-159.
    [121] Wen Y. Z., Liu H. J., Liu W. P., et al. Degradation of organic contaminants in water by pulsed corona discharge[J]. Plasma Chemistry and Plasma Processing, 2005, 5 (2): 137-146.
    [122]王怡中,符雁.不同类型染料化合物太阳光催化降解研究[J].太阳能学报,1998,19 (2):117-126.
    [123] Selles R. M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate[J]. Analyst, 1980, 105: 950-954.
    [124]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第三版.北京:中国环境科学出版社,1989.
    [125] López-Garzón F. J., Domingo-García M., Pérez-Mendoza M., et al. Textural and chemical surface modifications produced by some oxidation treatments of a glassycarbon[J]. Langmuir, 2003, 19: 2838-2844.
    [126] Boehm H. P. Surface oxides on carbon and their analysis: a critical assessment[J]. Carbon, 2002, 40: 145-149.
    [127] Gómez-Serrano V.,álvarez P. M., Jaramillo J., et al. Formation of oxygen complexes by ozonation of carbonaceous materials prepared from cherry stones: I. Thermal effects[J]. Carbon, 2002, 40: 513-522.
    [128] Alvarez P. M., Garcia-Araya J. F., Beltran F. J., et al. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions[J]. J. Colloid Interface Sci., 2005, 283: 503-512.
    [129] Narbaitz R. M., Cen J. Alternative methods for determining the percentage regeneration of activated carbon[J]. Water Res., 1997, 31: 2532-2542.
    [130] Zhang Y.-z., Zheng J.-t., Qu X.-f., et al. Effect of granular activated carbon on degradation of methyl orange when applied in combination with high-voltage pulse discharge[J]. J. Colloid Interface Sci., 2007, 316: 308-315.
    [131] Zhang Y.-T., Zheng J.-T., Qu X.-F., et al. Design of a novel non equilibrium plasma-based water treatment reactor[J]. Chemosphere, 2008, 70: 1518-1524.
    [132] Yang B., Zhou M., Lei L. Synergistic effects of liquid and gas phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen[J]. Chemosphere 2005, 60: 405-411.
    [133]张延宗,郑经堂,桑玉全,等.活性炭纤维在高压脉冲放电水处理过程中的催化作用[J].高电压技术,2007,33 (11):218-222.
    [134] Lukes P.,ǒlupek M., Babicky V., et al. Erosion of needle electrodes in pulsed corona discharge in water[J]. Czech. J. Phys., 2006, 56: B916-B924.
    [135] Chen J., Davidson J. H. Electron density and energy distributions in the positive DC corona: interpretation for corona-enhanced chemical reactions[J]. Plasma Chemistry and Plasma Processing, 2002, 22: 199-224.
    [136] Li J., Shang K. F., Wu Y., et al. The experimental research on electrode configuration and discharge characteristics of pulse discharge[J]. J. Electrostatics, 2007, 65: 228-232.
    [137] Kim Y. H., Hong S. H. Two-dimensional simulation images of pulsed corona discharges in a wire-plate reactor[J]. IEEE T. Plasma Sci., 2002, 30: 168-169.
    [138] Yao S. L., Suzuki E., Meng N., et al. Influence of rise time of pulse voltage on the pulsed plasma conversion of methane[J]. Energy Fuel, 2001, 15: 1300-1303.
    [139] Blokhin V. I., Vysikailo F. I., Dmitriev K. I., et al. Systems with different electrodematerials for treatment of water by a pulsed electric discharge[J]. High Temperature, 1999, 37: 963-968.
    [140] Chen Y.-S., Zhang X.-S., Dai Y.-C., et al. Pulsed high-voltage discharge plasma for degradation of phenol in aqueous solution[J]. Separation and Purification Technol., 2004, 34: 5-12.
    [141] Grabowski L. R. Pulsed corona in air for water treatment[D]. Eindhoven: Technische Universiteit Eindhoven, 2006.
