全膝关节置换术后髌股关节生物力学及临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     全膝关节置换术对于晚期关节炎和其他膝关节疾病已经成为一种非常成功的治疗方法。早期全膝关节置换术并未涉及髌股关节,术后膝前痛的发生率为40~58%。随着现代全髁假体的出现,髌股关节置换逐渐成为标准全膝关节置换术的重要组成部分。然而,最初并发症的发生率为4~50%,包括髌骨骨折、骨坏死、髌骨不稳、髌股关节过度填塞、髌骨轨道异常、伸膝装置撕裂和假体松动、半脱位或脱位。事实上,髌骨并发症是全膝关节置换翻修的主要原因,髌股假体翻修占全膝关节置换翻修的50%。髌骨置换后伸膝装置并发症发生率增加导致全膝关节置换术中选择性置换髌骨概念的提出。遗憾的是,由于髌股关节的高度复杂性,“选择性髌骨置换”本身就具有高度的不确定性。最近的若干前瞻性随机对照研究已经证明:“选择性髌骨置换”的大多数指标,如术前膝前疼痛、体重、髌骨软骨病变程度等都不能正确提示TKA后是否会发生膝前疼痛。
     缺少对全膝关节置换术髌骨问题确定的前瞻性随机化资料使医生遵循三种处理方案:始终置换髌骨、从不置换髌骨或根据临床或术中所见选择性置换髌骨。一些随机化前瞻性研究对这一问题进行了阐述,多数全膝关节置换术无论是否置换髌骨均能获得预期的优良结果。比较一致的是不论是否置换髌骨,全膝关节置换术后膝前痛的发生更与假体设计和适当的手术技术有关。
     全膝关节置换中,最佳的股骨假体设计可能包括一个较深的股骨滑车沟,向远端延伸足够远以保证在屈曲时支持髌骨,避免卡住髌骨边缘。有一个解剖型的曲率半径,复制最正常的髌骨轨迹。
     髌骨置换中重要的手术因素是保持术前的髌骨厚度,进行对称性切骨和伸膝装置平衡。在髌骨切骨前、后应用测径器保证恢复术前的髌骨厚度,并且使置换后所有部位与原髌骨厚度相等。切骨过少可导致屈曲受限和膝前痛,切骨过多可导致髌骨骨折,不对称切骨可引起髌骨不稳。髌骨切骨导板能帮助获得更加一致的髌骨切骨。术中需要试件复位评价髌骨轨道。常推荐“无拇指技术”评价是否需要外侧支持带松解。
     假体位置对于优化髌骨轨道很重要,不同的研究建议最佳的位置是髌骨假体的内上放置,股骨假体的外旋、外置和胫骨假体的外置。尤其应避免股骨和胫骨假体的内旋,股骨假体的前屈和股骨假体过大导致股骨远端前后径增大。当髌骨不置换时这些因素也很重要。
     全膝关节置换术后髌股关节运动轨迹发生改变。为优化髌骨运动轨迹,需要对其生物力学进行分析。通常的力学试验手段基本上不直接应用于人体,采用尸体标本进行生物力学实验被认为是生物力学测试的金标准,但是尸体标本来源有限,不易保存,且标本之间存在个体差异,影响实验结果的准确性。计算机模型分析,一方面可以降低成本,节省时间、消除标本间的个体差异。另一方面则可通过对实验条件的控制,准确地模拟体内的力学情况。因此,我们首先建立人体膝关节计算模型,在此基础上模拟全膝关节置换术,以期分析股骨假体旋转技术和髌骨置换技术对全膝关节置换术后髌股关节的影响。另外,我们进行前瞻性随机化研究比较全膝关节置换中髌骨置换与否的临床结果。基于此目的,我们这一阶段的工作包括以下几部分:
     第一部分:人体膝关节三维物理模型的建立及验证
     第二部分:全膝关节置换术中股骨假体旋转对髌股关节生物力学的影响
     第三部分:髌骨置换技术对全膝关节置换术后髌股关节生物力学的影响
     第四部分:全膝关节置换术中髌骨置换与否的比较研究
     第一部分人体膝关节三维物理模型建立及其有效性验证
     目的根据膝关节的CT和MRI扫描图像,建立人体膝关节的三维物理模型,以计算髌股关节运动学参数,并验证其有效性。
     方法根据膝关节CT、MRI扫描图像,利用图像处理和转换技术,运用CAD分析软件及由下而上的点、线、面、体建模原则,重建膝关节三维物理模型,并定义对髌股关节起重要作用的股四头肌、韧带及其他软组织为非线性弹性纤维束,并以股四头肌力为控制变量,模拟膝关节伸膝运动。
     结果建立了一个有效的包括半月板、软骨、韧带和骨骼在内的膝关节三维物理模型。通过模型计算膝关节的部分运动学和力学参数,与文献中实验数据进行比较,结果表明该模型有效。
     结论本研究基于CT和MRI所建立的膝关节三维物理模型,能逼真地反映膝关节的真实几何结构,可有效地计算髌股关节运动学参数。
     第二部分全膝关节置换术中股骨假体旋转对线对髌股关节生物力学的影响
     目的研究全膝关节置换术后髌股关节的生物力学。着重研究全膝关节置换术中股骨假体旋转对髌骨轨迹和髌股关节接触压力的影响。
     方法利用验证的膝关节仿真模型按照下面位置虚拟地植入股骨假体:(1)中立位平行于股骨上髁轴,(2)内旋1°、2°,(3)外旋1°、2°。计算每种股骨假体位置的髌骨三维运动轨迹和髌股关节接触压力。
     结果(1)股骨假体相对于股骨外科上髁轴内、外旋使髌骨的旋转角及倾斜角波动更大。(2)股骨假体内、外旋变化对髌骨在X方向上的位移有明显影响,股骨假体外旋,髌骨在X方向上的位移增大,反之亦然。(3)股骨假体内旋使主动伸膝阶段的髌股关节压力(PFCF)明显增大,股骨假体外旋PFCF降低。
     结论股骨假体位置主要影响髌骨轨迹,股骨假体外旋可能导致髌骨半脱位,股骨假体内旋导致髌股关节接触压力增大,可导致髌股关节并发症。
     第三部分髌骨置换技术对全膝关节置换术后髌股关节生物力学的影响
     目的研究全膝关节置换术中髌骨置换技术,着重研究髌骨厚度和髌骨切骨不对称对髌股运动学和接触特性的影响。
     方法采用人体膝关节仿真模型模拟标准的全膝关节置换术,然后分别模拟髌骨增厚1mm、2mm,减少1mm、2mm和髌骨内、外倾各1°、2°。分别计算各种情况下髌骨三维运动轨迹和髌股关节接触压力。
     结果(1)在整个仿真过程中,髌骨厚度越大,髌骨倾斜角度越大,反之亦然。(2)屈膝超过60°后,髌骨厚度越大,其旋转角越大,(3)髌骨越厚,髌股关节接触压力越大,(4)髌骨厚度变化对髌骨在X、Y和Z方向上的位移无明显影响。(5)髌骨厚度增大时,PT/QT值变大,反之亦然(6)髌骨内、外倾对髌骨旋转角及倾斜角有明显影响,(7)髌骨外倾使髌骨在X方向上位移增大,反之亦然;而对Y、Z方向上的位移无明显影响,(8)在主动伸膝阶段,髌骨外倾使PFCF值增大;在自然屈膝阶段,髌骨内、外倾使PFCF值增大,(9)在自然屈膝后期及主动伸膝阶段,当髌骨外倾时,PT/QT值异常增大,反之亦然。
     结论在进行全膝关节置换时,髌骨置换技术应尽量恢复髌骨置换前的厚度,避免不对称切骨。
     第四部分全膝关节置换术中髌骨置换与否的比较研究
     目的对60例膝关节骨性关节炎患者进行前瞻性、随机化研究,比较全膝关节置换术置换髌骨和未置换髌骨临床结果的差异。
     方法2002年1月~2002年12月60例(60膝)行初次全膝关节置换术的骨性关节炎患者进行前瞻性、随机化研究。所有患者接受相同的后叉韧带替代型全膝关节假体(PFC),患者随机置换或不置换髌骨,平均随访54月(48~60月),进行临床评价,包括KSS评分、膝关节活动度、患者满意度和X线检查。
     结果KSS总评分(p=0.12)、KSS疼痛评分(p=0.90)、患者满意度(p=0.22),两组术后膝前痛的发生率均为10%,两组无明显差异。ROM(p=0.028),KSS功能评分髌骨置换组与髌骨未置换组有统计学差异(83.8,72.2,p=0.0098)。
     结论全膝关节置换术不论是否置换髌骨均能明显减轻疼痛和改善功能。术后膝前痛可能与假体设计和手术技术有关,与是否置换髌骨无关。对于膝关节骨性关节炎全膝关节置换时决定是否置换髌骨必须根据医生的训练和经验以及术中髌股关节评价进行个性化选择。假体设计和手术技术是全膝关节置换成功的主要因素。根据本研究结果,骨性关节炎患者进行全膝关节置换时如果选择与自体髌骨匹配的股骨假体,可不置换髌骨,全膝关节置换中最重要的是精确而正确的手术技术。
Background
