多元合金凝固微观组织的相场法模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸件的力学性能优劣和使用寿命主要取决于铸件在凝固过程中所形成的微观组织,有效地控制铸件成型过程中微观组织的形成具有非常重要的科学与工程意义,但是由于成型过程需要控制大量的参数,全部用实验手段不太现实,因而微观组织演化过程的数值模拟为铸件成型控制和多元合金材料的研制提供了一个有效的新途径。微观组织的数值模拟可以有效地降低新合金材料的开发成本,缩短开发周期,少量的实验既可达到合金的凝固组织预测和力学性能控制,又可获得主要工艺参数与合金凝固组织的定量关系,为成型过程的工艺控制和合金凝固组织的改善提供了可靠依据。
     相场法是一种计算技术,它能使研究者直接模拟微观组织的形成。相场模型中包括一组描述温度场、浓度场和相场有序参数的方程,相场法借助相场与其它外部场的耦合,在金属充型和凝固过程中,有效地将微观与宏观尺度相结合,能够比较真实地模拟凝固过程。
     在参阅国内外相场理论的基础上,完善二元合金凝固过程中枝晶生长的二维相场模型,在模型中考虑溶质扩散与各向异性对枝晶形貌的影响,考虑固-液界面存在的大量结构起伏和能量起伏对组织生长的影响,并对微观组织形成模拟中的若干现象进行分析和讨论。在单晶粒生长的相场模型的基础上,引入方向系数,提出了二元及多元合金多晶粒生长的相场模型。推导分析多相场共晶生长的相场模型,实现合金共晶组织生长过程的模拟。
     讨论了相场方程的时域离散与空间离散,优化了相场法数值模拟的初始条件、边界条件、稳定性条件及其数值求解方法。基于交互式大型工程测试和复杂数值计算结果的可视化工具Tecplot,采用Visual C++自行编程将计算结果数据转换成Tecplot标准输入文件,实现了相场法微观组织模拟的可视化软件系统。该系统既可有效处理计算中相关的复杂数据结构,还可实现计算结果的逼真显示及图象和动画的处理,方便地分析模拟结果的特征、规律。
     使用提出的二元合金多晶粒生长的相场模型,以Al-Cu合金为例,模拟了二元合金等温凝固过程中多个晶粒的生长过程。研究了二元合金凝固过程中多个晶粒枝晶的竞争生长机制。观察分析了多个枝晶与单个枝晶生长形貌的差别、晶粒之间的溶质分布状况。结果表明:在枝晶生长的初期,各个枝晶之间还没有相互影响的时候,枝晶的生长都和单个枝晶生长的情况相同,符合经典理论。在枝晶生长的后期,由于枝晶间的相互影响,枝晶的生长形貌不再符合Ivantsov理论。晶粒在生长的过程中释放出潜热,潜热使得该区域过冷度较低,导致主枝晶向过冷度大的区域生长,最终造成主枝晶的抑制和弯曲。由于凝固过程的溶质再分配,溶质富集在枝晶生长的界面前沿。溶质富集在这些区域,造成这个区域的熔点降低,从而导致实际过冷度的减小,使得这些区域凝固的比其他区域晚,最后形成晶界。
     使用提出的多元合金多晶粒生长的相场模型,以Al-Cu-Mg合金为例,模拟了多元合金等温凝固过程中多个晶粒的生长过程。研究比较了Al-Cu合金和Al-Cu-Mg合金在相同凝固条件下微观组织的变化。结果表明:多元合金多个晶粒共同生长时与二元合金类似,有竞争生长的现象,溶质富集在枝晶生长的界面前沿等区域。多元合金的各种溶质在溶剂(基体)中的扩散系数越大,溶质在晶粒中的分布越均匀。定性的展现了孕育剂细化晶粒机制对Al-Cu-Mg晶粒的形状和尺寸的影响、合金之间的合金成分和微观组织的关系(Al-Cu合金vs.Al-Cu-Mg合金)。合金成分的改变并没有十分明显的改变枝晶的形貌,初始晶核数量的大小对枝晶形貌有很大的影响。在Al-Cu-Mg合金中Mg改变了溶质Cu晶粒中的分布,加重了晶粒中Cu的溶质偏析。
     在多元合金多晶粒生长的相场模型的基础上耦合温度场,提出了一个多元合金多晶粒非等温生长的相场模型,并对Al-Cu合金与Al-Cu-Mg合金的凝固进行模拟,研究分析了其微观组织形貌的变化,以及温度场、溶质场的分布。结果表明:在忽略温度梯度的情况下,凝固时潜热的释放使凝固界面前沿的液体温度升高,由于枝晶生长的速度要大于热量传递的速度,使热量在凝固界面前沿累积,因此造成凝固的前沿上温度最高,、后凝固的区域要比先凝固的区域温度高。在模拟中加入了冷却速度和外部温度梯度,外部温度梯度随着晶粒的生长发生变化,这是由凝固潜热和热量传递造成的。初始温度不同,对凝固的速度有很大的影响,过冷度越大,模拟区域的固相率越大,凝固速度越快。
     推导分析了多相场共晶生长的模型,使用该模型模拟研究了CBr4-C2C16合金凝固过程中共晶组织的演化。结果表明:初始共晶层片和过冷度等参数选择适当时,共晶层片保持稳定界面,平行向前生长。在凝固前沿由于溶质再分配和溶质在液相中不能及时的扩散均匀,导致与理论计算的浓度值相比,在已凝固的区域中α相中的溶质浓度偏高、β相中的溶质浓度偏低。
The mechanical properties and serving life of castings depend on the microstructures in solidification, it is very important and realistic to control the formation of microstructures effectively in molding, but there has many controlling parameters, it is unpractical to test them by experiment, the method of numerical prediction is therefore essential for any processing activity. It is well known that the numerical simulation can reduce consumptions, predict solidified microstructures and materials behavior by fewer experiments, obtain the quantitative relationship between mayor processing parameters and the microstructures, and it can offer a credible basis to evaluate and optimize the castings processing so as to improve their quality.
