麻疯树高效再生体系的建立及纳米载体转基因技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻疯树(Jatropha curcas L.)是一种重要的生物柴油树种,生长迅速,喜光耐旱,具有较高的经济价值和药用价值。本文以麻疯树无菌苗茎段为外植体,进行麻疯树植株再生的研究;同时,建立麻疯树悬浮细胞系,探索纳米基因载体对麻疯树遗传转化的效果,从而建立一种新的基因转化方法。主要研究结果如下:
     (1)采用麻疯树无菌苗茎段为外植体,初步建立了麻疯树植株再生体系,结果表明:麻疯树茎段诱导不定芽再生的最适激素组合为:BA1.Omg/L+TDZ1.5mg/L,不定芽的平均诱导率达69.25%。不定根诱导培养中,采用生长素NAA诱导麻疯树幼苗生根,最适诱导配方为:MS+NAA1.0mg/L+蔗糖30g/L+琼脂7.2g/L,生根率达到66.67%,根系粗壮,发育良好。外植体接种于MS固体培养基和液体培养基中均有不定芽分化,但固体培养基中的外植体不定芽诱导率更高,褐化水平也较低。
     (2)麻疯树悬浮细胞培养中,研究了疏松愈伤组织诱导方案及不同培养条件对麻疯树悬浮细胞生长的影响。结论如下:麻疯树疏松愈伤组织诱导的最适培养基及激素组合为:MS+2,4-D0.6mg/L+KT0.4mg/L,此培养基上诱导出的愈伤组织湿润松散,颜色鲜艳。接种愈伤组织进行悬浮培养的液体培养基最适激素组合为:NAA0.2mg/L+2,4-D1.0mg/L+BA0.5mg/L。初代、2次继代和4次继代的愈伤组织用于悬浮培养时,以初代愈伤组织较为适宜,悬浮培养系中的细胞分散度最高。培养基中添加500mg/L水解酪蛋白可以有效地促进悬浮细胞的生长,使悬浮培养系的生物量增加。悬浮细胞振荡培养过程中,摇床转速应低于120rpm,以110rpm为宜。
     (3)以微乳液法制备了淀粉纳米基因载体,并对载体进行了表面修饰。结果表明:淀粉纳米载体(SNGC)制备的最优实验方案为淀粉浓度15%、搅拌速度2000rpm、油水相体积比15:1、三氯氧磷0.05%。采用多聚赖氨酸(PLL)对淀粉纳米载体(SNGC)进行表面修饰,PLL与SNGC的质量比不同,载体表面携带的电荷数量也不同。当SNGC:PLL(M:M)=2:1时,载体表面电荷数达到饱和。修饰后的PLL-SNGC为球状颗粒,大小比较一致,分散性好。多聚赖氨酸(PLL)和水溶性量子点(CdSe)两种材料修饰后的PLL-SNGC和Cs-PLL-SNGC载体均能有效的与DNA分子结合。
     (4)纳米基因载体对麻疯树愈伤组织和悬浮细胞的转化结果表明:用PLL-SNGC和Cs-PLL-SNGC两种纳米基因载体溶液处理过的麻疯树愈伤组织生长良好,载体基本无细胞毒性,或者细胞毒性很小,对细胞正常的生长、分裂几乎没有影响,可以用作麻疯树遗传转化的载体。两种纳米基因载体对麻疯树愈伤组织的转化效果均不明显,但对悬浮细胞的转化具有比较明显的效果,并且载体在细胞内可以自行降解,具有良好的生物相容性。麻疯树悬浮细胞转化中,超声处理时间以10min较为适宜。
Jatropha curcas(Jatropha curcas L.) is a very important tree species of biodiesel. Jatropha curcas is characterized by rapid growth, yoshimitsu and drought tolerance, which is also has high value in Economic and Medicinal. This article studies on the plant regeneration of Jatropha curcas which is based on taking aseptic seedling stem section of planlet as explant. Meanwhile, establishing suspension cell lines of Jatropha curcas,exploring the effects of nanometer gene vector on genetic transformation of Jatropha curcas,so as to establish a new way of genetic transformation.The basic results as follows:
     (1)Taking aseptic seedling stem section of planlet as explant, preliminary establishes the plant regeneration of Jatropha curcas.The result shows that:The most suitable hormone combination of adventitious bud induction by stem section of Jatropha curcas is: BA1.0mg/L+TDZ1.5mg/L, the average induction rate of adventitious bud has reached 69.25%.:In the culture of root induction, using auxin NAA, The most suitable hormone combination is:MS+NAA1.0mg/L+Sucrose 30g/L+Agar7.2g/L, and the rooting rate has reached 66.67%, thick roots and well developed. The explants has adventitious bud both in the MS solid medium and liquid medium,and in the solid medium,it has a higher induction rate of adventitious bud and a lower browning rate.