     TKA has become a very effective way in curing advanced arthritis and other diseases concerning knee joint. Early designs of total knee prostheses did not include a patellar resurfacing component and were reported to be associated with a 40% to 58% rate of anterior knee pain. With the appearance of modern total condyle prostheses, patellar resurfacing tends to be the important part of standard TKA. However, the initial complication rates ranged from 4% to 50% with the reported complications including patellar fracture, disruption of the extensor mechanism, osteonecrosis, aseptic loosening, instability and dislocation, "overstuffing" of the patellofemoral joint, catastrophic failure, patella polyethylene wear, and patellar clunk syndrome. In fact, patella complications arc the main reasons for the revision of TKA. The revision of patellar prosthesis amounts to 50% of revision of TKA. An increasing rate of complications with the extensor mechanism after patellar resurfacing led to the concept of selective resurfacing of the patella in total knee arthroplasty. However, "selectively patellar resurfacing" itself has high uncertainty because of the complexity of patellofemoral joint. The results of several randomized controlled clinical trials have shown that such factors as preoperatoin anterior knee pain, weight, patella cartilage deterioration of "selectively patellar resurfacing" could not properly predicate thc possibility of anterior knee pain after TKA.
     The lack of definitive prospective data on this subject has led surgeons to following onc of 3 stratcgies: always resurface the patella, never resurface the patella, or selectively resurface the patella depending on the clinical and intraoperative findings. Some randomized prospective study shows that most TKA, whether with patella resurfacing or not, could have the predicted good results. The results have the ame conclusion that whether the patella is resurfaced or not, the anterior knee pain after TKA is related to the design of the implant and proper surgical techniques.
     The optimal design of femoral component probably includes a deep trochlear groove that extends far enough distally to maintain support of the patella in flexion and avoids catching of the patella on its edges, and a anatomic trochlear groove, and a more anatomic radius of curvature to reproduce optimal patellar tracking.
     The critical surgical factors in patellar resurfacing are maintaining the preoperative patellar thickness, performing a symmetric bone resection, and balancing the extensor mechanism. This can be achieved by using a caliper before and after patellar resection to ensure that the composite will reproduce the preresection patellar thickness and that equal bone thickness remains in all locations. Underresection can lead to restricted flexion and anterior knee pain. Overresection can predispose to fracture. Asymmetric resection can lead to patellar instability. A patellar cutting guide can assist in achieving more consistent patellar cuts. Trial reduction is necessary to assess tracking. The "rule of no thumb" is often recommended to assess the need for lateral release.
     Component positioning appears to be critical to optimization of patellar tracking. Different studies have suggested that optimal positioning is medial and superior placement of the patellar component, external rotation and lateral placement of the femoral component, and lateral placement of the tibial component. Component orientations that should specifically be avoided include femoral or tibial internal rotation, anterior placement or flexion of the femoral component, and increasing the anteroposterior diameter of the distal femur by oversizing the femoral component. Several factors are also important when the patella is not resurfaced.
