成人下颌偏斜患者颌骨三维形态分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下颌偏斜是一种临床常见的颅面部畸形,畸形严重时会破坏患者颜面美观、咀嚼功能甚至影响患者的颈椎姿势。下颌偏斜畸形的表现程度随生长发育逐渐加重,如果不能早期发现和治疗,将可能由假性下颌偏斜畸形发展为真性畸形,由功能性下颌偏斜畸形向混合性或骨性畸形发展。
     以往对下颌偏斜的研究多采用二维平片作为研究手段,但是下颌骨具有复杂的三维结构特征,常规头颅定位后前位片常因颅面结构重叠、X光片图像放大及头部旋转等引起图像失真变形,无法为下颌偏斜的诊断、治疗提供足够而准确的信息。目前,基于CT影像的三维重建技术广泛应用于医学领域,为颅面部畸形的正确诊断分析提供了可能,成为研究颅颌面生长发育规律的重要手段。针对下颌偏斜患者的CT三维重建及三维立体影像分析尚未见详细报道。
     本实验以成人下颌偏斜畸形患者和成人正常牙合者为研究对象。采用螺旋CT扫描患者颅面部硬组织结构后,进行三维影像重建,通过对重建后的三维立体影像进行测量分析,试图从三维立体的角度,探讨其颅颌面硬组织的结构、形态特征及与正常成人的差异,以便为下颌偏斜畸形发生发展的进一步研究提供依据。
     研究分三部分:
     1.正常牙合成人下颌骨三维重建与三维形态分析
     以20例个别正常牙合成人为研究对象。拍摄头颅螺旋CT,进行颅面部三维影像重建,确定一套骨组织标志点的三维定位标准,通过对重建后的三维立体影像进行测量,分析受试者下颌骨形态左右侧的对称性以及位移变化。结果显示:除了部分标志点在面部X轴方向上或Z轴方向上相对较难定位,大多数标志点的三维坐标值都表现出了较高的一致性,该实验模型的建立以及确立的标志点可以为个别正常牙合成人及下颌偏斜患者的颅颌面硬组织形态研究提供参考;正常牙合成人下颌骨在三个方向上的线距测量和角度测量均表现出良好的对称性。
     2.成人下颌偏斜畸形患者的下颌骨三维形态分析
     以20例成人下颌偏斜畸形患者为研究对象。为患者拍摄螺旋CT后,进行三维影像重建,通过对重建后的三维立体影像进行测量,分析患者偏斜侧和对侧的差异。结果显示:成人下颌偏斜畸形的发生部位主要在下颌升支,尤其是髁突,表现为对侧升支的长、宽、高和髁突高度、宽度均大于偏斜侧,而下颌骨体部的双侧差异不明显。髁突顶点成角、下颌角点成角、髁突喙突成角、髁突内外径长轴成角、升支侧方倾斜角、升支矢状向倾斜角、相对下颌平面成角及升支旋转角双侧比较均有差异,除髁突顶点成角为对侧小于偏斜侧,其余项目均为对侧大于偏斜侧。从冠状面观察,偏斜对侧升支更为向侧方倾斜,下颌骨发生与颏部偏斜方向相同的旋转和形变;从矢状面观察,偏斜对侧的乙状切迹点、喙突点和下颌角点较偏斜侧更为偏下,偏斜对侧的升支高度和髁突高度均大于偏斜侧,同时升支更为后倾;从横断面观察,偏斜对侧的髁突顶点、喙突顶点和下颌角点较偏斜侧更为偏前方,升支和下颌体部在水平方向出现与颏部偏斜方向相同的旋转,这些现象应在进行正畸-正颌联合治疗时予以注意。
     3.成人下颌偏斜患者下颌骨形态与正常牙合成人的比较研究
     以20例成人下颌偏斜患者为实验组,20例个别正常牙合成人为对照组。拍摄螺旋CT后行三维影像重建,通过对重建后的三维立体影像进行测量,分析成人下颌偏斜患者与正常牙合成人的差异。结果显示:与正常牙合成人相比,成人下颌偏斜畸形患者的升支和髁突非对称性变化明显,对侧的升支和髁突发育过度;下颌骨体部的长度和高度双侧差异不明显,与正常牙合成人相比无明显差异。成人下颌偏斜畸形患者的下颌骨除了由于一侧升支和髁突的过度生长造成的形变之外,由于肌肉的牵拉等因素,还发生了下颌骨相对颅底的旋转和位移。在冠状面上,偏斜对侧的各主要骨性标志点均向下移位,造成下颌骨的旋转,其方向与颏部偏斜方向相同;在矢状面上,成人下颌偏斜患者下颌骨的不对称主要体现在两侧升支的前后向倾斜角度上,对侧的升支更为向后倾斜,正常牙合成人在矢状面上双侧下颌骨重叠而对称;在横断面上,可以观察到成人下颌偏斜畸形患者升支和下颌骨体部发生了与颏部偏斜方向相同的旋转,偏斜对侧髁突长轴旋转方向则与颏部偏斜方向相反,正常牙合成人下颌骨体部和髁突左右对称性良好。这提示我们对于成人下颌偏斜畸形患者的矫治,在纠正双侧下颌骨形态结构不对称的同时,还应兼顾下颌位置的改变。
Mandibular deviation is defined when the mandible displays asymmetry to the middle sagittal plane. The deformity affects not only the harmony and aesthetic of the face,but also change the occolusion and spine posture. The severity of the deformity increases with the growth of individual. Without discovery and treatment in an early stage, the functional mandibular shift might develop into genuine skeletal deformity.
     The former study use 2-dimensional radiographs as method. However, mandible has very complex 3-dimensional structure features. Conventional Lateral cephalometric radiographs sometimes exhibiting distortion and transfiguration due to overlapping, amplification and rotation of the skeletal structure, which failed to provide sufficient and accurate information for diagnosis and treatment of mandibular deviation. Nowadays, 3-dimensional reconstruction based on CT radiographs is used in medical field widely and makes accurate diagnosis possible and becomes an important method for the study concentrating on growth and development. So far, we haven’t found detailed research for the mandibular deviation by 3-dimensional analysis. In this study, our objects take spiral CT scan voluntarily. We reconstruct three-dimensional graphs on the computer and try to reveal the skeletal structure features and the difference from normal people, in doing which, we can then provide reference for the diagnosis and treatment plan making of adult mandibular deviation.