     (2)In the culture of suspension cell of Jatropha curcas, the effects on the growth of suspension cell in different scheme of loose callus induction and the different culture condition. The result shows that:The most suitable hormone combination of loose callus induction is:MS+2,4-D0.6mg/L+KT0.4mg/L,in which the callus is humid, loose and colorful. The most suitable hormone combination of liquid culture callus is NAA0.2mg/L+2,4-D1.0mg/L+BA0.5mg/L.When using the callus of first generation, callus of subculture two times and callus of subculture four times, the first generation is the best one, which has the highest cell dispersion in suspension cell lines.Adding 500mg/L casein hydrolysate in medium can promote the growth of suspension cell and increase the biomass of suspension cell lines. In the culture of oscillation,the rotation speed should lower than 120rpm,and 110rpm is the most suitable.
     (3)Studies on the preparation of starch nanometer gene vector and the modification in the surface of the vector, the result shows that:the optimal experimental scheme of the preparation of starch nanometer gene vector(SNGC) is:starch concentration 15%, stirring speed 2000rpm, volume ratio of oil and water 15:1,phosphorus oxychloride 0.05%.Taking modification in the surface of the starch nanometer gene vector (SNGC) by using polylysine (PLL).When the mass ratio between the PLL and the SNGC are different,the electric charge on the vector are different. When SNGC:PLL(M:M)=2:1, the electric charge on the vector are saturated. The modified PLL-SNGC are spherical particle and the size are almost uniform and well dispersive. The PLL-SNGC and Cs-PLL-SNGC vector which modified by polylysine (PLL) and water-soluble quantum dots(CdSe) both can combined with DNA molecular.
     (4)Studies on nanometer gene vector on callus and suspension cell transformation of Jatropha curcas show that:The callus treated by PLL-SNGC and Cs-PLL-SNGC grow well, the vectors has no cytotoxicity or little. There is no effect on normal cell growth an division. So they can both used as vector in genetic transformation of Jatropha curcas.Eithei of two kind of vector has no significantly effect on callus transformation. But both of them has significantly effect on suspension cell transformation and can be self-degraded in cells, which have good biocompatibility. In the suspension cell transformation of Jatropha curcas,the best ultrasonic time is 10min.
引文
[1]郭勇,崔堂兵,谢秀祯.植物细胞培养技术与应用[M].化学工业出版社,2003.12
    [2]刘欣,薛金芝,赵丹,等.植物组织培养技术在林木育种中的应用[J].吉林林业科技,2007,36(3):21-25.
    [3]李志勇.细胞工程[M].科学出版社,2003.45
    [4]于曙明.贵州的麻疯树资源及其开发利用研究[J].西部林学,2006,35(3):14-17.
    [5]武志杰,宗文君.麻风树开辟能源植物利用的新前景[J].科学新闻,2007,14:15.
    [6]邓邵林.极具开发前景的生物能源树种——麻风树[J].广西林业,2005,6:44-45.
    [7]国家林业局国有林场和林木种苗工作总站.中国木本植物种子[M].北京:中国林业出版社,2000:647-649.
    [8]中国树木志编委会.中国树木志[M].中国林业出版社,1997.283-285.
    [9]杨顺林,范月清,沙毓沧,等.麻风树资源的分布及综合开发利用前景[J].西南农业学报,2006,19(9):447-452.
    [10]佘珠花,刘大川,刘金波,等.麻疯树籽油理化特性和脂肪酸组成分析[J].中国油脂,2005,30(5):36-37.
    [11]李维莉,杨辉,林南英,等.可再生能源麻疯树种子油化学成分研究[J].云南大学学报(自然科学版),2000,22(5):324-324.
    [12]Grimm C. Evaluation of damage to physic nut(Jatropha cuscas)by true bugs[J].Entomologia Experimentalis et Applicata,1999(92):127-136.
