碳纳米管的功能化及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管在生物、医药、电子、能源、国防等领域具有广泛的应用前景。然而,碳纳米管的功能化,尤其是在水中的溶解性是其迈向实际应用的关键所在。因此,碳纳米管的功能化是继碳纳米管制备与纯化之后的一大研究课题。本文着重综述了碳纳米管的水溶性改性研究进展以及水溶性碳纳米管在生物传感器领域的应用状况,并进行了以下四个方面的研究工作:
     (1)利用K_2S_2O_8对碳纳米管中的石墨碎片的优先氧化特性,在稀酸溶液条件下对碳纳米管进行处理以除去碳纳米管中的无定形碳杂质,设计合成了两亲性高分子水解苯乙烯-马来酸酐共聚物,采用水解苯乙烯-马来酸酐共聚物辅助剥离-离心的方法制备了聚合物包覆改性的碳纳米管,以提高碳纳米管的亲水性。并用紫外光谱、红外光谱、透射电镜、扫描电镜、热重分析、荧光光谱等手段对改性前后的碳纳米管进行了表征。结果表明,聚合物成功地包覆到碳纳米管上,所得聚合物-碳纳米管复合物具有很高的水溶性,溶解度为29.2 mg/mL,碳纳米管的净浓度高达8.7 mg/mL。
     (2)为了进一步提高碳纳米管的水溶性,在工作(1)的基础上,在两亲性高分子水解苯乙烯-马来酸酐共聚物中引入芘基团,以强化与碳纳米管的作用,采用含芘基水解苯乙烯-马来酸酐共聚物辅助剥离-离心的方法制备了聚合物改性的碳纳米管,提高碳纳米管的亲水性,并实现聚合物对碳纳米管的不可逆包覆。用紫外光谱、红外光谱、透射电镜、扫描电镜、热重分析、荧光光谱、时间分辨荧光光谱等手段对改性前后的碳纳米管进行了表征。结果表明,聚合物成功地包覆到碳纳米管上,并且聚合物与碳纳米管之间有很强的相互作用。所得聚合物-碳纳米管复合物具有很高的水溶性,溶解度为46.2 mg/mL,MWNTs的净浓度为7.4 mg/mL。
     (3)对碳纳米管进行温和氧化产生表面羟基,通过生成的羟基将柠檬酸接枝到碳纳米管表面,并将其作为接枝点使山梨醇与柠檬酸缩合聚合以实现生物相容性聚合物改性的碳纳米管。利用缩合接枝上的聚合物上羟基的弱还原性,实现金属纳米颗粒在碳纳米管表面的原位负载。并用红外光谱、透射电镜、扫描电镜、热重分析等手段对改性前后的碳纳米管进行了表征。该方法有下列优点:a.碳纳米管水溶性改性时不使用溶剂,是一种绿色环保的碳纳米管化学功能化;b.改性的碳纳米管在水中的分散性可通过加入的反应物的摩尔比进行调节;c.利用改性碳纳米管上的功能基团,如羧基和羟基可实现对碳纳米管的进一步功能化改性以制备碳纳米管基功能复合材料,如生物传感器、金属纳米催化剂。
     (4)将前述工作(3)中制备的改性碳纳米管应用于生物传感器技术。采用电化学循环伏安法以及电流时间法研究水溶性碳纳米管修饰电极对生物酶的固定、对生物酶的电化学生物活性的影响。结果表明,工作(3)制备的水溶性碳纳米管可以在不使用任何交联剂条件下用于固酶修饰电极。电化学测试表明,碳纳米管易于提高电极的响应电流,并且能保持酶对葡萄糖的生物催化活性。
Water-soluble carbon nanotubes (CNTs) have great potential in the applications of biology, medicine, electronics, energy, and national defense etc.. The functionalization of CNTs, especially the water solubilization of CNTs is the key to the real applications. Thus, functionalization of CNTs becomes as important as their preparation and purification. This dissertation reviews the development and the current status of water solubilization of CNTs, explores the applications of water soluble CNTs in biosensors, and presents the main research contents and results which are listed as follows:
     1. Multi-walled carbon nanotubes (MWNTs) were treated with K_2S_2O_8 under a mild acidic condition to remove the amorphous carbon impurities. Polymer dispersant hydrolyzed poly(styrene-co-maleic anhydride) (HSMA) was synthesized and used to prepare water soluble MWNTs by an assisted exfoliation and centrifugation. Characterizations of transmission electron microscopy (TEM), UV-vis, fluorescence spectroscopy, and thermal gravimetric analysis (TGA) showed that the as-prepared HSMA-coated MWNTs showed good dissolvability and stability in water with a high solubility of 29.2 mg/mL. The net MWNT solubility reached 8.7 mg/mL.
     2. In order to further improve the solubility of CNTs, HSMA were derivatized with pyrene to prepare a polymer of HSMA carrying pyrene (HPSMAP), and used to solublize CNTs in water based upon the above-developed dispersant assisted exfoliation and centrifugation, resulting in a highly water-soluble multi-walled carbon nanotubes by irreversible noncovalent functionalization of HPSMAP. Characterizations of TEM, UV-vis, fluorescence spectroscopy, and TGA were conducted. The results showed that HPSMAP wrapped on MWNTs tightly with strong interaction. The composite of HPSMAP-MWNTs showed a high solubility of 46.2 mg/mL. The net MWNT solubility reached 7.4 mg/mL.
     3. Hydroxyl groups were induced by a mild oxidization of CNTs, and utilized to graft citric acid. The grafted citric were utilized to connect the polymer of citric acid and D-sorbitol by condensation through heating initiation of an anhydride intermediate without any catalysts, solvents, or harsh acid. Thus, multihydroxyl and multicarboxyl groups were introduced onto the surface of MWNTs, making MWNTs soluble in water. Ag nanoparticles were in situ loaded onto the water soluble MWNTs through the mild reduction of Ag~+ by hydroxyl groups in aqueous solution. The as-described method has the following advantages: (a) It is a green functionalization of CNTs without using any solvents. (b) The solubility of the modified CNTs can be controlled by adjusting the mole ratio of the reactants. (c) Utilizing the hydroxyl and carboxyl groups, further functionalization of CNTs can be conducted targeting CNT-based materials for applications such as biosensors and nanocatalysis.
     4. Water soluble CNTs prepared by the above described condensation of citric acid and D-sorbitol were used for biosensors application. The immobilization of enzyme and the electrochemical catalysis of the immobilized enzyme on the CNT-modified electrodes were investigated. The results showed that CNTs modified by citric acid and D-sorbitol were able to immobilize enzyme firmly in the absence of any other cross-linking agent. The modified CNTs enhanced the current greatly and maintained the biocatalytic activity of enzyme well toward the reactants.
引文
1. Iijima S., Helica microtubules of graphitic carbon. Nature 1991, 345(6348): 56-58.
    
