非平衡等离子体与活性炭纤维联合处理染料废水的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压脉冲放电非平衡等离子体技术是集羟基自由基(·OH)、过氧化氢(H_2O_2)、臭氧(O_3)等活性物质的作用于一体的高级氧化技术,因其能耗少、处理效率高、反应迅速且无选择性、无二次污染等优势,使该技术呈现出良好的应用前景和很大的市场潜力。从目前的研究现状看,吸附/催化剂的合理选择是限制该技术优势充分发挥的主要障碍之一。本论文对课题组原有的非平衡等离子体放电反应器进行了改进,以甲基橙为模拟污染物,考察了反应器各种工艺参数对甲基橙降解率的影响,确定了最佳工艺参数,初步探讨了非平衡等离子体对有机污染物的降解机理。采用浸渍改性法制备了双氧水改性和硝酸铁改性两种改性活性炭纤维,向非平衡等离子体反应中加入改性活性炭纤维,考察ACF的吸附催化性能,探讨改性ACF与非平衡等离子体的协同作用。
     向液相中高压针电极和相中地电极施加脉冲高压后,液相中H_2O分子在高能电子的撞击下产生·OH、H_2O_2等活性物质,相中O_2分子在放电电极上受到高能电子的碰撞、激发,发生分解反应产生O_3,部分O_3可由相传质到液相。向放电反应中加入H_2O_2、Fe~(2+)后,甲基橙的降解速率和降解效率均得到了有效提高,但存在二次污染问题。甲基橙在液两相同时放电反应中会生成羧酸和苯胺类等小分子物质,这些小分子物质最终可被·OH矿化为H_2O和CO_2。
     非平衡等离子体与改性ACF联合处理甲基橙表现出很好的协同作用,协同作用的产生主要归因于改性ACF的吸附和催化作用,ACF是污染物分子的一个浓集中心,在其表面及其周围毗邻区域通过吸附创造了高浓度的环境,而ACF表面则是污染物分子的转化分解中心。双氧水改性ACF表面的酸性官能团能与放电反应产生的活性自由基反应,催化诱导O_3分解产生·OH ,从而提高甲基橙的降解率。ACF经硝酸铁改性后,表面活性点增加,二次热处理后ACF表面的Fe_2O_3在放电反应中生成Fe~(2+)、O_2等物质,Fe~(2+)通过光助芬顿反应、O_2通过自由基反应可进一步参与生成·OH、O_3等活性物质,有助于催化降解甲基橙。
Non-equilibrium plasma water treatment is an advanced oxidation technology, which integrates the effectiveness of many active species including hydroxyl radical, hydrogen peroxide, ozone, etc., and bears preferable future application and large market potential because of its advantages of low energy consumption, high treatment efficiency, rapid and non-selective reactivity, and free of secondary pollution, etc.. The current difficulties for widely application of this technology exist mainly in selection of appropriate adsorbents and catalysts. In this work, the original electrical discharge reactor was improved for degrading methyl orange as the model pollutant in water. The infiuence of technological parameters on degradation efficiency was investigated and the best technical parameters were confirmed. The degradation mechanism of organic pollutants by non-equilibrium plasma was discussed. Two kinds of modified activated carbon fiber were prepared by dipping method. One was ACF modified by H_2O_2, and the other was ACF modified by Fe(NO_3)_3. The modified ACF were added for degrading methyl orange combined with non-equilibrium plasma. The adsorption of pollutants and the catalytic effect of ACF were evaluated. And the synergistic mechanism of modified activated carbon fiber with non-equilibrium plasma was discussed.
     With pulsed voltage supplied between the high voltage needle electrode in the aqueous phase and the ground electrode in gas phase, activate species of hydroxyl radical and hydrogen peroxide were produced in liquid phase and ozone in gas phase, some of which dissolved into the liquid phase. Both the efficiency and the degradation rate of methyl orange were obviously improved with the addition of H_2O_2, Fe~(2+) to the reactor, while it may lead to secondary pollution. Methyl orange was easy to break down into small-molecules, such as carboxylic acid and aniline in the gas-liguid discharge reaction. The small-molecules could be mineralized into carbon dioxide and water by·OH eventually.
     The combined treatment by pulse discharge with modified ACF showed good synergistic effect due to the adsorption and catalysis of modified ACF. A high concentration of pollutants on ACF surfaces was achieved by adsorption, and the surfaces performed as conversion and decompose centers of pollutants. The surface acidic functional groups of H_2O_2 modified ACF could reacts with the activate species in the discharge reaction, which could generate·OH and increase degradation efficiency. The active surface area of Fe(NO_3)_3 modified ACF increased. After heat treatment Fe(NO_3)_3 was converted to Fe_2O_3, which could generate Fe~(2+) and O_2 in the discharge reaction. The methyl orange can be degraded by·OH and O_3, which were generated from Fe~(2+) and O_2 by fenton reaction and free-radical reaction.