     In this study, patients with mandibular deviation were as sample and compare with those who exhibiting normal occlusion. 3-dimensional graphs were used to investigate the skeletal structure, the mandible posture features and the difference from those normal occlusion people, through which,we can then provide reference for the diagnosis and treatment plan making of adult mandibular deviation.
     The study consists of three parts:
     1. Mandible three-dimensional reconstruction and morphological analysis for individual normal occlusion patients
     Patients with individual normal occlusion were as sample in this study. After the reconstruction of the mandible, we then form a set of landmarks for the skeleton,the mandibular developmental asymmetry was assessed by measuring the difference between both sides in coronary, sagittal and axial dimensions respectively. The result showed that: except some landmarks which are slightly difficult to locate on the X or Z axis, most landmarks exhibit highly consistency. This set of landmarks and their definition is feasible for this study. Individual normal occlusion patients exhibit excellent symmetry in coronary, sagittal and axial dimensions by both the linear and angular measurements.
     2. Mandible three-dimensional morphological analysis for adult patients with mandibular deviation
     Patients with mandibular deviation were used as samples in this study. After the reconstruction of the mandible, the mandibular developmental asymmetry was assessed by measuring the difference between both shifted side and nonshifted side in coronary, sagittal and axial dimensions respectively. The result showed that: Ramus, especially condyle, are the most likely parts responsible for the mandibular deviation , which means that the non-shafted side of the mandible has longer ramus and longer condyle and the height of ramus and condyle is bigger than the shafted side. There were significant differences between the shifted side and the nonshifted side in SSG, SGM, SGS, CLA, R-FH , R-MS and R-MP, all bigger in non-shafted side ,except SSG. In coronal view, the lateral angle of the ramus in non-shafted side is bigger, the mandible rotates in the same direction of the mental region; in middle sagittal view, the landmarks of InfSig, Scp and Go are in a lower position compare to the shafted side and the height of ramus and condyle are bigger and the ramus inclines backward in the non-shafted side; in transverse view, the Go point is in a more anterior position in the non-shafted side, the mandibular body rotates in the same direction of the mental region. These should be paid great attention to during the orthodontic and orthognathic treatment.
