同轴线相位法含水率计解释方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油水两相流各相含率的测量在生产测井中占据着至关重要的地位,为油田开发做出了重要的贡献。含水率计也随着油田开发的发展得到了不断的更新以适应油田生产测井的需要。
     同轴线相位法含水率计的测量范围为0~100%,适应了当前油井以高含水率为主,而单井含水或单井不同层段的含水可能较低的油田开发状况。同轴线相位法含水率计实现了油井含水率的动态测量,其测量结果客观反应了抽油机井中油水两相流动状态。仪器具有很好的分辨力和测量精度,但由于油水两相流动的复杂性以及与仪器响应相关的影响条件的复杂性,含水率的测量和解释精度有待进一步提高。本文在对同轴线相位法含水率计的测量机理和油井两相流动特性研究的基础上,揭示出同轴线相位法含水率计的仪器响应除了与油井含水率有关之外,而且还与油水混合介质的温度、地层水矿化度以及两项流动状态有关;结合软测量技术理论和同轴线相位法含水率计本身的测量机理以及与仪器响应有关的可以直接测量的流量、油水混合介质的温度、地层水矿化度等参数,建立基于同轴线相位法含水率计机理的软测量模型。在此基础上,建立从仪器响应到油井含水率的频域动态特性模型,取得了良好的效果。
     确定由同轴线相位法含水率计组成的组合测井仪的现场测井方法以及测井数据资料的预处理方法,并利用软测量解释模型对现场所测10口井的资料进行解释,结果与地面计量符合较好,说明同轴线相位法含水率计的软测量模型在现场测井解释中具有较高的解释精度。
Water cut measurement of water oil two-phase flow is very important in production logging and it has been contributing to oilfield exploitation very much. With the development of oilfield exploitation, water cut meter has also been being updated in order to adapt the need of oilfield production logging.
    The measuring range of coaxial transmission line phase water cut meter is 0-100%. Therefore, it can meet present situation of oilfield exploitation, which for most oil wells water cut is high, because of the using of water-driving in oil production, while for some single well or different layers in a well water cut is low. Meanwhile coaxial line phase water cut meter has realized dynamic measuring of oil well water cut. And the detecting results objectively represent flowing state in pumping wells. The distinguishability and precision of the meter is high. But the accuracy still needs to be improved because of the complexity of water oil two-phase flow and the responding condition of the meter. Measurement theory of coaxial line phase water cut meter and flowing feature of water oil two-phase flow have been studied in this paper. And it has been found that the response of coaxial line phase water cut meter is not only related to water cut, but also related to temperature, salinity of formation water and flowing characteristics. Based on soft-measuring theory and operating theory of the meter, soft-measuring model of coaxial line phase water cut meter has been set up with directly obtainable facts such as flux, temperature of oil and water mixture and salinity of formation water. And frequency domain dynamic soft-measuring model has also been set up, with prominent forecast.
    Logging method and pre-processing method of logging data have been ascertained for the logging tool formed by coaxial line phase water cut meter and other function units such as temperature meter and flow meter. Data of 10 oil wells obtained by the logging tool has been interpreted using the soft-measuring model, and the result is accordant with data of ground measurement. It indicates that the soft measurement model of coaxial line phase water cut meter has high interpreting precision.
引文
1 Angeli P, Hewitt G F. Flow Structure in Horizontal Oil-water flow. Multiphase Flow, 2000,26(1): 117~140
    2 Chen Xj, Guo L J. Flow PaRems and Pressure Drop in Oil-air-water Three-phase Flow through Helically Coiled Tubes. Multiphase Flow, 1999,25(1): 53~72.
    3 Rezkallah K S, Zhao L.A Flow Pattern Map for Two phase Liquid-gas Flow under Reduced Gravity Conditions. Advanees in Space Research, 1995,16(1): 33~36.
    4 Colin C, Faber J. Gas-liquid Pipe Flow under Microgravity Conditions Influence of Tube Diameter on Flow Patterns and Pressure Drops. Advance in Space Research, 1995,16(1):23~32.
    5 Bousman W S, McQuillen J B, Witte L C. Gas-liquid Flow Patterns in Microgravity: Effects of Tube Diameter, Liquid Viscosity and Surface Tension. Multiphase Flow, 1996,22(1):35~53.