    [13]阎书一,梁渠,和丽丽等.麻风树种子中毒蛋白的提取分离研究[J].四川化
    工,2004,4(7):4-6.
    [14]Mott K(ed).Plant Molluscicides[M].NewYork Wiley Sons,Ltd.1987:326-329.
    [15]程忠跃,黄四喜,曾庆海,等.不同产地麻风树素室内浸杀灭螺效果比较[J].中国吸虫病防治杂志,2001,13(4):221.
    [16]李洁,钱万红,黄轶听,等.植物灭螺药物研究进展[J].中国吸虫病防治杂志,2002,14(1):67-69.
    [17]Sujatha M., Reddy T. P., Mahasi, M. J.Role of biotechnological inter-ventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. [J] [J].Biotechnology Advances,2008.26:5,424-435.
    [18]魏琴,廖毅,周黎军等.麻疯树毒蛋白(curcin)的抗真菌活性研究[J].中国油料作物学报,2004,26(3):72-75.
    [19]蒋华梅,杨松,胡德禹等.麻疯树Curcin蛋白农药和医用生物活性研究进展[J].农药,2007,01(46):10-13.
    [20]李化,曾妮,贾勇炯,等.麻疯树的促芽分枝快繁及生根诱导[J].四川大学学报(自然科学版),2006,43(5):1116-1120.
    [21]陈金红,陈金洪,高敏,等.麻疯树茎段离体培养及快速繁殖研究研究了麻风树的茎段离体培养和快速繁殖[J].广西农业科学,2006,37(3),221-223.
    [22]林娟,唐琳,陈放.麻疯树的组织培养及植株再生[J].植物生理学通讯,2002,39(3):252.
    [23]Wei Q.Plant Regeneration from Epicotyl Explant of Jatropha curcas, Journal of Plant Physiology and Molecular Biology,2004,30(4):475-478.
    [24]陆伟达.麻疯树愈伤组织的诱导及快速繁殖[J].应用与环境生物学报2003,9(2):127-130.
    [25]秦虹,宋松泉,龙春林,等.小桐子的组织培养和植株再生[J].云南植物研究,2006,28(6):649-652.
    [26]Meiru Li,etc. Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas [J].Plant Cell Tiss Organ Cult (2008) 92:173-181.
    [27]陆伟达,魏琴,唐琳,等.麻疯树愈伤组织的诱导及快速繁殖[J].应用与环境生物学报,2003,9(2);127-130.
    [28]任琛.麻疯树花药愈伤组织诱导的初步研究[J].四川大学学报(自然科学版),2006,43(3):717-719.
    [29]侯佩,张淑文,杨琳,等.麻疯树胚乳愈伤组织诱导及其污染消除[J].应用与环境生物学报,2006,12(2):264-268.
    [30]Mukul M D, Priyanka M, Biswajit G, et al. In vitro clonal propagation of biodiesel plant (Jatropha curcas L.) [J].Current Science,2007,93(10):1438-1442. [31] Kalimuthu K,Paulsamy S,Senthilkumar R,et al. In vitro Propagation of the Biodiesel
    Plant Jatropha curcas L. [J].Plant Tissue Cult.& Biotech.2007,17(2):137-147.
    [32]Sarika S,Meenakshi B. In vitro clonal propagation of physic nut(Jatr-opha curcas L.):influence of additives[J].International Journal of Integrat-ive Biology.2008.3:73-79.
    [33]Verma, K. C. Gaur, A. K. Singh, U. S.Evaluation of in vitro responses from different explants of elite Jatropha curcas L.[J]. Indian Journal of Plant Physiology.2008.13:3, 231-237.8 ref.
    [34]Johnson T S, Deore A C. High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.:an important biodiesel plant[J]. Plant Biotechnol Rep,2008.2(1):7-11.
    [35]Timir B J, Mukherjee P, Datta MM, Somatic embryogenesis in Jatropha curcas L., an important biofuel plant[J].Plant Biotechnol Rep,2007,1(3):135-140.
    [36]Dehgan B. Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae) [J]. Symtematic Botany,1984,9(4):467-478.
    [37]王兆玉,林敬明,增富.几个不同产地的小油桐种子含油率及其脂肪酸组成[J].南方医科大学学报,2008;28(6)
    [38]李美茄,洪清,国江.影响农杆菌介导的麻疯树基因转化因素的研究(简报)[J].分子细胞生物学报,2006,39(1):83-89.