     The phase field method is a computing technology, the investigators can simulate the microstructures directly with it. The phase-field model includes a set of equations to depict the phase field, temperature field and solute diffusion field, the phase-field method for simulating the processing of solidification is developed by coupling phase field, temperature field, flow field, and other accessional fields, the microcosmic scales and macrocosmic scales are combined during mold filling and solidifying of the castings.
     Take the influence of structural fluctuation and energetic fluctuation in interface to dendrite growth, improved binary phase-field model, studied the influence of different anisotropy coefficients、undercooling on shapes of dendrites and distribution of solute for single grain. A new phase-field model for dendrite growth of multiple grains in binary and multicomponent alloys has been developed based on the Ginzberg-Landau theory and phase-field model of single grain.
     The time discretization and the space discretization of the phase-field equation were discussed in this paper, the initial conditions, boundary conditions, stable conditions and their solution methods were presented. In the process of simulation, the Visual C++ code was used to calculate the program and visible software Tecplot was used to achieve the vision of results, the visible system of the phase-field simulation was achieved. The complicated data base can be transacted effectively in this system, and the characteristic and the discipline of simulation results can be analyzed conveniently.
     Using the binary alloys dendrite growth of multiple grains phase model, taking Al-Cu alloy for example, coupled the concentration field, simulated the dendritic growth process of multiple grains during isothermal solidification. The result of simulation showed dendritic competitive growth of multiple grains, and reappears the process of dendrite growth in practical solidification. Comparing the simulated of multiple grains microstructure and single grain, we can see that the single dendrite growth and the multiple dendrite growth without other grains influences on side are agree with the classical theory (Ivantsov theory);in the region of competitive growth, multiple grains influenced interactive, they growth aren't agree with the classical theory. The regions between the secondary arms and grains have the highest concentration, while the grain itself has a low concentration. These features show good agreement with the composition distribution given by the real equiaxed dendrite growth.
     Using the multicomponent alloys dendrite growth of multiple grains phase model taking Al-Cu alloy and Al-Cu-Mg alloy for example, coupled the concentration field, simulate the dendritic growth process of multiple grains during isothermal solidification. The result shows, the predicted dendritic morphology is affected by density of seed, the higher seed density it is, the more refined and globular grains become. Qualitative effects like the grain refining mechanisms of inoculants and the effect on the grain size and dendritic morphology in Al-Cu-Mg alloy, the effect of the relation between alloy composition and microstructure (Al-Cu alloy vs. Al-Cu-Mg alloy) have been shown. A conclusion can be drawn after comparing the simulated result of Al-Cu alloys and Al-Cu-Mg alloys, that the composition change (adding Mg to Al-Cu alloy in order to get Al-Cu-Mg alloy) do not significantly change the shape of grains. That solute Mg changes the concentration distributing of solute Cu in equiaxed dendrite and increases concentration of Cu in grains. That means solute Mg will increase the microsegregation of solute Cu in grains.
     A new phase-field model of dendritic growth of non-isothermal solidification is developed based on the phase-field model of isothermal solidification of multicomponent alloy with multiple grains, in connection with the temperature field. Taking Al-Cu-Mg alloy for example, we simulated the dendritic growth process of multiple grains during multicomponent alloy solidification. The simulation showed dendritic competitive growth of multiple grains, and reproduced the process of dendrite growth in practical solidification. The release of latent heat of alloy solidification can be showed in simulation. In same grain, the temperature of the region of earlier solidification was less than the region of late solidification. The velocity of solidification increased with the augment of temperature of undercooling.