     Usually, the mechanic experiment will not be used directly on living body. It is considered to be a golden standard to use biological mechanic experiment on cadaver specimen. But because of the limited number and the individual difference of cadaver specimen, so such experiments will influence the accuracy of the results. Using a computer mode, we can, on one hand, reduce cost, save time and eliminate the difference of specimen, and on the other hand accurately simulate the mechanics of living body using controlled experiment conditions. Therefore, we establish a computer model of human knee to simulate TKA so as to analyze the influence of femoral component rotation and patella resurfacing technique on patellofemoral after TKA. Furthermore, randomized prospective study is also done to compare the clinical results of whether patella is resurfaced or not during TKA. Based on this, the study is divided into the following steps:
     Part one: Development and validation of a three dimensional knee model
     Objective The three dimensional anatomical configuration model of the human knee has been developed and validated to compute the kinematics of patellofemoral joint.
     Methods According to the model building principle from point to line to area to volume of mimics software, a three dimensional anatomical configuration model of the knee joint was reconstructed on the basis of the images of CT and MRI. In addition, quadriceps, ligaments and other soft tissues are defined as non-linear fiber, meanwhile simulating knee extension activity with input variable of quadriceps forces
     Results An effective three dimensional anatomical configuration model of the knee joint, including meniscus, articular cartilage and bone, was reconstructed. Some kinematics parameters are calculated based on the model. Compared with the published experimental results, our model is also available.
     ConclusionsA three-dimension anatomical configuration model of the knee joint, which can reflect the real geometry structures of knee joint and can be used as a basement for subject-specific finite element simulation is reconstructed. It is useful for some kinematic parameters of patellofemoral joint to be computed based on this model.
     Part two:Effect of femoral component rotation on biomechanics of patellofemoral during total knee arthroplasty
     Objective To study the biomechanics of the patellofemoral following total knee replacement. More specifically, we investigated the effect of rotational alignment of femoral component of a PFC total knee replacement on the patellar tracking and patellofemoral contact pressures.
     Methods We used a validated computer simulation of the knee joint to virtually insert the femoral component with the following several types of placements: (1) neutral position, the femoral component that was aligned parallels with the transepicondylar axis, (2) 1 degree and 2 degrees of internal rotation, (3) 1 degree and 2 degrees of external rotation. The patellar 3D tracking and patellofemoral contact pressures were computed for each femoral component placement.
     Results (1) The internal and external rotation of femoral component relative to surgical epicondylar axis leads to the changes of rotation and tilt of patella. (2) The internal and external rotation of femoral component influence the X axis shift. The external rotation of femoral component increases patellar shift on the X and vice versa. (3) The internal rotation of femoral component causes the significant increase of PFCF in the stage of active flexion and vice versa.
     Conclusions The position of patellar component mainly affects the patella tracking: the external rotation of femoral component may cause the subluxation of patella; the internal rotation of femoral component may cause the increasing pressure of patellofemoral joint, therefore causing the patellofemoral joint complications.
     Part three: The influence of patellar resurfacing technique on biomechanics of patellofemoral joint following total knee arthroplasty
     Objective To study the influence of patellar resurfacing technique on patellofemoral kinematics and contact characteristics during TKA, specifically patellar thickness and asymmetry.
     Methods We used validated computer simulation of the knee joint to implant a standard PFC total knee replacement prosthesis. Then we changed such parameters as the thickness and thinness, the medial and lateral tilt of patella. In the end, we would have the result of the patellar tracking and compression considering all the possible situations.
     Results (1) In the whole process of simulation, the thicker the patella, the bigger the tilt of patella, and vice versa. (2) When the knee flexion exceeds 60°, the rotation of patella became bigger with the increasing thickness of patella. (3) The more the thickness of patella, the more patellofemoral contact pressure. (4) The changes of patella thickness had no obvious influence on the shift of patella on X, Y, Z axis (5) When the patella thickness is increasing, PT/QT will increase accordingly and so does the contrary. (6) The rotation and tilt of patella would be greatly influenced by the patellar asymmetry. (7) Lateral tilt of patella influences the shift increase of patella on X axis and vice versa; but has no overt influence on the Y and Z axis. (8) In active flexion stage, the lateral tilt of patella leads to the increase of PFCF; in natural knee flexion, lateral or medial tilt caused the increase of PFCF. (9) In the later stage of natural knee flexion, and active knee flexion, PT/QT would be significantly increased by lateral tilt of patella and vice versa.
     Conclusions The surgical technique of patellar resurfacing during TKA should attempt to reproduce the original patellar thickness.
     Part four: Patella resurfacing versus nonresurfacing in total knee arthroplasty, a prospective randomized study with four to five years of follow-up.
     Objective To investigate differences in the clinical outcome of total knee arthroplasty according to whether or not patellar resurfacing had been performed in prospective, randomized study of 60 osteoarthritic knees.
     Methods From January 2002 to December 2002, 60 patients (60 knees) undergoing primary total knee arthroplasty for the treatment of osteoarthritis were enrolled in a prospective, randomized study. All patients received the same posterior cruciated substituting total knee prosthetic components. Patients were randomized to treatment with or without resurfacing of the patella, and the results were followed for a mean of fifty-four months (forty-eight to sixty months).Evaluations consisted of the determination of a Knee Society clinical score, range of motion for knees, patient satisfaction, and radiographs.
     Results With the numbers available for study, we could detect no significant difference between the knees that had had patellar resurfacing and those that did not with regard to the over-all score (p=0.12), the subscore for pain(p=0.90), and patient satisfaction(p=0.22).The results showed the same prevalence of any anterior knee pain in two groups was 10%. This did not represent a significant difference. The two groups showed statistical difference with regard to the total function score and range of motion.