    [142]曲险峰.活性炭纤维对水中酚类有机物的催化臭氧化[D].东营:中国石油大学(华东),2007.
    [143] Alvares A., Diaper C., Parsons S. Partial oxidation by ozone to remove recalcitrance from wastewaters—a review[J]. Environ. Technol., 2001, 22: 409-427.
    [144] Garcia-Araya J. F., Beltran F. J., Alvarez P., et al. Activated Carbon Adsorption of Some Phenolic Compounds Present in Agroindustrial Wastewater[J]. Adsorption, 2003, 9 (2): 107-115.
    [145] Fernandez E., Hugi-Cleary D., Lopez-Ramon M. V., et al. Adsorption of Phenol from Dilute and Concentrated Aqueous Solutions by Activated Carbons[J]. Langmuir, 2003, 19 (23): 9719-9723.
    [146] Efremenko I., Sheintuch M. Predicting Solute Adsorption on Activated Carbon: Phenol[J]. Langmuir, 2006, 22 (8): 3614-3621.
    [147] Stoeckli F., Lopez-Ramon M. V., Moreno-Castilla C. Adsorption of Phenolic Compounds from Aqueous Solutions, by Activated Carbons, Described by the Dubinin-Astakhov Equation[J]. Langmuir, 2001, 17 (11): 3301-3306.
    [148] Tessmer C. H., Vidic R. D., Uranowski L. J. Impact of Oxygen-Containing Surface Functional Groups on Activated Carbon Adsorption of Phenols[J]. Environ. Sci. Technol., 1997, 31 (7): 1872-1878.
    [149] Mohanty K., Jha M., Meikap B. C., et al. Preparation and Characterization of Activated Carbons from Terminalia Arjuna Nut with Zinc Chloride Activation for the Removal of Phenol from Wastewater [J]. Ind. Eng. Chem. Res., 2005, 44 (11): 4128-4138.
    [150] Legube B., Leitner N. K. V. Catalytic ozonation: a promising advanced oxidation technology for water treatment[J]. Catal Today, 1999, 53 (1): 61-72.
    [151] Lin S. H., Lai C. L. Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds[J]. Water Res., 2000, 34 (3): 763-772.
    [152] Kaptijn J. P. ECOCLEAR process: Results from full-scale installations[J]. Ozone: Sci.Eng., 1997, 19 (4): 297-305.
    [153] Logemann F. P., Annee J. H. J. Water treatment with a fixed bed catalytic ozonation process[J]. Water Sci. Technol., 1997, 35 (4): 353-360.
    [154] Jans U., HoignéJ. Activated carbon and carbon black catalyzed transformation of aqueous ozone into ?OH radicals[J]. Ozone Sci. Eng., 1998, 20: 67-87.
    [155] Beltrán F. J., Rivas, J.,álvarez, P., et al. Kinetics of heterogeneous catalytic ozone decomposition in water in an activated carbon[J]. Ozone Sci. Eng., 2002, 24: 227-237.
    [156] Ma J., Sui M. H., Chen Z. L., et al. Degradation of refractory organic pollutants by catalytic ozonation. Activated carbon and Mn-loaded activated carbon as catalyst[J]. Ozone Sci. Eng., 2004, 26: 3-10.
    [157] Laszlo K., Josepovits K., Tombacz E. Analysis of active sites on synthetic carbon surfaces by various methods[J]. Analytical Sci., 2001, 17(special issue): 1741-1744.
    [158] Cloirec P. L., Brasquet C., Subrena E. Adsorption onto fibrous activated carbon: applications to water treatment[J]. Energy & Fuels, 1997, 11: 331-336.
    [159] Kasaoka S., Sakata Y., Tanaka E., et al. Design of molecular-sieve carbon: sdudies on the adsorption of various dye in the liquid phase[J]. Ind. Chem. Eng., 1989, 29 (4): 734-742.