     Deduce and analyse phase-field model of eutectic solidification, using the model, taking CBr4-C2Cl6 alloy for example, simulated the eutectic growth process of alloy solidification. The result shows, the eutectic lamellar growth is parallel and steady with fitting parameters. In front of the solidification interface the diffuse and distribution of solute influence the concentration of solute in solid phase, induce the concentration of solute in a phase is higher andβphase is lower than value of steady state.
引文
[1]李庆春主编.铸件形成理论基础.哈尔滨:哈尔滨工业大学出版社,1980,1-149
    [2]田卫星.纯金属凝固过程枝晶生长的相场法研究.[山东大学博士毕业论文].济南:山东大学,2007.6
    [3]Boettinger W J, Warren J A, Beckerman N C, et al. Phase-field Simulation of Solidification. Annual Review of Materials Research,2002,32(1):163-194
    [4]Ramirez J C, Beckermann C, Karma A, et al. Phase-field Modeling of Binary Alloy Solidification with Coupled Heat and Solute Diffusion. Physical Review E, 2004(12),69:051607-051622
    [5]Mullis A M. An Extension to the Wheeler Phase-field Model to Allow Decoupling of the Capillary and Kinetic Anisotropies. The European Physical Journal B,2004, 41(3):377-382
    [6]Mullis A M. Quantification of Mesh Induced Anisotropy Effects in the Phase-field Method. Computational Materials Science 2006,36(3):345-353
    [7]张光跃.相场法模拟Al合金微观组织研究.[清华大学博士毕业论文].北京:清华大学机械工程系,2002.6
    [8]柳百成,荆涛.铸造工程的模拟仿真与控制.北京:机械工业出版社,2001
    [9]王君.纯物质凝固过程枝晶生长现象的研究和模拟.[昆明理工大学博士毕业论文].昆明:昆明理工大学,2002.6
    [10]胡汉起.金属凝固原理.北京:机械工业出版社,1999
    [11]于艳梅.过冷熔体中枝晶生长的相场法数值模拟.[西北工业大学博士毕业论文].西安:西北工业大学,2002.6
    [12]张光跃,荆涛,柳百成.相场法原理及在微观组织模拟中的应用.机械工程学报,2003,39(5):6-9
    [13]荆涛.凝固过程数值模拟.北京:电子工业出版社,2002
    [14]Bastlankm A. Look Back at the 20th Century Casting Process Simulation. Modern Casting,2000, (12):43-45
    [15]Hirtcw, Nicholsbd. Volume of Fluid Method for the Dynamics of Free Boundaries. Comp Phys,1981,39:201-225
    [16]Al-Rawahji N, Tryggvason G. Numerical Simulation of Dendritic Solidification with Convection:Three-dimensional Flow. Journal of Computational Physics, 2004,194(2):677-696.
    [17]Sirrel B, Holliday M, Campbell J. The Benchmark Test 1995 [A]. In Proceedings of International Conference on Modeling of Casting, Welding andAdvanced Solidification Process Ⅶ[C].London, UK,1995,915-1013.
    [18]康进武.铸钢件凝固过程热应力数值模拟研究[清华大学博士毕业论文].北京:清华大学,1998
    [19]李梅娥,邢建东.铸造应力场数值模拟的研究进展.铸造,2002,51(3):141-143
    [20]廖敦明,林汉同,刘瑞祥,等.铸造热应力场数值模拟研究的最新进展.现代铸铁,2000,(4):4-7
    [21]廖敦明,陈立亮,刘瑞祥,等.铸件热应力场数值模拟.特种铸造及有色合金,2003,(6):31-32.
    [22]张世辉,周佩超,吴振超.铸件凝固过程计算机数值模拟软件在生产中的应用.铸造,1999,48(5):18-20.
    [23]Wu H, Grasselli M, Zheng M S. Convergence to Equilibrium for a Parabolic-hyperbolic Phase-field System with Dynamical Boundary Condition. Journal of Mathematical Analysis and Applications,2007,329(2):948-976
    [24]Zhu C S, Wang Z P, Jing T, et al. Parameters Affecting Microsegregation in Phase-field Simulation. Transactions of Nonferrous Metals Society of China, 2006,16(4):760-765
    [25]Suwa Y, Saito Y, Onodera H. Phase field Simulation of Grain Growth in Three Dimensional System Containing Finely Dispersed Second-Phase Particles. Scripta Materialia,2006,55(4):407-410.