引文
[1]刘梅红,姜坪.膜法染料废水处理试验研究[J].膜科学与技术,2001,21(3):50-52
    [2]王振余,郭树才.炭膜处理染料水溶液的研究[J].膜科学与技术,l997,l7(5):9-12
    [3]何德文.白腐真菌处理难降解的有机废水研究[J].工业水处理,2000,20(3):14-17
    [4]彭继伟,邵云海,王军波,等.改良厌氧-生物接触氧化处理纺织印染废水[J].中国给水排水,1995,11(5):16-19
    [5] Hoigne J., Bader H. Ozone of water: role of hydroxyl radical reaction in ozonation processes in aqueous solutions[J]. Water Res., 1976, 10: 377-386
    [6]彭晓春,陈新庚,唐春燕,等.n-TiO2光催化机理及其在环境保护中的应用研究进展[J].环境污染技术与设备,2002,3(3):1-6
    [7] Hoffmann M R, Hua I. Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrasonic Sonochemistry, 1996 (3): 163-172
    [8]胡文容,钱梦禄,高廷耀.超声强化臭氧氧化偶氮染料的脱色性能[J].中国给水排水,1999,15(11):1-4
    [9] MODEL L. Processing Methods for the Oxidation of Organics in Supercritical Water: US, patent: 4543190[P/OL]. 1985-09-24
    [10]马承愚,姜安玺,彭英利,等.超临界水氧化法处理偶氮染料生产废水的实验研究[J].黑龙江大学自然科学学报,2005,22(4):525-527
    [11]袁芳,董俊明,胡献舟.过氧化氢湿式氧化技术处理高浓度印染废水的研究[J].化工之友,2006(8):4-5
    [12]周书天,杨润昌,黄明,等.湿式过氧化氢氧化处理高浓度染料废水的工艺研究[J].重庆环境科学,2001,23(2):62-64
    [13] Bing Sun, Masayuki Sato, Clements J S. Optical study active species produced by a pulsed streamer corona discharge in water[J]. Journal of Electrostatics, 1997, 39: 189-202
    [14] Bing Sun, Sato M, Clements J S. Non-uniform pulse discharge-induced radical production in distilled water[J]. Journal of Electrostatics, 1998, 43: 115-126
    [15] CLEMEN'IS J S, SATO M, DAVIS R H. Preliminary investigation of prebreakdownphenomena and chemical reactions using a pulsed hish-voltage discharge in water[J]. IEEE Transactions on Industry Applications, 1987, 23 (2): 224-235
    [16] MALIK M A, GHAFFAR A, MALIK S A. Water purification by electrical discharges[J]. Plasma Sources Science and Technology, 2001, 10 (1): 82-91
    [17]张仁熙,候键,候惠奇.等离子体技术在环境保护中的应用(上)[J].上海化工,2000,20:4-5
    [18] Shin W. T., Sotira Y., et al. Pulseless corona-discharge process for the oxidation of organic compounds in water Source[J]. Ind. Eng. Chem. Res., 2000, 39 (11): 4408-4414
    [19]张延宗,郑经堂,陈宏刚.非平衡等离子体水处理技术研究进展[J] .化工进展,2007,26(7):2948-2954
    [20] Grabowski LR. Pulsed coronain air for water treatment [D]. Eindhoven: Technische Universiteit, 2006
    [21] Sano N, KawashimaT, fujikawa J, et al. Decomposition organiccompounds in water by direct contact of gas corona discharge: influence of discharge condition[J]. Ind Eng Chem Res., 2002, 41: 5906-5911
    [22] AKSHARMA,GB JOSEPHSON, DM CAMA10NI. Destruction of pentachlorophenol using glow discharge plasma process [J]. Enviro Sci Technol., 2000, 34: 2267-2272
    [23] Sano N, Yamamoto D, Nakano M, et al. Decomposition of aqueousphenol by direct contact of gas corona discharge with water: influence of current density and applied voltage[J]. Chem EngJpn., 2004, 37: 1319-1325
    [24] A K SHARMA, G B JOSEPHSON, D M CAMAIONI. Destruction of pentachlorophenol using glow discharge plasma process[J]. Enviro Sci Technol, 2003, 34: 2267-2272
    [25] D M Willberg. Degradation of 4-Chlorophenol, 3,4-Dichloromiline, and 2,4,6-Toluene in an Electrohydraulic Discharge Reactor[J]. Environ Sci Technol., 1996, 30: 2526-2534
    [26] Anto Tri Sugiarto. Advanced oxidation processes using pulsed streamer corona discharge in water[J]. Thin Solid Films, 2002, 407: 1 74-178
    [27] David R, Grymonpre. Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation[J]. Chemical Engineering Science, 1999, 54: 3095-3105
    [28] Johnson D C, Dandy D S, Shamamian V A. Development of a tubular high-densityplasma reactor for water treatment[J]. Water Research, 2006, 40: 311-312