    [160] Rodriguez-Reinoso F., Molina-Sabio M., Munecas M. A. Effect of microporosity and oxygen surface groups of activated carbon in theadsorption of molecules of different polarity[J]. J. Phy. Chem., 1992, 96: 2707-2713.
    [161] Faria P. C. C.,órfao J. J. M., Pereira M. F. R. Ozone decomposition in water catalyzed by activated carbon: Influence of chemical and textural properties[J]. Ind. Eng. Chem. Res., 2006, 45: 2715-2721.
    [162] Sánchez-Polo M., von Gunten U., Rivera-Utrilla J. Efficiency of activated carbon to transform ozone into ?OH radicals: influence of operational parameters[J]. Water Res., 2005, 39: 3189-3198.
    [163] Rivera-Utrilla J., Sánchez-Polo M. Ozonation of 1,3,6-naphthalenesulphonic acid catalysed by activated carbon in aqueous phase[J]. Appl. Catal. B: Environ., 2002, 39: 319-329.
    [164] Qu X.-F., Zheng J.-T., Zhang Y.-Z. Catalytic ozonation of phenolic wastewater with activated carbon fiber in a fluid bed reactor[J]. J. Colloid Interface Sci., 2007, 309: 429-434.
    [165] Faria P. C. C.,órf?o J. J. M., Pereira M. F. R. Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon[J]. Water Res., 2005, 39:1461-1470.
    [166]韩严和.电增强活性炭纤维吸附水中部分有机物的研究[D].大连:大连理工大学, 2006.
    [167] Boudou J. P., Martinez-Alonzo A., Tascon J. M. D. Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure[J]. Carbon, 2000, 38: 1021-1029.
    [168] Sánchez-Polo M., Rivera-Utrilla J. Effect of the ozonecarbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalentrisulphonic acid with ozone[J]. Carbon, 2003, 41: 303-307.
    [169] Rivera-Utrilla J., Méndez-Díaz J., Sánchez-Polo M., et al. Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: Comparison with systems based on O3 and O3/H2O2[J]. Water Res., 2006, 40: 1717-1725.
    [170] Biniak S., Paku?a M., Szymański G. S., et al. Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper(Ⅱ) ions from aqueous solution[J]. Langmuir, 1999, 15: 6117-6122.
    [171] Domingo-García M., López-Garzón F. J., Pérez-Mendoza M. Effect of some oxidation treatments on the textural characteristics and surface chemical nature of an activated carbon[J]. J. Colloid Interface Sci., 2000, 222: 233-240.
    [172] Kodama S., Sekiguchi H. Estimation of point of zero charge for activated carbon treated with atmospheric pressure non-thermal oxygen plasmas[J]. Thin Solid Films, 2006, 506-507: 327-330.
    [173] Mawhinney D. B., Yates J. T. FTIR study of the oxidation of amorphous carbon by ozone at 300 K-Direct COOH formation[J]. Carbon, 2001, 39: 1167-1173.
    [174] Moreno-Castilla C., Carrasco-Marín F., Maldonado-Hódar F. J., et al. Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content[J]. Carbon, 1998, 36: 145-151.
    [175] Guiza M., Ouederni A., Ratel A. Decomposition of dissolved ozone in the presence of activated carbon: an experimental study[J]. Ozone Sci. Eng., 2004, 26 (3): 299-307.
    [176] Alvarez P. M., Garciia-Araya J. F., Beltran F. J., et al. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach[J]. Carbon, 2006, 44: 3102-3112.
    [177] León y León C. A., Radovic L. R. Interfacial chemistry and electrochemistry of carbonsurfaces[A]. In: Thrower PA, editor. Chemistry and Physics of Carbon[M]. New York: Dekker. 1994, 1924:1247-1249.
    [178]程祥珍,肖加余,谢征芳,等.活性炭纤维研究与应用进展[J].材料科学与工程学报,2003,21 (2):283-288.