    [26]Zhang H, Wang X Y, Zheng L L. Numerical Simulation of Nucleation, Solidification and Microstructure Formation in Thermal Spraying. International Journal of Heat and Mass Transfer 2004,47:2191-2203.
    [27]刘小刚.Al-Cu合金等温凝固的相场法模拟.[沈阳工业学院硕士毕业论文].沈阳:沈阳工业学院,2003.3
    [28]D.罗伯.计算材料学.北京:化学工业出版社,2003
    [29]Oldfield W.A Quantitative Approach to casting Solidification. Freezing of Cast Iron.ASM Trans.1966,59(2):945-960
    [30]Rappaz M, Charbon Ch, Sasikumar R. Acta Metall,1994,42:2365-2374
    [31]Brown S G R, Bruce N B. Three-Dimensional Simulation Cellular Automaton Model of Microstructural Evolution during Solidification. Journal of Material Science,1995,30(5):1144-1150
    [32]Brown S G R. A 3-dimensional Cellular Automaton Model of'Free'Dendritic Growth. Scripta Metallurgica et Materialia,1995,32(2):241-246
    [33]Zhu M F, Hong C P. A three Dimensional Modified Cellular Automation Model for the Prediction of Solidification Microstructures. ISIJ International,2002, 42(5):520-526
    [34]Brown S G R. Simulation of Diffusional Composite Growth Using the Cellular Automaton Finite Difference (CAFD) Method. Journal of Materials Science, 1998,33(19):4769-4773
    [35]Jarvis D J, Brown S G R, Spittle J A. Modelling of Non-equilibrium Solidification in Ternary Alloys:Comparison of 1D,2D, and 3D Cellular Automaton-finite Difference Simulations. Materials Science and Technology,2000,16:1420-1424
    [36]Rapraz M, Gandin C A, Tintillier R. Three-Dimensional Simulation of the Grain Formation in Investment Casting. Metallurgical Trans.,1994,25(3):629-635
    [37]Gandin C A, Rappaz M. A Coupled Finite Element-Cellular Automaton Model For the Prediction of Dendritic Grain Structures in Solidification Processes. Acta Metall. Mater.,1994,42(7):2233-2246
    [38]Thomas B G, Beckermann C. Proceedings of Modeling Casting and Welding and Advanced Solidification Processes Ⅷ[C]. USA:1998.17-132 (included 3 papers).
    [39]Geiger J, Roosz A. Simulation of Grain Coarsening in Two Dimensions by Cellular-Automaton. Acta Materialia,2001,49(4):623-629
    [40]李殿中,苏仕方.镍基合金叶片凝固过程铸件微观组织模拟及工艺优化研究,铸造,1997,(8):1-7
    [41]李殿中,杜强,胡志勇等.金属成形过程中组织演变的Cellular Automaton模拟技术.金属学报,1999,35(1):1201-1205
    [42]张林,王元明.Ni基耐热合金凝固过程的元胞自动机方法模拟.金属学报,2001,37(8):882-888.
    [43]许庆彦,柳百成.采用Cellular Automaton法模拟铝合金的铸件微观组织.中国机械工程,2001,12(3):328-331.
    [44]余亮,顾斌.枝晶生长的元胞自动机模拟.安徽工业大学学报,2002,19(1):10-13.
    [45]徐野川.Al2O3-ZrO2体系中晶粒长大的相场法计算机模拟研究.[东北大学硕士学位论文].沈阳:东北大学,2004.2
    [46]Nestler B. A Multiphase-field Model:Sharp Inerface Asymptotics and Numerical Simulations of Moving Phase Boundaries and Multijunctions. J. Crystal Growth,1999,204(5):224~228
    [47]于艳梅,吕衣礼,张振忠等.相场法凝固组织模拟的研究进展.铸造,2000,49(9):507-511
    [48]Collins J B, Levin H. Diffuse Interface Model of Diffusion Limited Crystal Growth. Physical Review B,1985,31(9):6119-6122
    [49]Caginalp G, Fife P C. Dynamics of Layered Interfaces Arising From Phase Boundaries. SIAM Journal of Apply Mathematics,1988,48(3):506-510
    [50]Caginalp G. Stefan and Hele-Shaw Type Model as Asymptotic Limits of the Phase-field Equations.Physical Review A,1989,39(11):5887-5890
    [51]Fife P C, Gill G S. Phase Transition Mechanism Ms for the Phase-field Model under Internal Heating. Physical Review A,1991,43(2):843-851
    [52]Kobayashi R. Modeling and Numerical Simulations of Dendritic Crystal Growth.Physical Review D,1993,63(10):410-423
    [53]Karma A, Rappel W J. Phase-field Method for Computationally Efficient Modeling of Solidification with Arbitrary Interface Kinetics. Physical Review E,1996,53(4): 3017-3020
    [54]Karma A, Rappel W J. Numerical Simulation of Three-dimensional Dendritic Growth. Physical Review Letter,1996,77(10):4050-4053