     Conclusions It has shown that total knee arthroplasty with or without patella resurfacing dramatically relieves pain and improves function. It seems likely that postoperative anterior knee pain is related either to the component design or to the details of the surgical technique, rather than to whether or not the patella is resurfaced. The decision to resurface the patella or not when performing a primary total knee arthroplasty must be individualized on the basis of the surgeon's training, experience and an intraoperative assessment of the patellofemoral articulation. Component design and surgical technique are major factors in successful TKA. According to our study, to avoid the complications related to patellar resuffacing, we might consider not to resurface the patella in osteoarthritis, particularly if a patella-friendly femoral component is used. The most important thing is precise and correct surgical technique in TKA.
引文
1. Ahmed AM, Shi S, Hyder A, et al. The effect of quadriceps tension characteristics on the patellar tracking pattern. Trans of 34th annual Meeting of Orthopedic Research Society, 1988, 280.
    2. McGinty G, Irrgang JJ, and Pezullo D. Biomechanical considerations for rehabilitation of the knee. Clin Biomech, 2000, 15: 160-166.
    3. Biden E, O'Conno J, and Goodfellow J. Tibial rotation in the cadaver knee. Transactions of the 30th Meeting of the Orthopedic Research Society, 1984, 30.
    4. Wilson DR, Feikes AB, Zavatsky AB, et al. The Components of Passive Knee Movement are Coupled to Flexion Angle. J Biomech, 2000, 33: 465-473.
    5. Van Eijden TMEJ, Eouwenhoven E, Verburg J, et al. A mathematical model of the patellofemoral joint. J Biomech, 1986, 19: 219-229.
    6. Buff HU, Jones LC, Hungerford DS. Experimental determination of forces transmetted through the patellofemoral joint. J Biomech, 1988. 21: 17-23.
    7. Ahmed AM, Duncan NA, Tanzer M. In vitro measurement of the tracking pattern of the human patella. Journal of Biomechanics Engineering, 1999, 21: 222-228.
    8. Senavongse W, Farahmand F, Jones J, et al. Quantitative measurement of patellofemoral joint stability: force-displacement behavior of the human patella in vitro. Journal of Orthopaedic Research, 2003, 21: 780-786.
    9. Pena E, Calvo B, Martinez MA, et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech, 2006, 39:1686-1701.
    10.刘斯润,冷晓明,黄力.3D-FS-SPOR序列结合三维重建在膝关节软骨病损诊断中的应用.实用放射学杂志,2002,18:974—977.
    11.杨玉海,崔谊,崔允峰,等.螺旋CT三维重建评价膝关节创伤的临床应用价值.医学影像学杂志,2004,14:45—47.
    12. Totoribe K, Chosa E, Tajima N. A biomechanical study of lumbar fusion based on a three-dimensional nonlinear finite element method. J Spinal Disord Tech, 2004, 17: 147-153.
    13.黄加张.基于MRI膝关节半月板的临床及其生物力学的三维有限元研究.博士学位论文.复旦大学,2005年.
    14. Donahue TL, Hull ML, Rashid MM, et al. A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng, 2002, 124: 273-280.
    15. Gardiner JC, Weiss JA. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. J Orthop Res, 2003, 21: 1098-1106.
    16.许玉林,孙允高,张春林.膝关节动力学模型的研究进展.国外医学生物医学工程分册,2004,27:57—60.
    17.何毓珏,冯明光,徐长明,等.膝关节矢状面机构模型.生物医学工程杂志, 2006,23:334—337.
    1. Boyd AD, Ewald FC, Thomas WH, et al. Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg, 1993, 75A: 674-681.
    2. Rand JA. Extensor mechanism complications following total knee arthroplasty. J Bone Joint Surg, 2004, 86A: 2062-2072.
    3. Brick GW, Scott RD. The patellofemoral component of total knee arthroplasty. Clin Orthop, 1988, 231: 163-178.
    4. Grace JN, Rand JA. Patellar instability after total knee arthroplasty. Clin Orthop, 1988, 237: 184-189.
    5. Kelly MA. Patellofemoral complications following total knee arthroplasty. Instr Course Lect, 2001, 50: 403-407.
    6. Berger RA, Rubash HE, Seel MJ, et al. Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop, 1993, 286: 40-47.
    7. Olcott CW, Scott RD. Femoral component rotation during total knee arthroplasty. Clin Orthop, 1999, 367:39-42.
    8. Olocott CW, Scott RD. A comparison of 4 intraoperative methods to determine femoral component rotation during total knee arthroplasty. J Arthoplasty, 2000, 15: 22-26.
    9. Poilvache PL, Insall JN, Scuderi GR, et al. Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop, 1996, 331: 35-46.
    10. Rhoads DD, Noble PC, Reuben JD, et al. The effect of femoral component position on patellar tracking after total knee arthroplasty. Clin Orthop, 1990, 260: 43-51.
    11. Rhoads DD, Noble PC, Reuben JD, et al. The effect of femoral component position on the kinematics of total knee arthroplasty. Clin Orthop, 1993, 286: 122-129.
    12. Anouchi YS, Whieside LA, Kaiser AD, et al. The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop, 1993, 287: 170-177.
    13. Nagamine R, Whiteside LA, Otani T, et al. Effect of medial displacement of the tibial tubercle on patellar position after rotational malposition of the femoral component in total knee arthroplasty. J Arthoplasty, 1996,11:104-110.
    14. Armstrong AD, Brien HJ, Dunning CE, et al. Patellar position after total knee arthroplasty influence of femoral component malposition. JArthroplasty, 2003, 18: 458-465.
    15. Miller MC, Berger RA, Petrella AJ, et al. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop , 2001, 392: 38-45.
    16. Miller MC, Zhang AX, Petrella AJ, et al. The effect of component placement on knee kinetics after arthroplasty with an unconstrained prosthesis. J Orthop Res, 2001,19: 614-620.
    17. Romero J, Stahelin T, Wyss T, et al. Significance of axial rotation alignment of components of knee prostheses. Orthopade, 2003, 32: 461-468.
    18. Akagi M, Matsusue Y, Mata T, et al. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop, 1999, 366:155-163.
    19. Sodha S, Kim J, McGuire KJ, et al. Lateral retinacular release as a function of femoral component rotation in total knee arthroplasty. J Arthroplasty, 2004, 19: 459-463.