    [179] Ozaki J., Oya A. Addition of functions to activated carbon fibers--Designing of materials with taking account of surface functions[J]. Hyomen., 1997, 35 (10): 535-543.
    [180] Economy J., Foster K., Jung H. Tailoring carbon fibers for adsorbing volatiles[J]. Chem. technol., 1992, (10): 597-603.
    [181] Przepiorski J., Yoshida S., Oya A. Structure of K2CO3-Ioaded activated carbon fiber and its deodorization ability against H2S gas[J]. Carbon, 1999, 37 (12): 1881-1890.
    [182] Rodriguez-Reinoso F., Molina-sabio M., Munecas M. A. Effect of microporosity and oxygen surface groups of activated carbon in the adsorption of molecules of different polarity[J]. J. Phys. Chern., 1992, 96: 2707-2713.
    [183] Mangun L. C., Benak R. K., Daley A. M., et al. Oxidation of activated carbon fibers: Effect on pore size, surface chemistry, and adsorption properties[J]. Chem. Mater, 1999, 11: 3476-3483.
    [184] Martin-Gullon I., Andrews R., Jagtoyen M., et al. PAN-based activated carbon fiber composites for sulfur dioxide conversion: Influence of fiber activation method[J]. Fuel, 2001, 80: 969-977.
    [185] Mochida I., Kawano S., Shirahama N., et al. Catalytic activity of pitch-based activated carbon fiber of large surface area heat-treated at high temperature and its regeneration for NO-NH3 reaction at ambient temperatures[J]. Fuel, 2001, 80: 2227-2233.
    [186] Pereira M. F. R.,órfao J. M., Figueiredo J. L. Oxidative dehydrogenation of ethylbenzene on activated carbon fibers[J]. Carbon, 2002, 40: 2393-2401.
    [187]杨全红.聚丙烯腈基活性炭纤维微观结构改性及其脱臭性能研究[D].太原:中国科学院山西煤炭化学研究所,1999.
    [188] Mangun C. L., Benak K. R., Economy J., et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon, 2001, 39: 1809-1820.
    [189] Pradhan B. K., Sandle N. K. Effect of different oxidizing agent treatments on the surface properties of activated carbons[J]. Carbon, 1999, 37: 1323-1332.
    [190] Tomlinson J. B., Freeman J. J., Theocharis C. R. The preparationand adsorptive properties of ammonia-activated viscoserayon chars[J]. Carbon, 1993, 31: 13-20.
    [191] Shin S., Jang J., Yoon S.-H., et al. A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR[J]. Carbon, 1997, 35: 1739-1743.
    [192] Acedo-Ramos M., gomez-Serrano V., Valenzuela-Calahorro C., et al. Oxidation of activated carbon in liquid phase study by FT-IR[J]. Spectroscopy Letters, 1993, 26: 1117-1137.
    [193]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社,1997:113-116.
    [194] Ban A., Schafer A., Wendt H. Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents[J]. J. applied electrochemistry, 1998, 28: 227-236.
    [195] Couglhin R. W., Ezra F. S. Role of surface acidity in the adsorption of organic pollutants on the surface of carbon[J]. Environ. Sci. Technol., 1968, 2: 291-298.
    [196]钟理.臭氧湿式氧化氨氮的降解过程研究[J].中国给水排水,2001,16:14-17.
    [197] Sunada F., Heller A. Effects of water, salt and silicone over coating of the TiO_2 photocatalyst on the rates and products of photocatalytic oxidation of liquid 3-octanol and 3-octanone[J]. Environ. Sci. Technol., 1998, 32: 282-286.
    [198] Conceicao M., Mateus D. A. Kinetics of photodegradation of the fungicide fenarimol in natural waters and in various salt solutions: salinity effects and mechanistic considerations[J]. Water Res., 2003, 37: 1443-1467.
    [199]员汝胜.纳米TiO_2与活性炭纤维复合光催化材料的制备及其催化降解性能的研究[D].太原:中国科学院山西煤炭化学研究所,2005.