    [55]Tonhardt R, Amberg G. Phase Field Simulation of Dendritic Growth in a Shear flow. Journal of Crystal Growth,1998,194(7):406-425
    [56]Kim S G, Kim W T, Suzuki T. Interfacial Compositions of Solid and Liquid in a Phase-field Model with Finite interface Thickness for Isothermal Solidification in Binary Alloys. Physical Review E,1998,58(3):3316-3323
    [57]Lee J S, Suzuki T. Numerical Simulation of Isothermal Dendritic Growth by Phase-field Model. ISIJ Int.,1999,39(3):246-252
    [58]Kim S G, Kim W T, Lee J S, et al. Large Scale Simulation of Dendritic Growth in Pure Undercooled Melt by Phase-field Model. ISIJ Int.,1999,39 (4):335-340
    [59]Tong X, Beckermann C. Velocity and Shape Selection of Dendritic Crystals in a Forced Flow. Physical Review E,2000,61(1):R49-52
    [60]Zhu M F, Kim J M, Hong C P. Numerical Prediction of the Secondary Dendrite Arm Spacing Using a Phase-field Model. ISIJ Int.,2001,41(4):345-349
    [61]Hecht U, Pusztai T, Boettinger B, Apel M et al. Multiphase Solidification Iin Multicomponent Alloys.2004, Materials Science and Engineering. R46:1-47
    [62]Steinbach I. Pezzolla F. Nestler B. at el. A Phase Field Concept for Multiphase Systems. Physica D,1996,94:135-147
    [63]Nestler B, Wheeler A A. A Multi-phase-field Model of Eutectic and Peritectic Alloysnumerical Simulation of Growth Structures. Physica D,2000,138:114-133
    [64]Qin R.S, Wallach E.R, Thomoson R.C. A Phase-field Model for the Solidification of Multicomponent and Multiphase alloys. Journal of Crystal Growth,2005,279(8): 163-169
    [65]Ode M, Suzuki T, Kim S.G, Kim W.T. Phase-field model for Solidification of Fe-C alloys. Science and Technology of Advanced Materials.,2000, (1):43-49
    [66]Boettinger W J, Coriell S R, Karma A, et al. Solidification Microstructures:Recent Developments, Future Directions, Acta mater,2000,(48):43-70
    [67]Karma A, Rappel W J, Phase-field Model of Dendritic Sidebranching With Thermal Noise. Phys. Rev. E,1999,60:3614-3620
    [68]Pavlik S G, Sekerka R F, Forces Due to Fluctuations in the Anisotropic Phase-field Model of Solidification. Physica A,1999,268:283-290
    [69]Pavlik S.G, Sekerka R.F, Fluctuations in the Phase-field Model of Solidification. Physica A,2000,277:415-426
    [70]Wheeler A A, McFadden G B, Boettinger W J, Proc. R. Soc. Lond. A,1996,452: 495-508
    [71]Karma A, Phase-field Model of Eutectic Growth. Phys. Rev. E,1994,49: 2245-2254
    [72]Li F, Regel L L, Wilcox W R. The Influence of Electric Current Pulses on the Microstructure of the MnBi/Bi Eutectic. Journal of Crystal Growth.2001,223(12): 251-260
    [73]Akamatsu S, Plapp M, Faivre G, Karma A. Pattern Stability and Trijunction Motion in Eutectic Solidification. Phys. Rev. E,2002,66:30501-30515
    [74]Lo T S, Doble S, Plapp M, et al. Two-phase Microstructure Selection in Peritectic Solidification:From Island Banding to Coupled Growth. Acta Materialia,2003, 51(3):599-611
    [75]Apel M, Boettger B, Diepers H.J, Steinbach I.2D and 3D Phase-field Simulations of Lamella and Fibrous Eutectic Growth. J. Cryst. Growth,2002,237 (2): 154-167
    [76]Kim S.G, Kim W.T, Suzuki T, Ode M. Phase-field Modeling of Eutectic Solidification. J. Cryst. Growth,2004,261 (2):135-150
    [77]Boettinger W J, Coriell S R, Campbell C E, et al. On the properties of α/α+β ternary diffusion couples. Acta Materialia,2000,48(2):481-492
    [78]Tiaden J, Nestler B, Diepers HJ, Steinbach I. The Multiphase-field Model with an Integrated Concept for Modelling Solute Diffusion. Physica D,1998,115:73-89
    [79]Tiaden J, Grafe U. in:Proceedings of the International Conference on Solid-Solid Phase Transfor-mations, JIMIC-3,1999
    [80]Kim S G, Kim W T, Suzukia T. Phase-field Model for Binary Alloys. Physical Review E,1999,60(6):7186-7197.