     3. Mandible 3-dimensional morphological analysis for mandibular deviation comparing with individual normal occlusion patients
     Patients with mandibular deviation were as sample and compare with those who exhibiting normal occlusion. After the reconstruction of the mandible, the mandible structure was assessed by measuring the difference between two sides in coronary, sagittal and axial dimensions respectively. The result showed that: Comparing with the individual normal occlusion patients, the ramus and condyle of the non-shafted side are the predilection sites for the mandible deviation, which usually overgrow in this side and exhibits normal or slightly undergrow in the shafted side; there are no difference in the length and height of mandibular body between both sides, the same as the individual normal occlusion patients. Except the transformation due to the overgrow of the ramus and condyle in the non-shafted side, the mandible also rotates against the skeleton because of the drag of the mastication muscles. In the coronal plane, the height of the condyle and ramus are bigger in the non-shafted side, which contributes to the mandibular rotation and the direction is the same with the mental region rotation, the individual normal occlusion patients show good symmetry and no rotation; in the middle sagittal plane, the ramus inclines backward in the non-shafted side, the both sides of the individual normal occlusion patients overlap well; in horizontal plane, we can observe the mandibular rotation and the direction is the same with the mental region rotation, while the individual normal occlusion patients show good symmetry. We shall take care of the structural deformation as well as the linear coordination when we perform surgery.
引文
[1] Pirttiniemi PM. Association of mandibular and facial asymmetries-a review.Am J Orthod tofacial Orthop,1994,106:191-120
    [2] Okuda T. A study on the relationship between the lateral deviation of mandible and the body posture[J].Occlusion Healty,1997,2:38-42
    [3]奥田真夫.下颚偏位と姿势の关系にっぃて[J].日本齿科东洋医学会志,1994,13:112
    [4] Bergersen EO. Enlargement and distortion in cephalometric radiography: compensation tables for linear measurement[sJ]. Angle Orthod 1980,50:230-44.
    [5] Behrents RG.. An altas of growth in the aging craniofacial skeleton. Monograph 18.Craniofacial Growth Series. Ann Arbor: Center for Human Growth and Development, The University of Michigan, 1985
    [6]金宜林,杨久.北京市正常牙合儿童青少年颌面宽度发育的X线头影测量[J].口腔正畸学杂志,1994,1:116 119
    [7] Erickson GE, Waite DE. Mandibular asymmetry. J Am Dent Assoc, 1974, 89:1369-1373
    [8] Farkas LG, Cheung C. Facial asymmetry in healthy north American Caucasians: An anthropo metrical study.Angle Orthod, 1981, 51:70-77
    [9] Peck S, Peck L, Kataja M. Skeletal asymmetry in esthetically pleasing faces. Angle Orthod, 1991, 61:43-47
    [10] Kobayashi M. Long-term observation of mandibular asymmetry in alongitudinally followed sample of growing children. Am J Orthod Dentofac Orthop,1992,101:355-366