    [39]Meiru Li. Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas[J].Plant Cell Tiss Organ Cult (2008) 92:173-181.
    [40]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.123-125.
    [41]黄世文,卓仁禧.高分子基因传递载体研究进展[J].科学通报,2003,48(5):405-409.
    [42]Suzuki R, Yamada Y, Harashima H. Development of small, homogene-ous pDNA particles condensed with mono-cationic detergents and encapsu-lated in a multifunctional envelope-type nano device [J]. Biol. Pharm. Bull., 2008,31(6):1237-1243.
    [43]王海,王友法.纳米羟基磷石灰在药物载体中的应用[J].精细与专用化学品,2006,14(1):9-11.
    [44]张建华,高秉仁,李斌,等.纳米基因载体的研究进展[J].微创医学,2007,42(2):125-127.
    [45]向娟娟,朱诗国,吕红斌,等.用氧化铁磁性纳米颗粒作为基因载体的研究[J].癌症,2001,20(10):1009-1014.
    [46]Stephen J R. Rise of the nanomachines[J], Nat. Biotech,2003,21(8):872-873.
    [47]Chavany C,Le-Doan T,Couvreur P, et a.l Polyalkylcyanoacrylate nanop- artleles as polymeric carriers for antisense oligonucleotides[J]. PharmRes,1992,9(4): 441-449.
    [48]Cui Z, Mumper R J. Plasmid DNA-entrapped nanopaticles engineered from microemulsion precursors:in vitro and in vivo evaluation [J]. Biocon-jugChem,2002,13(6):1319~1327.
    [49]Roy I, Ohulchanskyy T Y, Bharali D J, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers:A nonviral, nanomedicine approach for gene delivery.[J].Proc. Natl. Acad. Sci,2005,102(1):279-284.
    [50]Bielinska A U, Kukowska J F, Baker J R. The interaction of plasmid DNA with polyamidoamine dendrimers:mechanism of complex formation and analysis of alterstions induced in nuclease sensitivity and transcriptio-nal activity of the complexed DNA. Biochem. Biophys. Acta.,1997,1353 (2):180-190.
    [51]刘俊.基于纳米颗粒的植物转基因及其检测研究[D].湖南大学,2005.
    [52]胡云霞,原续波,张晓金.阳离子多雍物纳米基因载体系统的研究进展[J].北京生物医学工程,2003,22(4):299.
    [53]Gil-Jae Jeong,Hyang-Min Byum,Jung Mogg Kim,etal.Biodistribution and tissue expression kinetics of plasmid DNA comPlexed with polyethyle-nimines of different molecular weight and structure[J].Controlled Release,2007,118 (1):118-125.
    [54]GomezValades A QMolas M, Vidal-Alabro A, et al.Copolymers of poly-L-lysine with serine and tryptophan form stable DNA vectors:implications for receptor-mediated gene transfer[J].Controlled Release,2005,102:277.
    [55]Liu Z H,Li M Y,Cui D F,et al.Macro-branched cell-penetrating peptide peptide design for gene delivery[J]. Controlled Release,2005,102:699.
    [56]朱诗国,吕红斌,向娟娟,等.一种新型的非病毒DNA传递载体.多聚赖氨酸硅纳米颗粒[J].科学通报,2002,47(3):193.
    [57]Zhu S G, Lu H B, Xiang J J, et al. A novel nonviral nanoparticle gene Vector:poly L-lysine silica nanoparticles[J]. Chin Sci Bull,2002,47(8):654.
    [58]Lee H, Jeony J H, Park T G. A new gene delivery formulation of poly ethylenimine/DNA complexes coated with PEG conjugated fusogenic peptide[J].Controlled Release,2000,76(1-2):183.
    [59]Chemin I,Moradpour D,Wieland S, et al. Liver-directed gene transfer: alinearpolyethylenimine derivativemediates highly efficientDNA deliv-ery to primary hepatocytes in vitro and vivo[J]. JViralHepat,1998,5(6):369.
    [60]Katakura H, Harada A, Kataoka K, et al. Improvement of retroviral vectors by coating with poly (ethylene glycol)-poly(L-lysine) block copol-ymer (PEG-PLL)[J] Gene Med.,2004,6(4):471-477.