    [81]Plapp M, Karma A. Eutectic Colony Formation:A phase-field Study. Phys. Rev. E, 2002,66:061608-061619
    [82]Qin R.S, Wallach E.R. A Phase-field Model Coupled with a Thermodynamic Database. Acta Mater.,2003,51:6199-6213
    [83]Kobayashi H, Ode M, Kim S.G, Kim W.T, Suzuki T. Phase-field Model for Solidification of Ternary Alloys Coupled with Thermodynamic Database. Scripta Mater.,2003,48:689-704
    [84]Chen Q, Ma N, Wu K, Wang Y. Quantitative Phase Field Modeling of Diffusion-controlled Precipitate Growth and Dissolution in Ti-Al-V. Scripta Materialia.,2004,50:471-486
    [85]Cha P R, Yeon D H, Yoon J K. A Phase Field Model for Isothermal Solidification of Multicomponent Alloys. Acta Mater.,2001,49:3295-3307
    [86]Grafe U, Bottger B, Tiaden J., Fries S.G. Coupling of Multicomponent Thermodynamic Databases to a Phase Field Model:Application to Solidification and Solid State Transformations of Superalloys. Scripta Mater.,2000,42: 1179-1186
    [87]Bottger B, Grafe U, Ma D, Fries S.G. Mater. Sci. Technol.,2000,16:1425-1438
    [88]Bottger B, Grafe U, Ma D, Schnell A. in:Superalloys 2000, Met. Soc. AIME (2000) 313
    [89]Bottger B, Steinbach I, Fries S.G, Chen Q, Sundman B, et al. in:J. Lecomte-Beckers (Ed.), Materials for Advanced Power Engineering 2002, part Ⅲ, Forschungszentrum Julich, Julich,2002,:1333-1345
    [90]Bottger B, Schaffnit I, Eicken J. Phase Field Simulation of Equiaxed Solidification in Technical Alloys. Acta Materialia,2006,54,(10):2697-2711
    [91]Steinbach I, Pezzolla F. A Generalized Field Method for Multiphase Transformations Using Interface Fields. Physica D,1999,134:385-401
    [92]Weinberg M. C, Poisl W. H, Gra'na'sy L. Crystal Growth and Classical Nucleation Theory. Comptes Rendus Chimie,2002,5, (11),765-773
    [93]Gra'na'sy L, Pusztai T, Chem J. Crystal Nucleation and Growth in Binary Phase-field Theory. Journal of Crystal Growth, V237-239, Part 3,2002: 1813-1817
    [94]Rosam J, Jimack P K, Mullis A. A Fully Implicit, Fully Adaptive Time and Space Discretisation Method for Phase-field Simulation of Binary Alloy Solidification. Journal of Computational Physics,2007,225:1271-1287
    [95]Wang J C, Osawa M, Yokokawa T, Harada H, Enomoto M. Modeling the Microstructural Evolution of Ni-base Superalloys by Phase Field Method Combined with CALPHAD and CVM. Computational Materials Science 2007,39 (4):871-879
    [96]Galenko P K, Reutzel S, Herlach D M, Danilov D, Nestler B. Modelling of Dendritic Solidification in Undercooled Dilute Ni-Zr Melts. Acta Materialia 2007,55 (12):6834-6842
    [97]Yoshihiro Suwa, Yoshiyuki Saito, Hidehiro Onodera. Phase-field Simulation of Abnormal Grain Growth Due to Inverse Pinning. Acta Materialia 2007,55 (12): 6881-6894
    [98]Boisse J, Lecoq N, Patte R, Zapolsky H. Phase-field Simulation of Coarsening of y Precipitates in an Ordered γ'Matrix. Acta Materialia,2007,55 (10):6151-6158
    [99]Keita T, Padma R, Zhang J X, Wang T. Readily Regenerable Reduced Microstructure Representations. Computational Materials Science 2008,42: 368-379
    [100]赵代平,荆涛,柳百成.相场方法模拟铝合金三维枝晶生长.物理学报,2003,52(7):1737-1742
    [101]龙文元.铝合金凝固过程枝晶生长的相场法数值模拟.[华中科技大学博士毕业论文].武汉:华中科技大学,2004.11
    [102]龙文元,蔡启舟,陈立亮等.二元合金等温凝固过程的相场法模拟,物理学报,2005,54(1):256
    [103]Li J J, Wang J C, Yang G C. Phase-field Simulatizon of Microstructure Development Involving Nucleation and Crystallographic Orientations in Alloy Solidification. Journal of Crystal Growth 2007,309 (1):65-69