    6 Dziubinski M. A. General Correlation for Two phase Pressure Drop in Intermittent Flow of Gas and Non-Newtonian Liquid Mixtures in a Pipe. Chemical Engineer Research &Design, 1995,73:528~534.
    7 Turian R M, Ma T W, Hsu FI. Flow of Concentrated Non-Newtonian: Friction Losses in Laminar Turbulent and Transition Flow through Straight Pipes. Multiphase Flow, 1998,24:225~242
    8 Bryant, H.L.. Production Well Logging Techniques. Geophysics. 1960,125(4): 905~927
    9 Angeli P, Hewitt G F. Pressure Gradient in Horizontal Liquid-liquid Flows. Multiphase Flow, 1998,24:1183~1203
    10 Awwad A, Xin R C, Dong Z F, et al. Measurement and Calculation of the Pressure Drop in Air-water Two-phase Flow in Horizontal Helicoidal Pipes. Multiphase Flow, 1995,21:607~619
    11 Zhao L, Rczkallah K S. Pressure Drop in Gas-liquid Flow at Microgravity Conditions. Multiphasc Flow, 1 995,21:837~849.
    12 Riordan, M. B. Surface Indicating Pressure, Temperature and Flow Equipment, Tram. AIME. 1951: 257~262.
    13 Carlson, N. R, Barnett, J. C., Davazani, MJ. Applications of the Fluid Capacitance Log In Multiphase Flows. Tenth European Formation Evaluation Symposium, Aberdeen, Scotland, 1986:232~240
    14 N. R. Carlson, Rooster, R. E. Water-oil Flow Surveys With Basket Fluid Capacitance Tool. SPWLA Annual Logging Symposium, Corpus Christi, 1982:456~460
    15 N. R. Carlson, J. C. Barnett, M. J. Davarzani. Using Downhole Calibrations for Improved Production Profiles in Three-Phase Flows. SPWLA Twenty-Ninth Annual Logging Symposium. 1988, 6:310~321
    16 Qiao, H. T, Zhong, X. F, Jin, N. D, Yang, G. G. Response of Packer Type Turbine Flow meters in Multiphase Vertical Flow. Proceeding of the International Symposium on Measuring Techniques for Multiphase Flows. Nanjing, China, Southeast University Press, 1995(10~13): 11~16
    17 S. Huang, R. Z. Morawski, and A. B. Barwicz. Static Calibration of Transducers Using Gauss-function-based Approximation. IEEE Trans. Instrum. Meas., 1996,45(3): 389~393
    18 John R. Lovell, Weng Cho Chew. Effect of Tool Eccentricity on Some Electrical Well-logging Tools. IEEE Transactions on Geoscience and Remote Sensing. 1990,28(1): 56~60
    19 Weng Cho Chew. Modeling of the Dielectric Logging Tool at High Frequencies: Theory. IEEE Transactions on Geoscience and Remote Sensing. 1988,26(4): 324~328
    20 Leo E Ligthart. A Fast Computational Technique for Accurate Permittivity Determination Using Transmission Line Methods. IEEE Transactions on Microwave Theory and Techniques. 1983,31(3): 198~205
    21 Eivind Dykesteen, Amders Hallanger, Erling Hammer, Edmund Samney, Richard Thom. Non-intrusive Three-Component Ratio Measurement Using An Impedance Sensor, Rapid Communication. SCI. Instrum.