    [200]石建稳.纳米TiO_2光催化剂掺杂改性与负载研究[D].东营:中国石油大学(华东),2007.
    [201] Kim T. K., Lee M. N., Lee S. H., et al. Development of surface coating technology of TiO_2 powder and improvement of photocatalytic activity by surface modification[J]. Thin Solid Films, 2005, 475: 171-177.
    [202] Short M. A., Walker P. L. Measurement of interlayer spacing and crystal sizes in turbostratic carbons[J]. Carbon, 1963, 1 (1): 3-9.
    [203] Agustina T. E., Ang H. M., Vareek V. K. A review of synergistic effect of photocatalysis and ozonation on wastewater treatment[J]. J. Photochemistry and Photobiology C: Photochemistry Rev., 2005, 6: 264-273.
    [204] Byrne J. F., Marsh H.“Introductory overview”, in Porosity in Carbons, Characterization and Applications[M]. New York: Halsted press, 1995: 1-48.
    [205]范山湖,孙振范,邬泉周,等.偶氮染料吸附和光催化氧化动力学[J].物理化学学报,2003,19 (1):25-29.
    [206]卢晓平,戴文新,王绪绪,等.TiO2胶粒在铝合金表面的电泳沉积及所制薄膜的光催化性能研究[J].无机化学学报,2004,20 (6):734-737.
    [207] Müller T. S., Sun Z., Kumar M. P. G., et al. The combination of photocatalysis and ozonolysis as a new approach for cleaning 2,4-dichlorophenoxyaceticacid polluted water[J]. Chemosphere, 1998, 36: 2043-2055.
    [208]曹亚安,谢腾峰,张昕彤,等.TiO2纳米粒子膜表面性质[J].物理化学学报,1999,15 (8):680-683.
    [209] Hsien Y. H., Chang C. F., Chen Y. H., et al. Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves[J]. Appl. Catal. B: Environ., 2001, 31: 241-249.
    [210] Minero C., Catozzo F., Pelizzetti E. Role of adsorption in photocatalyzed reactions of organic molecules in aqueous TiO2 suspensions[J]. Langumir, 1992, (8): 481-486.
    [211] Fox M. A., Dulay M. T. Heterogeneous photocatalysis[J]. Chem. Rev., 1993, 93: 341-357.
    [212] Hoffmann M. R., Martin S. T., Choi W. Y., et al. Environmental of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95: 69-96.
    [213]刘守新.活性炭光再生技术与TiO2-活性炭协同作用机制研究[D].哈尔滨:东北林业大学,2002.
    [214] Malos J., Laine J., Herrmann J.-M. Effect of the activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradialed titania[J]. J. Catal., 2001, 200: 10-20.
    [215] Buttefield I. M., Christensen P. A., Hamnett A., et al. Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water[J]. J. Applied. Electrochemistry, 1997, 27: 385-395.
    [216] Moraes S. G., Freire R. S., Duran N. Degradation and toxicity reduction of textile effluent by combined photocatalytic and ozonation processes[J]. Chemosphere, 2000, 40: 369-373.
    [217] Gilbert E. Influence of ozone on the photocatalytic oxidation of organic compounds[J]. Sci. Eng., 2002, 24: 75-82.
    [218]刘娟,张彭义,余刚,等.相正己烷的光催化及臭氧/光催化降解动力学[J].环境科学,2004,25 (1):35-39.
    [219] Malato S., Blanco J., Richter C., et al. Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species[J]. Applied Catalysis B: Environ., 1998, 17: 347-356.
    [220] Zhang P. Y., Liang F. Y., Yu q., et al. A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV[J]. J. Photochemistry and Photobiology A: Chemistry, 2003, 156: 189-194.
    [221] Hemandez-Alonso M. D., Coronado J. M., Maira A. J., et al. Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions[J]. Applied Catalysis B: Errviron., 2002, 39: 257-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700