    [11] Shah SM,Joshi M R. An assessment of asymmetry in the normal craniofacial complex.Angle Orthod,1978,48:141
    [12] Mulick JF. An investigation of craniofacial asymmetry using the serial twin-study method. AM J Orthod,1965,51:112
    [13] Trenouth M. Comment on mandibular and facial asymmetries. Am J Orthod Dentofac orthop,1996,109:18A-19A
    [14] Pirttiniemi PM, Association of mandibular and facial asymmetries-a review. Am J Orthod tofacial Orthop,1994,106:191-120
    [15] Shah SM,Joshi M R. An assessment of asymmetry in the normal craniofacial complex.Angle Orthod,1978,48:141
    [16] Ras F, Habets LL, Van Ginkel FC. Longitudinal study on three-dimension changes of facial asymmetry in children between 4 to 12 years of age with unilateral cleft lip and palate. Cleft Palate- Craniofac J,1995,32:463
    [17] Mongini F,schmid W. Treatment of mandibular asymmetries during groeth. A longitudinal study.eur J Orthod,1987,9:51
    [18] Vig PS, Hewitt AB. Asymmetry of the human facial skeleton.Angle Orthod,1975,49:125
    [19] Erickson GE, Waite DE. Mandibular symmetry. JADA, 1974, 89:1369
    [20] Byrn BL, Sadowsky C. An evaluation of mandibular asymmetry in adults with unilateral posterior crossbite.Am J orthod dentofac orthop,1995,1,7:394-400
    [21] Melnik AK.A cephalometric study of mandibular asymmetry in alongitudinally followed sample of growing children.Am J Orthod Dentofac Orthop, 1992.101:355-366
    [22] Bishara SE, Burkey PS, Kharouf JG. Dental and facial asymmetries. Angle Orthod, 1994,64:89-97
    [23] Peck S,Peck L. Skeletal asymmetry in esthetically pleasing faces. Angle Orthod, 1991,61:43-48
    [24] Obwegeser HL, Makek MS. Hemimandibular hyperplasia Hemi- mandiular elongation.J. max-fac Surg, 1986,14:183-208
    [25]贾绮林,黄金芳.颜面不对称畸形的颌面骨骼结构及其生长发育的研究.中华口腔医学杂志,1994,29(1):34-37
    [26]王红梅,纪昌蓉.安氏Ⅲ类错合伴有下颌偏斜者颌面部不对称性研究.北京口腔医学2003,11(1):4-7
    [27]纪昌蓉,颜面不对称畸形牙弓特征的研究.现代口腔医学杂志.,2000,14(4):246-248
    [28]周彦恒,骨性下颌前突伴偏斜畸形的牙弓和牙齿代偿分析。中华口腔医学杂志,2002,5(37):180-182
    [29]黄金芳,付民魁.磋合畸形与颜面不对称畸形.中华口腔科杂志1979,14:6569.
    [30] Byrn BL,Sadowsky C.An evaluation of mandibular asymmetry in adults with unilateral posterior crossbite.Am J orthod dentofac orthop,1995,1,7:394-400
    [31]上田恭史,小西正一,仲谷江美子等.颚口腔机能异常者にぉける颈椎の配列形态にっぃて.日本全身咬合学会杂志,1994,1:8993.
    [32] Inui.Arthur Lewin. Electrognathographics: Atlas of diagnostic procedures and inter-pretation. Quintessence Publishing CO, Inc, Chicago, Linois, 1985:65-67
    [33] Arthur Lewin. Electrognathographics: Atlas of diagnostic procedures and inter-pretation [M].Quintessence Publishing CO, Inc, Chicago, Illinois,1985,65-67
    [34] Buschang PH,Hayasaki H,Thtockmorton GS. Quantification of humanchewing-cycle kine matics[J].Arch of oral Biology, 2000, 45:461-474
    [35] Miyawaki S,Ohkochi N,kawakami T. Effect of food size on the movement of the mandibular first molars and condylar during deliberate unilateral mastication in humans[J].J Dent Res,2000, 79:1525-1531
    [36] Jankelson B,Swain CW,Crane PF. Kinesiometric instrument:a new technology[J].JADA,1975,90:834-840
    [37]董妍,郭天文,毛勇.下颌偏斜患者颜面与颈背部肌电研究. [J].现代口腔医学杂志,2001,15(3):202~204.