    [61]Eichman J D, Bielinska A U, Kukowska-Latallo J F,et al. The use of PAMAM dendrimers for the efficient transfer of genetic material intocells [J]. Pharmaceutical Sci& Technol Today,2000,3(7):232-245.
    [62]Lee K Y,Kwon I C,Kim Y H,et al.Preparation of chitosan self-aggregate as a gene delivery system[J].Cotrolled Release,1998,51:213.
    [63]Hyuk S Y, Jung E L, Hesson Chung, et al. Selfassembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery[J]. Controlled Release,2005,103:235.
    [64]Thanou M,Florea B I,Geldof M,et al.Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines[J].Biomaterial,2002, 23:153.
    [65]Tae Hee Kim,Jong Eun Ihm,Yun Jaie Choi,et al.Efficient gene delivery by urocanic acid-modified chitosan[J].Controlled Release,2003,93:389.
    [66]Mao Haiquan,Krishnendu Roy,Vu L,et al.Chitosan-DNA nanparticles as gene carriers:synthesis,character-ization and transfection efficiency[J]. Controlled Release,2001,70:399.
    [67]Mona Guptaa,Ajay Kumar Gupta.Hydrogel pullulan nanoparticles encapsulating pBUDLacZ plasmid as an efficient gene delivery carrier[J]. Controlled Release,2004,99:157.
    [68]肖苏尧,刘选明,童春义,等.多聚赖氨酸淀粉纳米颗粒基因载体的研制及应用[J].中国科学,2004,34(6):473.
    [69]刘俊,刘选明,肖苏尧,等.基于超声波下淀粉纳米颗粒作载体的基因转导[J].高等学校化学学报,2002,6(4):634.
    [70]ZhuS H, Husng B Y, Zhou K C, et al.Hydroxyapatite nanoparicles as a novel gene carrier[J].Nanoparticle Research,2004,6:307.
    [71]Carsten K, Mohammad S, Eleonore G H,et al.Silica nanoparticles modi- fied with aminosilanes as carriers for plasnid DNA[J]. Pharmaceutice,2000, 196:257.
    [72]Jon Dobson. Magnetic nanoparticles for drugdevelivery[J].Drug Devel-opment Research,2006,67:55.
    [73]Sandhu K K, McIntosh C M, Simard J M, et al. Gold nanoparticles mediated transfection of mammalian cells[J]. Bioconjugate Chem.,2002,13(1):3-6.
    [74]Kumar M N R, Sameti M, Mohapatra S S, et al. Cationic silica nanoparticles as gene carriers:synthesis, characterization and transfection efficiency in vitro and in vivo[J]. Nanosci. Nanotechnol.,2004,4(7):876-881.
    [75]韦卫中,吴华.阳离子聚合物纳米基因载体的研究进展[J].医学研究生学报,2004,17(4):355-357.
    [76]Parker A L, Oupicky D, Dash P R, et al. Methodologies for mon-itoring nanoparticles formation by self-assembly of DNA withpoly(L-Lysine) [J]. Anal. Biochem.,2002,302(1): 75-80.
    [77]Densmore C L. Advances in noninvasive pulmonary gene therapy[J]. Curr Drug Deliv,2006,3(1):55-63.
    [78]金荣,钟致远,Johan F. J. Engbersen,等.基于碳水化合物的阳离子聚合物载体在基因释放中的应用[J].高分子通报,2007,6:1-7.
    [79]张建华,高秉仁,李斌,等.纳米基因载体的研究进展[J].微创医学,2007,2(2):125-127.
    [80]陈玲,丁卫,李晓玺,等.天然高分子纳米颗粒基因载体的研究进展[J].材料导报,2007,21(10):32-34.
    [81]李新新,侯森,冯喜增.无机纳米粒子作为基因载体的研究进展[J].生命科学,2008,20(3):402-407.
    [82]傅荣昭,孙勇如,贾士荣.植物遗传转化手册[M].北京:中国科学技术出版社,1995.9-11.
    [83]高俊山,林毅,叶兴国,等.植物转基因技术和方法概述[J].安徽农业科学,2003,31(5):802-805.
    [84]Vasil V, Castillo A M, FrommM E, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus [J]. Nat. Biotechnol.,1992,10:667-674.
    [85]明小天,苑华毅,王莉江,等.通过基因枪提高根癌农杆菌的转化水稻的效率[J].植物学报,2001,43(1):72-73.