    20. Newbern DG, Faris PM, Ritter MA, et al. A clinical comparison of patellar tracking using the transepicondylar axis and the posterior condylar axis. J Arthroplasty, 2006, 21:1141-1146.
    21. Hofmann S, Romero J, Roth-Schiffl E, et al. Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty. Orthopade, 2003, 32: 469-476.
    22. Matsuda S, Miura H, Nagamine R, et al. Effect of femoral and tibial component position on patellar tracking following total knee arthroplasty: 10-year follow-up of Miller-Galante I knees. Am J Knee Surg, 2001,14:152-156.
    23. Berger RA, Crossett LS, Jacobs JJ, et al. Malrotation causing patellofemoral complications after total knee arthroplasty .Clin Orthop, 1998, 356:144-153.
    24. Pagnano MW, Hanssen AD. Varus tibial joint line obliquity: a potential cause of femoral component malrotation. Clin Orthop, 2001, 392: 68-74.
    25. Mantas JP, Bloebaum RD, Skedros JG, et al. Implications of reference axes used for rotational alignment of the femoral component in primary and revision knee arthroplasty. J Arthroplasty, 1992, 7: 531-535.
    26. Feinstein WK, Noble PC, Kamaric E, et al. Anatomic alignment of the patellar groove. Clin Orthop, 1996, 331:64-73.
    27. Eckhoff DG, Burke BJ, Dwyer TF, et al. The Ranawat Award: sulcus morphology of the distal femur. Clin Orthop, 1996, 331:23.
    28. Poilvache PL, Insall JN, Scuderi GR, et al. Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop, 1996, 331:35-46.
    29. Stiehl JB, Abbott BD. Morphology of the transepicondylar axis and its application in primary and revision total knee arthroplasty. J Arthroplasty, 1995, 10: 785-789.
    30. Coughlin KM, Incavo SJ, Churchill DL, et al. Tibial axis and patellar position relative to the femoral epicondylar axis during squatting. J Arthroplasty, 2003,18: 1048-1055.
    31. Churchill DL, Incavo SJ, Johnson CC, et al. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop, 1998, 356: 111-118.
    1. Burnett R, Bourne R. Indications for patellar resurfacing in total knee arthroplasty. J Bone Joint Surg, 2003, 85A: 728-745.
    2. Rand JA. Current concepts review: The patellofemoral joint in total knee arthroplasty. J Bone Joint Surg, 1994, 76A: 612-620.
    3. Boyd AD, Ewald FC, Thomas WH, et al. Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg, 1993, 75A: 674-681.
    4. Kawano T, Miura H, Nagamine R, et al. Factors affecting patellar tracking after total knee arthroplasty. J Arthroplasty, 2002, 17: 942-947.
    5. Dennis DA. The role of patellar resurfacing in TKA. Orthopedics, 2006, 29: 832-834.
    6. Greenfield MA, Insall JN, Case GC, et al. Instrumentation of the patellar osteotomy in total knee arthroplasty. The relationship of patellar thickness and lateral retinacular release. Am J Knee Surg, 1996, 9:129-131; discussion 131-132.
    7. Lombardi AV, Mallory TH, Maitino PD, et al. Freehand resection of the patella in total knee arthroplasty referencing the attachments of the quadriceps tendon and patellar tendon. J Arthroplasty, 1998, 13: 788-792.
    8. Rand JA. Patellar resurfacing in total knee arthroplasty.Clin Orthop, 1990, 260: 110-117.
    9. Ranawat CS. The patellofemoral joint in total condylar knee arthroplasty: Pros and cons based on five- to ten-year follow-up observations. Clin Orthop, 1986, 205: 93-97.
    10. Bindelglass DF, Cohen JL, Dorr LD. Patellar tilt and subluxation in total knee arthroplasty. Clin Orthop, 1993, 286:103-109.
    11. Pagnano MW, Trousdale RT. Asymmetric patella resurfacing in total knee arthroplasty. Am J Knee Surg, 2000,13: 228-233.
    12. Reuben JD, McDonald CL, Woodard PL, et al. Effect of patella thickness on patella strain following total knee arthroplasty. J Arthroplasty, 1991, 6: 251-258.
    13. Star MJ, Kaufman KR, Irby SE, et al. The effects of patellar thickness on patellofemoral forces after resurfacing. Clin Orthop, 1996, 322: 279-284.
    14. Bengs BC, Scott RD. The effect of patellar thickness on intraoperative knee flexion and patellar tracking in total knee arthroplasty. J Arthroplasty, 2006, 21: 650-655.
    15. Oishi CS, Kaufman KR, Irby SE, et al. Effects of patellar thickness on compression and shear forces in total knee arthroplasty. Clin Orthop, 1996, 331: 283-290.
    16. Hsu HC, Luo ZP, Rand JA, et al. Influence of patellar thickness on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplasty, 1996,11: 69-80.
    17. Wulff W, Incavo SJ. The effect of patella preparation for total knee arthroplasty on patellar strain. A comparison of resurfacing versus inset implant. J Arthroplaty, 2000,15: 778-782.
    18. Koh SJ, Yeo SJ, Lee BP , et al. Influence of patellar thickness on results of total knee arthroplasty: does a residual bony patellar thickness of =12mm lead to poorer clinical outcome and increased complication rates? J Arthroplasty, 2002, 17: 56-61.
    19. Ritter MA, Pierce MJ, Zhou H, et al. Patellar complications (total knee arthroplasty): effect of lateral release and thickness. Clin Orthop, 1999, 367: 149-157.
    20. Holt GE, Dennis DA. The role of patellar resurfacing in total knee arthroplasty. Clin Orthop, 2003, 416: 76-83.
    21. Chan KC, Gill GS. Postoperative patellar tilt in total knee arthroplasty. J Arthroplasty, 1999,14: 300-304.
    22. Dennis DA. Extensor mechanism problems in total knee arthroplasty. Instr Course Lect, 1997, 46:171-180.
    23. Dorr LD, Boiardo RA. Technical considerations in total knee arthroplasty. Clin Orthop, 1986, 205: 5-11
    24. Laughlin RT, Werries BA, Verhulst SJ, et al. Patellar tilt in total knee arthroplasty. Am J Orthop, 1996, 25: 300-304.