    [38] Lewis. RP, Buschang. PH, Throckmorton, GS. Sex difference in mandibular movements during opening and closing. Am J Orthod Dentofac Orthop, 2001,120:294-303
    [39] Charles McNeill. Science and practice of occlusion. Illoise, Quintessence:1977:355-357
    [40]徐樱华(主编).实用牙合学第一版.四川:四川大学出版社,1990:82
    [41] Rudolf Slavicek. Clinical and instrumental functional analysis for diagnosis and treatment planning: Part 5-Axiography, J Clinical Orthod, 1988, 10:656-667.
    [42] Y.Oguri, K. Yamada, T.Fukui, et al. Mandibular movement and frontal craniofacial morphology in orthognathic surgery patients with mandibular deviation and protrusion. J Oral Rehabil, 2003, 30:392-400
    [43]王美青,胡敏.单侧部分后牙反合者的咀嚼运动轨迹研究[J].实用口腔医学杂志,2000,16(3):184-187
    [44] Plant DA, Ellusdon PS, Facial asymmetries and mandibular displacements. Er J Orthod, 1974, 1:227
    [45] Hu J, Wang D, Zou S. Effects of mandibular setback on the temporomandibular joint:A comparison of oblique and sagittal split ramus osteotomy [J]. J Oral Maxillofac Surg, 2000, 58(4):375
    [46]李祖兵,孙国文,东耀俊,等.下颌不对称畸形的正颌外科矫治[J].华西口腔医学杂志, 2004, 22(6):484
    [47] Kalka C, Masuda H , Takahashi T , et al. Transplantation of ex vivoexpanded endothelial progenitor cells for therapeutic neovascularlization[J]. Proc Natl Acad Sci USA, 2000 , 97(7):3 422
    [48] MeCarthy JG, Schreiber J, Karp N, et al. Lengthening the human mandible by gradual distraction [J] . Plast Reconstr Surg, 1992, 89(1):1
    [49] Wangerin K , Gropp H. Mandibular distraction osteogenesis using intraorally applied devices [M]. / /Harle F , ChampyM, Terry BC. Atlas of craniomaxillofacial osteosynthesis . New York :Thieme, 1999:148- 152
    [50]王兴,林野,周彦恒,等.口内颌骨牵引成骨技术[J].中华口腔医学杂志, 2000, 35(2):170
    [51]王兴,林野,尹彪,等.颌骨牵引成骨在矫正颜面发育不全中的应用[J].中华医学杂志, 2001, 81(3):259
    [52] Rachmiel A, Manor R, Peled M, et al. Intraoral distraction osteogenesis of the mandible in hemifacial microsomia [J]. J Oral Maxillofac Surg, 2001, 59(7):728
    [53] Spencer R, Hathaway R, Speculand, B. et al. 3D computer data capture and imaging applied to the face and jaws. British Journal of oral and maxillofacial surgery 1996; 34:118.
    [54] Cutting CB, Grayson BH. Bookstein, F.L et al. Three dimensional computer assisted design of craniofacial surgical procedure:Optimization and interaction with cephalometric and CT based models. Plast Reconstr Surg 1986; 87:877.
    [55] Barry Grayson, Court Cutting, Fred. L. et al. The three dimensional cephalogram: Theory, technique and clinical application. Am J Orthod Dentofac Orthop 1988;94(4):329.
    [56] Sheldon Baumrind, Moffit. F, Curry. S. et al. Three dimensional x-ray stereometry from paired coplanar images: Aprogress report. Am J Orthod 1983; 84(4):293.
    [57] Sheldon Bauumrind, Moffit, F, Curry, S. The geometry of three dimensional measurement from paired coplanar x-ray images. Am J Orthod 1983; 84(4):313.
    [58] Meadous D. Generation of surface contours by Moire patterns. App-Opt 1970, 9:942.
    [59] Hu Lin, Wang Dazhang, Zhan Shuyi. A study and application of biostereometric analysis technique in dentomaxillofacial deformities - three dimensional analysis of Moire topogaphy with computer dider system. J-Huaxi stomotology 1988, 6(1):13.
    [60] Herman GT, Liu HK, Arty, 2. Three dimensional display of human organs from computed tomograms. Computer Graph Image Processing 1979;9:1.