    [86]Kleint T M, Wlofe E D, Wu R, et al. High velocity microprojectiles for delievering nucleid acid into living cells [J]. Nature,1987,327:70-73.
    [87]Philippe V, Horth Y, Pascal F, et al. Enhancement of production and regeneration of embryo genictypeⅡ callus in ZeamPaysl by AgNO3 [J]. Plant Cell Tissue and Organ Culture,1989,18:143-151.
    [88]McCabe D E, Swain W F, Martinell B J, et al. Starle transformation of soybean (glycine max) by particle acceleration [J]. Nat.Biotechnol.,1988, (6):923-926.
    [89]Lindsey K, Jones M G K. Transient gene expression in electropotated protoplast intact cell of sugar beet [J]. Plant Mol Biol,1987,10:43-52.
    [90]李宝健,许新萍,石和平,等.应用电泳注射法将外源基因导入水稻种胚及获得转基因植株的研究[J].中国科学(B),1991,(3):270-275.
    [91]Zhang L J, Cheng L M, Xu N, et al. Efficient transformarion of tobacco by ultrasonication [J]. Nat.Biotechnol.,1991,9:996-997.
    [92]Krens F H. In vitro transformation of plant protoplasts with Ti-plasmid [J]. Nature,1982,296:72.
    [93]马伯军,袁妙葆.一种简便遗传转化技术在大麦中的应用[J].广西植物,1998,18(1):51-53.
    [94]褚启人,叶承道.禾谷类作物外源基因导入及表达的研究进展[J].上海农业大学学报,1991,7(1):90-96.
    [95]牟红梅,刘树俊,周文娟,等.慈姑蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植物分析[J].遗传学报,1999,26(6):634-642.
    [96]曾君祉,王东江.用花粉管途径获得基因植株[J].中国科学,1993,23(3):256-262.
    [97]Langridge P, Brettschneider R, Lazzeri P, et al. Transformation of cereals via Agrobacterium and the pollen pathway:a critical assessment [J]. The Plant Journal,1992,2(4):631-638.
    [98]王瓞,林其谁.阳离子脂质体介导基因转染的最优化条件[J].生命的化学,1997;17(1):32-34.
    [99]郭荣,邹萍,陆华中.非病毒型纳米载体在基因治疗中的研究现状及展望[J].国外医学生物医学工程分册,2002,25(2):77-81.
    [100]喻超,孙诚谊.纳米医学及纳米载体的应用[J].贵州医药,2007,31(10):949-951.
    [101]Yi B, Liu F Y, Zhang H, et al. Gene therapy of mice peritoneal fibrosis by nano-carrier pamam mediated pCTGF-shRNA [J].Cell Biology Interna-tional,2008,32:S7.
    [102]Guo W, Lec R J. Efficient gene delivery via non-covalent complexes of folic acid and polyethylenimine [J]. J. Control Release,2001,77 (1-2):131.
    [103]Zhu S G, Gan K, Li Z, et al. Biocompatibility of polyllysine-modified silica nanoparticles [J]. Cancer,2003,22(10):1114.
    [104]Corsi K, Chellat F, Yahia L H, et al. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles [J]. Biomaterials,2003,24:1255-1264.
    [105]Chemin I, Moradpour D, Wieland S, et al. Liver-directed gene transfer:a linear polyethylenimine denvative mediates highly efficient DNA delivery to primary hepatocytes in vitro and in vivo [J]. J Viral Hepat,1998,5(6):369.
    [106]Takefumi S, Eiji N, Tomohiko I, et al. A novel gene delivery system in plants with calciumalginate micro-beads [J]. J. Biosci. Bioeng.,2002,94(1): 87-91.
    [107]Torney F, Trewyn B G, Lin V S Y, et al. Mesoporous silica nanopar-ticles deliver DNA and chemicals into plants [J]. Nat. Nanotech.,2007,2:295-300.
    [108]Liu J, Liu X M, Xiao S Y, et al. Bioconjugated nanoparticle for DNA protection from ultrasound damage [J]. Anal. Sci.,2005,21:193-195.
    [109]宋瑜,李颖,崔海信,等.两种阳离子纳米基因载体及植物基因介导效果的研究[J].生物技术通报,2009,6:75-80.