    25. DeOrio JK , Peden JP. Accuracy of haptic assessment of patellar symmetry in total knee arthroplasty. J Arthroplasty, 2004,19: 629-634.
    1. Burnett R, Bourne R. Indications for patellar resurfacing in total knee arthroplasty. J Bone Joint Surg, 2003, 85A: 728-745.
    2. Insall JN, Dorr LD, Scott RD, et al. Rationale of the knee society clinical rating system. Clin Orthop, 1989, 248: 13-14.
    3. Keblish PA, Varma AK, Greenwald S. Patellar resurfacing or retension in total knee arthroplasty. A prospective study of patients with bilateral replacements. J Bone Joint Surg, 1994, 76B: 930-937.
    4. Waters TS, Bentley G. Patellar resurfacing in total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg, 2003, 85A: 212-217.
    5. Ranawat CS. The patellofemoral joint in total condylar knee arthroplasty: Pros and cons based on five- to ten-year follow-up observations. Clin Orthop, 1986, 205: 93-97.
    6. Wood DJ, Smith AJ, White B, et al. Patellar resurfacing in total knee arthroplasty: A prospective randomized trial. J Bone Joint Surg, 2002, 84A: 187-193.
    7. Barrack RL, Bertot AJ, Wolfe MW, et al. Patellar resurfacing in total knee arthroplasty. J Bone Joint Surg, 2001, 83A: 1376-1381
    8. Bourne RB, Rorabeck CK, Kramer J, et al. Resurfacing versus not resurfacing the patella during total knee replacement. Clin Orthop, 1995, 321:156-161.
    9. Kim BS, Reitman RD, Schai PA, et al. Selective patellar nonresurfacing in total knee arthroplasty. 10 year results. Clin Orthop, 1999, 367: 81-88.
    10. Feller JA, Bartlett RJ, Lang DM. Patellar resurfacing versus retention in total knee arthroplasty. J Bone Joint Surg, 1996, 78B: 226-228.
    11. Levitsky KA, Harris WJ, McManus J, et al. Total knee arthroplasty without patellar resurfacing: clinical outcomes and long-term follow-up evaluation. Clin Orthop, 1993, 286: 116-121.
    12. Picetti III GD, McGann WA, Welch RB. The patellofemoral joint after total knee arthroplasty without patellar resurfacing. J Bone Joint Surg, 1990, 72A: 1379-1382.
    13. Boyd AD, Ewald FC, Thomas WH, et al. Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg, 1993, 75A: 674-681.
    14. Kelly M. Patellofemoral complications following total knee arthroplasty. Instr Course Lect, 2001, 50: 403-407.
    15. Rand JA. Current concepts review: The patellofemoral joint in total knee arthroplasty. J Bone Joint Surg, 1994, 76A: 612-620.
    16. Tanzer M , McLean CA, Laxer E , et al. Effect of femoral component designs on the contact and tracking characteristics of the unresurfaced patella in total knee arthroplasty. Can J Surg, 2001, 44:127-133.
    17. Benjamin JB, Szivek JA, Hammond AS, et al. Contact areas and pressures between native patellas and prosthetic femoral components. J Athroplasty, 1998, 13: 693-698.
    18. Andriacchi TP, Yoder D, Conley A, et al. Patellofemoral design on patellofemoral shear and compressive forces in total knee arthroplasty. J Arthroplasty, 1997, 12: 243-249.
    19. Whiteside LA, Nakamura T. Effect of femoral component design on unresurfaced patellas in knee arthroplasty. Clin Orthop, 2003,410:189-198.
    20. Chew JT, Stewart NJ, Hanssen AD, et al. Differences in patellar tracking and knee kinematics among three different total knee designs. Clin Orthop, 1997, 345: 87-98.
    21. Matsuda S, Ishinishi T, Whiteside LA. Contact stresses with an unresurfaced patella in total knee arthroplasty: the effect of femoral component desingn. Orthopedics, 2000, 23: 213-218.
    22. Schroeder-Boersch H, Scheller G, Fischer J, et al. Advantages of patellar resurfacing in total knee arthroplasty. Two-year results of a prospective randomized study. Arch Orthop Trauma Surg, 1998,117: 73-78.
    23. Yercan HS, Selmi TAS, Neyret P. The treatment of patellofemoral osteoarthritis with partial lateral facetectomy. Clin Orthop, 2005, 436:14-19.
    24. Phillips AM, Goddard NJ, Tomlinson JE. Current techniques in total knee replacement: results of a national surgery. Ann R Coll Surg Engl, 1996, 78: 515-520.
    25. Newman JH, Ackroyd CE, Shah NA, et al. Should the patella be resurfaced during total knee replacement? Knee, 2000, 7: 17-23.
    26. Burnett RS, Haydon CM, Rorabeck CH, et al. Patella resurfacing versus nonresurfacing in total knee arthroplsty.results of a randomized controlled clinical trial at a minimum of 10 years' followup. Clin Orthop, 2004,428:12-25.
    27. Kawamura H, Bourne RB. Factors affecting range of flexion after total knee arthroplasty. J Orthop Sci, 2001, 6: 248-252.
    28. Gatha NM, Clarke HD, Fuchs R, et al. Factors affecting postoperative range of motion after total knee arthroplasty. J Knee Surg, 2004,17:196-202.
    29. Bindelglass DF, Cohen JL, Dorr LD. Patellar tilt and subluxation in total knee arthroplasty. Clin Orthop, 1993, 286: 103-109.
    30. Pagnano MW, Trousdale RT. Asymmetric patella resurfacing in total knee arthroplasty. Am J Knee Surg, 2000,13: 228-33.