    
    1702,10:72~85
    22 Kurt C. Lawrence, Stuart O. Nelson,Philip G.Bartley, Jr.. Flow-Through Coaxial Sample Holder Design for Dielectric Properties Measurements from 1 to 350 MHz. IEEE Transactions on Instrumentation and Measurement. 1998, 47(2): 354~361
    23 M. Sami A. Abouelwafa, E. John M. Kendall. The Use of Capacitance Sensors for Phase Percentage Determination in Multiphase Pipeline. IEEE Transactions on Instrumentation and Measurement. 1980,29(1): 24~27
    24 Andrzej W. Kraszewski, Andrzej Barwicz, Stuart O. Nelson. Calibration of a Microwave System for Measuring Grain Moisture Content. IEEE Transactions on Instrumentation and Measurement. 1999, 48(3): 778~783
    25 Gorier, G. W, Sullivan, G. A. and Wood, R. K. The Upward Vertical Flow of Oil-water Mixtures, Canadian Jour. of Chem.Eng.1961, 6:56~73
    26 王进旗,肖培琛.电磁波传播找水方法.大庆石油地质与开发.1995,14(3):68~70
    27 王进旗,柳建涛.电磁波传播原油含水分析的实验研究.多相流检测技术进展.石油工业出版社.1996:153~155
    28 王进旗.基于相位法的同轴线油井含水率计研究.哈尔滨工业大学博士论文,2003:13~77
    29 金宁德.油井多相流测量系统模型建立及分析方法研究.浙江大学博士论文.1998:5~20
    30 谭廷栋.测井学.石油工业出版社.1998:83~89
    31 张肃文,陆兆熊编.高频电子线路.高等教育出版社,1993:70~75
    32 强锡富.传感器(第二版).机械工业出版社,1998:6~15
    33 乔贺堂.生产测井原理及资料解释.石油工业出版社.1992:104~107
    34 刘兴斌,强锡富,庄海军.沾污对取样含水率计的影响及电极的设计原则.测井技术.1995,19(1):54~53
    35 刘兴斌.井下油水两相流测量.哈尔滨工业大学博士论文.1996:23~40
    36 黄正华,陈世廉.水的矿化度对测量原油含水率的影响.石油大学学报(自然科学版).1993,17(2):78~81
    37 庄海军.温度、矿化度对高频电容法测持水率的影响.测井技术.1996,(1):34~36
    38 [美]D.郑均著,赵姚同,黎滨洪译.电磁场与波.上海交通大学出版社,1984:89~110
    39 李剑浩.混合物电导率公式及其在测井解释中的应用.地球物理学报.1993,36(5):673~681
    40 戴星,刘祖黎,姚凯伦,高翔.混合介质有效相对介电常数的逾渗理论计算.电子学报.1998,26(2):36~48
    41 金铁山,马贵福,乔卓尔.产出剖面解释误差分析与校正.测井技术.1998,22(5):353~356
    42 郭海敏,戴家才,方战杰,王金钟.低产液井产液剖面解释方法实验研究.江汉石油学院学报.1999,21(4):3~6
    43 吴锡令,汪中浩.油气水多相流动的分析模型及其测井应用.测井技术.1996(6)20,406~410
    44 阎向宏,贾瑞皋.水中含盐量对超声波声速法测定油品中含水率的影响.石油大学学报.1998,22(2):107~1108
    45 戴家才,郭海敏,汪中浩.灰色理论和优化技术在三相流解释中的应用.江汉石油学院学报.1999,21(3):33~35
    46 黄正华.减小矿化度对测量原油含水率的影响.油气田地面工程.1999,18(1):24~26
    47 张龙江.国外油气水三相流动形态研究的最新进展.油气田地面工程.1998,17(4):6~16
    48 郑希科,谭廷栋,李进旺,等.油水两相流动漂流模型的研究.测井技术.1998,22(3):178~182
    49 胡金海,刘兴斌,张玉辉,周家强等.阻抗式含水率计及其应用.测井技术.1999,23(增刊):511~514
    50 张玉辉,刘兴斌,胡金海,周家强.阻抗式环空找水仪含水率解释方法.生产测井论文集.
    
    1998:75~78
    51 郭海敏等.油水三相流动优化解释处理方法.石油学报.1996,17(1):62~70
    52 陈宣政.垂直上升管内油气水三相流动特性研究.西安交大博士论文.1991
    53 金宁德等.油水两相流流型的分形表征.东北大学学报(自然科学版).2000,21(1):127~130
    54 金宁德等.垂直管中三相流分相含率测量模型研究.测井技术.1997,21(1):9~14
    55 荣冈,金晓明,王树青.软测量技术及其应用.化工自动化及仪表.1999,26(4):70~72
    56 骆晨钟,邵惠鹤,吴俊生.基于机理分析的方法实现催化裂化反应预测转化率、产品产率的软测量.化工自动化及仪表.1999,26(2):29~33
    57 周耀华,汪凯仁.数字信号处理.复旦大学出版社.1992:208~214
    58 潘士先.谱估计和自适应滤波.北京航空航天大学出版社.1991:231~286
    59 杨维明,刘瑞复.动态测试技术.辽宁科学技术出版社.1992:401~435
    60 吴锡令.生产测井原理.石油工业出版社.1996:92~108
    61 刘兴斌等.超短波含水率计高含水理论模型的建立.1995,16(3):235~240
    62 张乃尧,阎平凡.神经网络与模糊控制.清华大学出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700