    [104]Long Y Q, Liu P, Liu Y, Zhang W M, Pan J S. Simulation of Recrystallization Grain Growth During Re-aging Process in the Cu-Ni-Si Alloy Based on Phase Field Model. Materials Letters,2008,62(17-18):3039-3042
    [105]朱耀产,杨根仓,王锦程等.二元共晶凝固的多相场法数值模拟,中国有色金属学报,2005,15(07):1027~1032
    [106]王颖硕,陈长乐.对流作用下纯物质枝晶生长的相场法模拟,铸造,2008,57(03):249-253
    [107]陈玉娟,陈长乐.相场法模拟对流速度对上游枝晶生长的影响,物理学报,2008,57(07):4585-4589
    [108]Wheeler A.A., Murrary B.T., Schaefer R.J. Computation of Dendrites Using a Phase field Model. Physica D,1993,66(10):243-262
    [109]张玉妥,李殿中等.用相场方法模拟纯物质等轴枝晶生长[J].金属学报,2000,(36):589-591
    [110]张光跃,荆涛等.铝合金枝晶生长形貌数值模拟研究[J].铸造,2002,51(12):764-766
    [111]刘小刚,王承志等.Al-Cu合金等温凝固的相场法模拟[J].铸造设备,2002,(6):15-22
    [112]徐涛,水鸿寿.一种二维自适应网格构造方法及其实现[J].计算物理.1999,(16):66-76
    [113]Jeong J H, Goldenfeld N, Dantzig J A. Phase Field Model for Three-dimensional Dendritic Growth with Fluid Flow. Physical Rev. E,2001,64:04160211-04160214
    [114]Lan C W, Hsu C M, Liu C C. Efficient Adaptive Phase Field Simulation of Dendritic Growth in a Forced Flow at Low Supercooling J. Cryst Growth,2002, 241:379-386
    [115]Lan C W, Shih C J. Phase Field Simulation of Non-isothermal Free Dendritic Growth of a Binary Alloy in a Forced Flow J. Cryst Growth,2004,264:472-482
    [116]Lu Y L. Phase-field Modeling of Three-dimensional Dendritic Solidification Coupled with Fluid Flow:Ph.D. thesis, Iowa USA:The University of Iowa,2002.
    [117]Lu Y L,Beckermann C,Karma A.Mater. Res. Soc.,2002,22:701
    [118]Plapp M, Karma A. Multiscale Random Walk Algorithmfor Simulation Interfacial Pattern Formation. Phys. Rev. Lett.,2000,84:1740
    [119]Plapp M, Karma A. Multiscale Finite Difference Diffusion Monte Carlo Method for Simulating Dendritic Solidification. J.Comp. Phys.,2000,165:592
    [120]路阳、王帆、朱昌盛等等温凝固多晶粒生长相场法模拟2006物理学报55(2): 780-786
    [121]Provatas N, Goldenfeld N, Dantzig J. Efficient Computation of Dendritic Microstructures Using Adaptive Mesh Refinement. Physical Review Letters, 1998,80(15):3308-3311
    [122]Andersson C, Numerical Simulation of Dendritic Solidification Using a Phase Field Model, Licentiate's Thesis, Royal Institute of Technology, Stockholm 2000.
    [123]Glasner K. Nonlinear Preconditioning for Diffuse Interfaces. Journal of Computational Physics,2001,174(2):695-711
    [124]Benes M, Mikula K. Simulation of Anisotropic Motion by Mean Curvature-Comparison of Phase Field and Sharp Interface Approaches. Acta Mathematica Universitatis Comenianae,1998,67(1):17-42
    [125]Benes M. Mathematical and Computational Aspects of Solidification of Pure Substances. Acta Mathematiea Universitatis Comenianae,2001,70(1):123-151
    [126]Kurz W, Fisher D. Fundamentals of solidification.Trans Tech Publications Ltd.1985.
    [127]Porter D A, Easterling K E. Phase Transformations in Metals and Alloys. Chapman & Hall,1992,2nd edition.
    [128]Sinh A A. Physical Metallurgy Handbook (McGraw-Hill,2003).
    [129]Davis S. Theory of Solidification, Cambridge Mongraphs on Mechanics (Cambridge University Press,2001).
    [130]Fermie. Thermodynamics (Dover Publications Inc.1956).
    [131]Richter H, Breitling G.Struktur Einatomiger Metallsechmelzen Nach Beugungsversuchen mit roentgen-, elektronen-und neutronenstrahlen Fortschritte Der Physik,1966,14(1-12):71-140
    [132]Richter H, Breitling G Z. Structure of Molten Au, Ag and Pb. Z Metallkunde, 1970,61(9):628-636
    [133]Marcus Y. Introduction to Liquid State Chemistry (Wiley, London,1977).