    [110]王风华,刘俊,唐冬英,等.基于壳聚糖纳米颗粒的基因枪法转化洋葱细胞研究[J].湖南大学学报(自然科学版),2009,36(5):67-70.
    [111]陈正华.木本植物组织培养及其应用[M].北京:高等教育出版社,1986.
    [112]崔凯荣,邢更生,秦琳,等.利用mRNA差别显示技术分析枸杞体细胞胚发生早期基因的差别表达[J].遗传,1998,20(5):16-19.
    [113]Lou H, Kako S.Somatic embryogenesis and plant regeneration in cucumber[J]. HortSci,1994,(1):906-909.
    [114]卜学贤,陈维伦.试管植物的玻璃化现象[J].植物生理学通讯,1987,(5):13-18.
    [115]刑世岩.木本植物组织培养玻璃化的成因和控制[J].泰安林业科技,2000,17(2):11-14,37.
    [116]王小菁,李玲.植物生长调节剂在植物组织培养中的应用[M].化学工业出版社,2002:89-101.
    [117]王蒂.植物组织培养[M].中国农业出版社,2004:156-160.
    [118]徐晓风,黄学林.TDZ:一种有效地植物生长调节剂[J].植物学通报,2003,20(2):227-237.
    [119]陈肖英,叶庆生,刘伟.TDZ研究进展(综述)[J].亚热带植物科学,2003,32(3):59-63.
    [120]林荣双,王庆华,梁丽琨,等.TDZ诱导花生幼叶的不定芽和体细胞胚胎发生[J].植物研究,2002,23:169-172.
    [121]ChenJ T, Chang W C.Effect of auxin and cytokinins on direct somatic embryogenesis on leaf expalnt of Oncidium'Gower Ramsey'[J].Plant Growth Regul,2001,34:229-232.
    [122]Murthy B N S, Murch S J,Saxena P K.Thidiazuron:a potent regulator of in vitro plant morphogenesis[J].In Vitro Cell Dev Biol-Plant,1998,34:267-275.
    [123]赵桂兰,刘艳芝,尹爱平.大豆花药培养中胚状体萌发的研究[J].科学通报,1998,43:1512-1516.
    [124]Ashok K H QMurthy H N,Paek K Y.Embryogenesis and plant regene-ration from anther cultures of Cucumis sativus L[J]. Sci Hortic,2003,98: 213-222.
    [125]徐华松,徐九龙,黄学林.TDZ在植物组织培养中的作用[J].广西植物,1996,16:77-80.
    [126]Perez T O,et al.Advenititous shoot regeneration from in vitro cultured leaves of paricot[J].Horticulturae,2000,538:659-662.
    [127]王关林,方宏筠,那杰.高活性细胞激动素TDZ在植物组织培养中的应用[J].植物学通报,1997,14(3):47-53.
    [128]刘用生,李友勇.植物织织培养中活性炭的使用[J].植物生理学通讯,1994.30(3):214-217.
    [129]刘根林,朱军.活性炭在植物组织培养中的概述[J].江苏林业科技,2001,28(5):46-48.
    [130]刘用生,曾兆云.活性炭吸附作用的生物鉴定[J].植物生理学通讯,1995,31(2):123-126.
    [131]孙雁霞,石大兴,王米力,等.山苍子组织培养快速繁殖技术研究[J].四川林业科技,2002,23(1):25-29.
    [132]Perez C, Sanchez A, Putnam D, et al.Poly(lactic acid)-poly(ethylene-glycol) nanoparticles as carriers for the delivery of plasmid DNA[J].Control Release,2001,75(1-3):211-224.
    [133]Prabhaa S, Zhou W Z, Panyama J, et al. Size-dependency of nanopar-ticle-mediated gene transfection:studies with fractionated nanoparticles [J]. Int. J. Pharm.,2002,244(1-2):105-115.
    [134]Reschel T, Konak C, Oupicky D, et al. Physical properties and in vitro transfection efficiency of gene delivery vectors based on complexes of DNA with synthetic polycations [J]. J. Control Release,2002,81(1-2):201-217.
    [135]Pouton C W, Seymour L W. Adv Drug Delivery Rev,2001,46 (2-3):187-203.
    [136]Miller D L, Thomas R M. Ultrasonic gas body activation in Elodea leaves and the mechanical index. Ultra. Med. Biol.,1993,19(4):343-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700