    31. Eckhoff DG, Metzger RG, Vandewalle MV. Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop, 1995,321: 28-31.
    32. Olcott CW, Scott RD. Femoral component rotation during total knee arthroplasty. Clin Orthop, 1999, 367: 39-42.
    33. Berger RA, Crossett LS, Jacobs JJ, et al. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop, 1993, 287:170-177.
    34. Petersilge WJ, Oishi CS, Kaufman KR, et al. The effect of trochlear design on patellofemoral shear and compressive forces in total knee arthroplasty.Clin Orthop, 1994, 309:124-130.
    35. Hsu HC, Luo ZP, Rand JA, et al. Influence of patellar thickness on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplasty, 1996,11: 69-80.
    36. McLean CA, Tanzer M, Laxer E, et al. The effect of femoral component designs on the contact and tracking characteristics of the unresurfaced patella in TKA. Orthop Trans, 1994,18: 616-617.
    37. Theiss SM, Kitziger KJ, Lotke PS, et al. Component design affecting patellofemoral complications after total knee arthroplasty. Clin Orthop, 1996, 326: 183-187.
    38. Berry DJ, Rand JA. Isolated patellar component revision of total knee arthroplasty. Clin Orthop, 1993, 286:110-115.
    39. Bourne RB, Burnett SJ. The consequences of not resurfacing the patella. Clin Orthop, 2004, 428: 166-169.
    40. Hozack WJ, Rothman RH, Booth RE, et al. The patellar clunk syndrome. A complication of posterior stabilized total knee arthroplasty. Clin Orthop, 1989, 241: 203-208.
    41. Shoji H, Shimozaki E. Patellar clunk syndrome in total knee arthroplasty without patellar resurfacing. J Arthroplasty, 1996,11: 198-201.
    42. Anderson MJ, Becker DL, Kieckbusch T. Patellofemoral complications after posterior-stabilized total knee arthroplasty: a comparison of 2 different implant designs. J Arthroplasty, 2002,17: 422-426.
    43. Beight JL, Yao B, Hozack WJ. The patellar "clunk" syndrome after posterior stabilized total knee arthroplasty. Clin Orthop, 1994, 299:139-142.
    44. Lucas TS, DeLuca PF, Nazarian DG, et al. Arthroscopic treatment of patellar clunk. Clin Orthop, 1999, 367: 226-229.
    1. Dennis DA. Evaluation of painful total knee arthroplasty. JArthroplasty, 2004, 19 (4 Suppl 1) : 35-40.
    2. Barrack RL. Orthopaedic crossfire--All patellae should be resurfaced during primary total knee arthroplasty: in opposition. J Arthroplasty. 2003, 18 (3 Suppl 1): 35-38.
    3. Hanssen AD. Orthopaedic crossfire--All patellae should be resurfaced during primary total knee arthroplasty: in affirmative. J Arthroplasty, 2003, 18(3 Suppl 1): 31-34.
    4. Burnett RS, Bourne RB. Indications for patellar resurfacing in total knee arthroplasty. J Bone Joint Surg, 2003, 85A: 728-745.
    5. Shih HN, Shih LY, Wong YC et al. Long-term changes of the nonresurfaced patella after total knee arthroplasty. J Bone Joint Surg, 2004, 86A: 935-939.
    6. Wood DJ, Smith AJ, Collopy D et al. Patellar resurfacing in total knee arthroplasty: A prospective, randomized trial. J Bone Joint Surg, 2002, 84A: 187-193.
    7. Waters TS, Bentley G. Patellar resurfacing in total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg, 2003, 85A: 212-217.
    8. Forster MC. Patellar resurfacing in total knee arthroplasty for osteoarthritis: a systematic review. Knee, 2004,11: 427-430.
    9. Robertson O, Dunbar M, Pehrsson T et al. Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop Scand, 2000, 71: 262-267.
    10. Tabutin J, Banon F, Catonne Y, et al. Should we resurface the patella in total knee replacement? Experience with the nexgen prosthesis. Knee Surg Sports Traumatol Arthrosc, 2005,13: 534-538.
    11. Barrack RL, Bertot AJ, Wolfe MW, et al. Patellar resurfacing in total knee arthroplasty. J Bone Joint Surg, 2001, 83A: 1376-1381.
    12. Burnett RS, Haydon CM, Rorabeck CH, et al. Patella resurfacing versus nonresurfacing in total knee arthroplasty: Results of a randomized controlled clinical trial at a minimum of 10 years' follow up. Clin Orthop, 2004, 428:12-25.
    13. Barrack RL, Wolfe MW. Patellar resurfacing in total knee arthroplasty. J Am Acad Orthop Surg, 2000,18: 75-82.
    14. Mayman D, Bourne RB, Rorabeck CH, et al. Resurfacing versus not resurfacing the patella in total knee arthroplasty. 8- to 10- year results. J Arthroplasty, 2003, 18: 541-545.
    15. Nizard RS, Biau D, Porcher R, et al. A meta-analysis of patellar replacement in total knee arthroplasty. Clin Orthop, 2005, 432:196-203.
    16. Parvizi J, Rapuri VR, Saleh KJ et al. Failure to resurface the patella during total knee arthroplasty may result in more knee pain and secondary surgery. Clin Orthop, 2005, 438:191-196.
    17. Muoneke HE, Khan AM, Giannikas KA, et al. Secondary resurfacing of the patella for persistent anterior knee pain after primary knee arthroplasty. J Bone Joint Surg, 2003, 85B: 675-678.
    18. Han I, Chang CB, Lee MC et al. Correlation of the condition of the patellar articular cartilage and patellofemoral symptoms and function in osteoarthritic patients undergoing total knee arthroplasty. J Bone Joint Surg. 2004, 87B: 1081-1084.
    19. Misra AN, Smith RB, Fiddian NJ. Five year results of selective patellar resurfacing in cruciate sparing total knee replacements. Knee, 2003,10:199-203.
    20. Soudry M, Mestriner LA, Binazzi R, et al. Total knee arthroplasty without patellar resurfacing. Clin Orthop, 1986, 205:166-170.
    21. Levitsky KA, Harris WJ, McManus J, et al. Total knee arthroplasty without patellar resurfacing. Clinical outcomes and long-term follow-up evaluation. Clin Orthop, 1993, 286:116-121.