    [61] Vannier WM, Marsh, J.L. Warren, J.O. et al. Three dimensional CT reconstructive images for craniofacial surgical planning and evaluation. Radiology 1984; 150:179.
    [62] Marsh JL, Vannier, MW. Stevens, WG. et al. Compterized imaging for soft tissue and osseous reconstruction in the head and neck. Clin Plast Surg 1985; 12:279.
    [63] Cutting C, Grayson, B. Bookstein, F. et al. compter dided planning and evaluation of facial and orthognathic surgery. Clin Plast Surg 1986; 13:449.
    [64] David E, Altobelli, D. John, B. et al. Computer-assisted three dimensionalplanning in craniofacial surgery. Plastic and Reconstructive surgery 1993, 92(4):576.
    [65] Ichiro Ono, Ohura, T. Matumi, E. et al. Three dimensional analysis of craniofacial bones using three dimensional computer tomography. Journal of craniomaxillofacial surgeery 1992; 20:48.
    [66] Ono I, Ohura T, Iwaro, F. et al. Our methods for evaluating the results of maxillo-facial surgery. JPn J Plast Recnstr 1989; 32:1247.
    [67] Cutting CB, Grayson BH. Bookstein, F.L et al. Three dimensional computer assisted design of craniofacial surgical procedure:Optimization and interaction with cephalometric and CT based models. Plast Reconstr Surg 1986; 87:877.
    [68] Stephen R, Mattenson SR, Philgps, C. et al. A method for three dimensional image reformation for quantitative cephalmetric analysis. J Oral Maxillofac Surg 1989; 47:1053.
    [69] Hidebolt CE, Vanniet MW, Knapp, RH. et al. Validation study of skull three dimensional computerized tomography measurements. Am J phys Anthropol 1990; 82:283.
    [70] Jens Kragskov, Carles, DDS. Carsten, MD. et al. Comparison of the reliability of craniofacial anatomic larkmarks based on cephalometric radiographs and three dimensional CT scans. Cleft palate-craniofacial journal 1997; 34(2):111.
    [71] Kuroda DDS, Motohashi, DDS, Tominaga, DDS. Three dimensional cast analyzing system using laser scanning. Am-J-Orthod-dentofacial Orthopedics. 1996, 110(4);365.
    [72] G.Schultes, A. Gaggl, H. Karcher. et al. Changes in the dimensions of milled mandibular models after mandibular sagittal split osteotomies. British J of oral and maxillofacial surgery 1998; 36:196.
    [73] Ichiro Ono. H Gunji, K. Suda. et al. Method for preparing an Exact-size model using Helical volume scan computed tomography. Plastic and reconstructive surgery 1994; 93(7):1363.
    [74] Lill. W, Solar P, Ulm, C. et al. Reproducibility of three-dimensional CT-assisted model production in the maxillofacial area. British J oral and maxillofacial surgery 1992; 30:233.
    [75] Y. Sugawara, K. Hari, S. Hirabayashi. et al. Lifesize computer-generated skull replica to assist surgery of craniofacial fibrous dysplasia. J of Cranio-maxillofacial surgery 1997; 25:294.
    [76]周芳,李东,丁寅.成人下颌偏斜患者颞下颌关节形态及位置的变化[J].临床口腔医学杂志, 2007,23(3):156-159.
    [77]梁莉,丁寅,张晓慧.儿童下颌偏斜者颌面结构与颈椎姿势相关性研究[J].临床口腔医学杂志, 2005,21(7):427-428.
    [78]倪琳,丁寅,王艳清,等.成人单侧后牙反牙合患者下颌及颞颌关节的对称性[J].第四军医大学学报, 2002,23(14):1306-1308.
    [79].Chung-Chin Yu, Fen-Hwa Wong, Lun-Jou Lo. Craniofacial Deformity in Patients with Uncorrected Congenital Muscular Torticollis: An Assessment from Three-Dimensional Computed tomography Imaging. Plast Reconstr Surg. 2004; 113(1):24-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700