    [29] Sato M., Tokutake T., Ohshima T., et al. Aqueous phenol decomposition by pulsed discharge on water surface[A]. Fourtieth IAS Annual Meeting. Conference Record of the 2005[C]. 2005: 2895-2899
    [30] Lukes P., Clipek M., Babicky V., et al. Generation of ozone by pulsed corona discharge over water surface in hybrid gas-liquid electrical discharge reactor[J]. J. Phys. D: Appl. Phys., 2005, 28: 409-416
    [31] KusiéH, Koprivance N,Locke B R. Decomposition of phenol by hybrid gas/liquid electrical discharge reactors with zeolite catalysts[J]. Journal of Hazardous Materials, 2005, B 125: 190-200
    [32]张若兵.双向窄脉冲放电染料废水脱色技术研究[D].大连:大连理工大学,2005
    [33] Lukes P., Clupek M., Sunka P., et al. Degradation of pheno by underwater pulsed corona discharge in combinnation with TiO2 photocatalysis[J]. Res. Chem. Intermed., 2005, 31: 285-294
    [34] Malik M. A. Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water[J]. Plasma Sources Sci. Technol., 2003, 12: S26-S32
    [35] GrymonpréD. R., Finney W. C., Locke B. R. Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison[J]. Chem. Eng. Sci., 1999, 54: 3095-3105
    [36] Sharma A K., Arce P, et al. A preliminary study of pulsed streamer corona discharge for the degradation of phenol in aqueous solutions. Hazard Waste Hazard Mater, 1993, 10: 209-220
    [37] SUNKA P, BABICKY V, CLUPEK M. Generation of chemically active species by electrical discharges in water[J]. Plasma Soumes Science and Technology, 1999, 8 (2): 258-265
    [38]李胜利,李劲.脉冲放电对印染废水脱色效果的实验研究[J],环境科学,1996,17(1):13-16
    [39] Hui-juan Wang, Li Jie, Xie Quan. Decoloration of Acid Orange 7 Aqueous Solution by a Multi-Needle-to-Plate High Voltage Pulsed Discharge Plasma System. Journal of BejingInstitute of Technology, 2005 (S25): 222-226
    [40]陈银生,张新胜,袁渭康.高压脉冲电晕放电等离子体降解废水中苯酚[J].环境科学学报,2002,22(5):567-570
    [41]陈银生,张新胜,戴迎春,等.脉冲电晕放电等离子体降解4-氯酚废水的研究[J].高校化学工程学报,2003,17(1):7l-75
    [42] Xiaolong Hao, Minghua Zhou, et al. Pulsed discharge plasma induced Fenton-like reactions for the enhancement of the degradation of 4-chlorophenol in water[J]. Chemosphere, 2007 (66): 2185-2192
    [43] Boehm H. P. Surface oxides on carbon and their analysis: a critical assessment[J]. Carbon, 2002, 40: 145-149
    [44] Zhang Y.-Z., Zheng J.-t., Qu X.-f., et al. Effect of granular activated carbon on degradation of methyl orange when applied in combination with high-voltage pulse discharge[J]. J. Colloid Interface Sci., 2007, 316: 308-315
    [45] Sugiarto A. T., Ito S., Ohshima T., et al. Oxidative of dyes by pulsed discharge plasma in water[J]. J. Electrostatics, 2003, 58 (1-2): 135-145
    [46] Locke B. R., Sato M., Sunka P., et al. Electrohydraulic discharge and nonthermal plasma for water treatment[J]. Ind. Eng. Chem. Res., 2006, 45: 882-905
    [47] Jinzhang Gao, Yongjun Liu, Wu Yang, et al Oxidative degradation of phenol in aqueous electrolyte induced by plasma from a direct glow discharge, Plasma Sources Sci. Technol. 12 (2003) 533-538
    [48] David R. Grymonpre, et al, The role of Fenton’s reaction in aqueous phase pulsed streamer corona reactors, Chemical Engineering Journal, 82 (2001) 189-207
    [49] David R. Grymonpre, et al, Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison, Chemical Engineering science, 54 (1999) 3095-3105
    [50] Clements J.S., Sato M., and Davis R. H. Preliminary investigation of prebreakdown phenomena and chemical reactions using a pulsed high-voltage discharge in water. IEEE Trans. Indust. Appl. 1987, IA-23, 224-235