    [134]Waseda Y. The Structure of the Non-crystalline Materials, Liquid and Amorphous Solids(McGraw-Hill, New York,1980).
    [135]崔忠沂.金属学与热处理.北京:机械工业出版社,1989:45-60
    [136]安阁英,铸件形成理论(北京,机械工业出版社,1990:8
    [137]赵品,谢辅洲,孙振国,材料科学基础教程(哈尔滨),哈尔滨工业大学出版社,2002:49
    [138]冯端,金国钧.凝聚态物理学新论.上海:上海科学技术出版社,1992.354-374
    [139]Gunton J D.Phase Transformations and Critical Phenomena, eds:C. Domb. Academic press,1983, (8):267
    [140]Lifshitz E M.Statistical Physics.3rd edtion,Part 1,Landau and Lifshitz Course of Theoreticalphysics,Pergomon,1980, vol.5
    [141]Mullins W W, Sekerka R F. The Stability of Planar Interface during Solidification. App. Phys.,1964,35:444-451
    [142]Mullins W W. Morphological Stability of a Particle Growing by Diffusion of Heat Flow. App. Phys.,1963,34:323-329
    [143]张宙庆.铝合金凝固过程微观组织模拟技术研究.[中北大学硕士学位论文]. 太原:中北大学,2004.2
    [144]Kessler D, Levine H.Theory of the Saffman-taylor'finger'Pattern. Phys. Rev. A, 1986,33:2621-2633
    [145]Kessler D, Levine H. Stability of Dendritic Crystals. Phys. Rev. Lett.,1986,57: 3069-3072
    [146]Kessler D, Levine H. Dendritic Growth in a Channel. Phys. Rev. A,1986,34: 4980-4987
    [147]Saito Y, Goldbeck-Wood, Hmuller-Krumbhaar. Dendritic Crystallization: Numerical Study of the One-sided Model. Phys. Rev. Lett.,1987,58:1541-1543
    [148]Young G W, Davis S H, Brattkus K. Anisotropy Interface Kinetics and Tilted Cells in Unidirectional Solidification. J. Crystal Growth,1987,83:560-571
    [149]高隽,黄伟.科学计算可视化.安徽科技,2000,(06):4-5
    [150]李贤锋.外掺MgO砼快速筑拱坝拱梁法仿真计算成果可视化.广东水利水电,2003,(3):12-13
    [151]陈铁.科学数据图显分析软件Tecplot.软件世界,1995,(06):28-28
    [152]王帆.基于KKS模型A1-Cu合金等温凝固过程相场法模拟.[兰州理工大学硕士学位论文].兰州:兰州理工大学,2006.5
    [153]朱昌盛.相场法凝固微观组织计算机模拟仿真系统的研究与实现.[兰州理工大学博士学位论文].兰州:兰州理工大学,2007.5
    [154]Toshio S, Machiko O, Kim S G, et al. Phase-field Model of Dendritic Growth. Journal of Crystal Growth,2002(237-239):125-131
    [155]Ode M, Lee J S, Kim W T, et al. Phase-field Model for Solidification of Ternary Alloys. ISIJ International,2000,40(9):870-876
    [156]Zhang R J, Jing T, Jie W Q, Liu B C. Phase-field Simulation of Solidification in Multicomponent Alloys Coupled with Thermodynamic and Diffusion Mobility Databases. Acta Materialia,2006; 54:2235-2240
    [157]R.W.卡恩, P.哈森, E.J.克雷默.材料科学与技术丛书(第15卷)金属与合金工艺.雷廷权等.译.北京:科学出版社,1999,15-20
    [158]李述军,李荣德,于海朋.共晶凝固理论的研究与发展状况.沈阳工业大学学报,2002,22(1):17-20
    [159]朱耀产,杨根仓,王锦程等.多相场法数值模拟共晶凝固研究进展.特种铸造及有色合金,2004(3):45-46
    [160]I. Steinbach, F. Pezzolla. A Generalized Field Method for Multiphase Transformations Using Interface Fields. Physica D 1999 (134):385-393
    [161]M.Ginibre, S. Akamatsu, G. Faivre. Experimental Determination of the Stability Diagram of a Lamellar Eutectic Growth Front. Phys. Rev. E,1997,56:780-796
    [162]杨玉娟,王锦程,张玉祥,朱耀产,杨根仓.多相场模拟非共晶成CBr4-C2Cl6合金层片生长的形貌选择.稀有金属材料与工程,2008,37(04):594-598
    [163]杨玉娟,王锦程,张玉祥,朱耀产,杨根仓.采用多相场法研究三维层片共晶生长的厚度效应.物理学报,2008,57(08):5290-5295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700