    22. Bourne RB, Burnett RS. The consequences of not resurfacing the patella. Clin Orthop, 2004, 428:166-169.
    23. Picetti GD, McGann WA, Welch RB. The patellofemoral joint after total knee arthroplasty without patellar resurfacing. J Bone Joint Surg, 1990, 72A: 1379-1382.
    24. Lee GC, Cushner FD, Scuderi GR. Optimizing patellofemoral tracking during total knee arthroplasty. J Knee Surg, 2004,17:144-9; discussion 149-50.
    25. Tanzer M, McLean CA, Laxer E, et al. Effect of femoral component designs on the contact and tracking characteristics of the unresurfaced patella in total knee arthroplasty. Can J Surg, 2001, 44:127-133.
    26. Andriacchi TP, Yoder D, Conley A, et al. Patellofemoral design influences function following total knee arthroplasty. J Athroplasty, 1997,12: 243-249.
    27. Petersilge WJ, Oishi CS, Kaufman KR, et al. The effect of trochlear design on patellofemoral shear and compressive forces in total knee arthroplasty. Clin Orthop, 1994, 309:124-130.
    28. Conditt MA, Noble PC, Allen B, et al. Surface damage of patellar components used in total knee arthroplasty. J Bone Joint Surg, 2005, 87A:1265-1271.
    29. Scott WN, Clarke HD. Routine patellar resurfacing: a viable option. Orthopedics, 2003, 26(7):684-686.
    30. Karnezis IA, Vossinakis IC, Rex C, et al. Secondary patellar resurfacing in total knee arthroplasty: results of multivariate analysis in two case-matched groups. JArthroplasty, 2003,18: 993-998.
    1. Akagi M, Matsusue Y, Mata T, et al. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop, 1999, 366: 155-163.
    2. Sneppen O, Gudmundsson GH, Bunger C. Patellofemoral function in total condylar knee arthroplasty. Int Orthop, 1985, 9: 65-68.
    3. Gomes LS, Bechtold JE, Gustilo RB.Patellar prosthesis positioning in total knee arthroplasty. A roentgenographic study. Clin Orthop, 1988, 236: 72-81.
    4. Matsuda S, Miura H, Nagamine R, et al. Effect of femoral and tibial component position on patellar tracking following total knee arthroplasty: 10-year follow-up of Miller-Galante Ⅰ knees. Am J Knee Surg, 2001, 14: 152-156.
    5. Figgie HE, Goldberg VM, Heiple KG, et al.The influence of tibial-patellofemoral location on function of the knee in patients with the posterior stabilized condylar knee prosthesis. J Bone Joint Surg, 1986, 68A: 1035-1040.
    6. Eckhoff DG, Metzger RG, Vandewalle MV. Malrotation associated with implant alignment technique in total knee arthroplasty. Clin Orthop, 1995, 321: 28-31.
    7. Barrack RL, Schrader T, Bertot AJ, et al. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop, 2001, 392: 46-55.
    8. Collier JP, Mayor MB, McNamara JL, et al. Analysis of the failure of 122 polyethylene inserts from uncemented tibial knee components. Clin Orthop, 1991, 273: 232-242.
    9. Benjamin JB, Szivek JA, Hammond AS, et al. Contact areas and pressures between native patellas and prosthetic femoral components. J Arthroplasty, 1998, 13: 673-681.
    10. Matsuda S, Ishinishi T, White SE, et al. Patellofemoral joint after total knee arthroplasty. Effect on contact area and contact stress. J Arthroplasty, 1997, 12: 790-797.
    11. Chew JTH, Stewart NJ, Hanssen AD, et al. Differences in patellar tracking and knee kinematics among three different total knee designs. Clin Orthop, 1997, 345: 87-98.
    12. Brick GW, Scott RD. The patellofemoral component of total knee arthroplasty. Clin Orthop, 1988 , 231:163-178.
    13. Matsuda S, Ishinishi T, Whiteside LA. Contact stresses with an unresurfaced patella in total knee arthroplasty: the effect of femoral component design. Orthopedics, 2000, 23: 213-218.
    14. Boyd AD, Ewald FC, Thomas WH, et al. Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg , 1993, 75A: 674-681.
    15. Crites BM, Berend ME. Metal-backed patellar components: a brief report on 10-year survival. Clin Orthop, 2001, 388:103-104.
    16. Keblish P. Results and complications of the LCS (Low Contact Stress) knee system.Acta Orthop Belg, 1991, 57 (Suppl 2) : 124-127.
    17. Yoshii I, Whiteside LA, Anouchi YS. The effect of patellar button placement and femoral component design on patellar tracking in total knee arthroplasty. Clin Orthop, 1992, 275: 211-219.
    18. Bindelglass DF.Rotational alignment of the tibial component in total knee arthroplasty. Orthopedics, 2001, 24:1049-1053.
    19. Lee TQ, Budoff JE, Glaser FE. Patellar component positioning in total knee arthroplasty. Clin Orthop, 1999, 366: 274-281.
    20. Jordan LR, Dowd JE, Olivo JL, et al. The clinical history of mobile-bearing patella components in total knee arthroplasty. Orthopedics, 2002, 25 (Suppl 2): S247-250.
    21. Lee TQ, Gerken AP, Glaser FE, et al. Patellofemoral joint kinematics and contact pressures in total knee arthroplasty. Clin Orthop. 1997, 340: 257-266.
    22. Nelissen RG, Weidenheim L, Mikhail WE. The influence of the position of the patellar component on tracking in total knee arthroplasty. Int Orthop, 1995, 19: 224-228.
    23. Singerman R, Davy DT, Goldberg VM. Effects of patella alta and patella infera on patellofemoral contact forces. J Biomech, 1994, 27:1059-1065.
    24. Pagnano MW, Trousdale RT. Asymmetric patella resurfacing in total knee arthroplasty. Am J Knee Surg, 2000,13: 228-233.
    25. Oishi CS, Kaufman KR, Irby SE, et al. Effects of patellar thickness on compression and shear forces in total knee arthroplasty. Clin Orthop, 1996, 331: 283-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700