    [51] GrymonpréD R., Finney W. C., Clark R. J., et al. Suspended activated carbon particles and zoone formation in aqueous-phase pulsed corona discharge reactors[J]. Ind. Eng.Chem. Res., 2003, 42: 5117-5134
    [52] Hickling A. Ingram M. D. Contact glow discharge electrolysis. Trans. Faraday Soc. 1964, 60: 783
    [53] Hickling A. Ingram M. D. Glow-discharge electrolysis. J. Electroanal Chem. 1964, (8): 65-81
    [54] Hickling A. In electrochemical processing in glow discharge at the gas-solution interface; Bockris, J. O’M, Conway, B. E., Eds,; Plenum, New york. 1971: 329
    [55]王宝贞,王琳.水污染治理新技术—新工艺、新概念、新理论[M].北京:科学出版社,2004
    [56]曲险峰.活性炭纤维对水中酚类有机物的催化臭氧化[D].东营:中国石油大学(华东),2007
    [57] Alvares A., Diaper C., Parsons S. Partial oxidation by ozone to remove recalcitrance from wastewaters—a rewiew[J]. Environ. Technol., 2001, 22: 409-427
    [58] Sugiarto A. T., Ito S., Ohshima T., et al. Oxidative decoloration of dyes by pulsed discharge in water[J]. Kagaku Kogaku Ronbunshu, 1999, 25: 827-832
    [59] Lu Q. F., Yu J., Gao J.Z. Decoloration of acqueous brilliant green by using glow discharge electrolysis. Journal of Hazardous Materials. 2006, 136: 526
    [60] K Swaminathan, S Sandhya, A C Sophia, et al. Decolorization and degradation of H-acid and other dyes using ferrous-hydrogen peroxide system. Chemosphere, 2003, 50: 619-625
    [61] Hoeben W.F.L.M., Veldhuizen E. M. van, Runtgers W.R. et al. Gas phase corona discharges for oxidation of phenol in aqueous solution. J. Phys. D: Appl. Phys. 1999, 32, L133-L137
    [62]曾汉民,陆耘,朱世平.用活性碳纤维回收、提取重黄金[P].中国,专利号:8810827410.1998
    [63] P Navarri, D marchal, A Ginestet. Activated carbon fiber materials for VOC removal[J]. Filtration & Separation, 2001, (1-2): 34-40
    [64]范延臻,王宝贞.活性炭材料表面化学[J].煤炭转化,2000,23(4):26-30
    [65]黄华存,叶代启,黄碧纯.ACF表面改性及其脱除氮氧化物的研究进展[J].合成纤维工业,2006,29(6):40-43
    [66] Park S J, Jang Y S, Shim J W, et al. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers[J]. Journal of Colloid and Interface Science, 2003, 260 (2): 259-264
    [67] Economy J., Foster K., Jung H. Tailoring carbon fibers for adsorbing volatiles[J]. Chem. Technol., 1992, (10): 597-603
    [68] Przepiorski J., Yoshida S., Oya A. Structure of K2CO3-Ioaded activated carbon fiber and its deodorization ability against H2S gas[J]. Carbon, 1999, 37 (12): 1881-1890
    [69]杨全红.聚丙烯腈基活性炭纤维微观结构改性及其脱臭性能研究[D].太原:中国科学院山西煤炭化学研究所,1999
    [70]曾汗民.功能纤维[M].北京:化学工业出版社,2005:132-133
    [71] Haydar S, Ferro Garcia M A, Rivera Utrilla J. Adsorption of p-nitrophenol on an activated carbon with different oxidations[J]. Carbon, 2003, 41(3): 395-397
    [72] Mangun C. L., Benak K. R., Economy J., et al. Surface chemistry, pore sizes and adsorption properties of activated carbon fibers and precursors treated with ammonia[J]. Carbon, 2001, 39: 1809-1820
    [73] Biniak S., Pakula M., Szymański G. S., et al. Effect of activated carbon surface oxugen and nitrogen-containing groups on adsorption of copper(Ⅱ) ions from aqueous solution[J]. Langmuir, 1999, 15: 6117-6122
    [74] Alvarez P. M., Garcia-Araya J. F., et al. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions[J]. J. Colloid Interface Sci., 2005, 283: 503-512
    [75] Domingo-García M., López-Garzón F. J., Pérez-Mendoza M. Effect of some oxidation treaments on the textural characteristics and surface chemical nature of an activated carbon[J]. J. Colloid Interface Sci., 2000, 222: 233-240
    [76]杨全红,郑经堂.处理氛对FeSO4-ACF结构及吸附性能的影响[J].炭素技术,1997,(3):4-7
    [77]司徒杰生,王光建,张登高.化工产品手册[M].北京:化学工业出版社,2004
    [78]乔志军,李家俊,赵乃勤,等.最高温热处理对ACF微孔及表面性能的影响[J].新型炭材料,2004(4):25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700