    2. Peng H. Y., Wang N., Zheng Y. F., Lifshitz Y, Kulik J., Zhang R. Q., Lee C. S., Lee S. T., Smallest diameter carbon nanotubes. Applied Physics Letters 2000,77(18): 2831-2833.
    
    3. Pan Z. W, Xie S. S., Chang B. H., Wang C. Y, Lu L, Liu W, Zhou M. Y, Li W. Z., Very long carbon nanotubes. Nature 1998, 394(6694): 631-632.
    
    4. Wong E. W., Sheehan P. E., Lieber C. M., Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277(5334): 1971-1975.
    
    5. Li R, Cheng H. M., Bai S., Su G., Dresselhaus M. S., Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. Applied Physics letters 2000, 77(20): 3161-3163.
    
    6. Yu M. R, Files B. S., Arepalli S., Ruoff R. S., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters 2000, 84(24): 5552-5555.
    
    7. Iijima S. Ichihashi T. , Single-shell carbon nanotubes of 1-nm diameter Nature 1993,363: 603-605.
    
    8. Mizoguti E., Nihey R, Yudasaka M., Iijima S., Ichihashi T., Nakamura K., Purification of single-wall carbon nanotubes by using ultrafine gold particles. Chemical Physics Letters 2000, 321(3-4): 297-301.
    
    9. Bandow S., Rao A. M, Williams K. A., Thess A., Smalley R. E., Eklund P. C., Purification of single-wall carbon nanotubes by microfiltration. Journal of Physical Chemistry B 1997, 101(44): 8839-8842.
    
    10. Ebbesen T. W. A. P. M., Hiura H., Tanigaki K., Purification of nanotubes Nature 1994, 367: 519 -519
    
    11. Dillon A. C., Gennett T., Jones K. M., Alleman J. L., Parilla P. A., Heben M. J., A simple and complete purification of single-walled carbon nanotube materials. Advanced Materials 1999, 11(16): 1354-1358.
    12. Duesberg G. S., Burghard M., Muster J., Philipp G, Roth S., Separation of carbon nanotubes by size exclusion chromatography. Chemical Communications 1998, (3): 435-436.
    
    13. Li F., Cheng H. M., Xing Y. T., Tan P. H., Su G, Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons. Carbon 2000,38(14): 2041-2045.
    
    14. Zou H. L., Yang Y. L., Wu B., Qing Q., Li Q. W., Zhang J., Liu Z. R, Purification and characterization of single-walled carbon nanotubes synthesized by chemical vapor deposition. Acta Physico-Chimica Sinica 2002, 18(5): 409-413.
    
    15. Tasis D., Tagmatarchis N., Bianco A., Prato M., Chemistry of carbon nanotubes. Chemical Reviews 2006,106(3): 1105-1136.
    
    16. Hamwi A., Alvergnat H., Bonnamy S., Beguin R, Fluorination of carbon nanotubes. Carbon 1997, 35(6): 723-728.
    
    17. Mickelson E. T., Huffman C. B., Rinzler A. G., Smalley R. E., Hauge R. H., Margrave J. L., Fluorination of single-wall carbon nanotubes. Chemical Physics Letters 1998,296(1-2): 188-194.
    
    18. Touhara H., Okino F., Property control of carbon materials by fluorination. Carbon 2000,38(2): 241-267.
    
    19. Yudanov N. R, Okotrub A. V., Shubin Y. V., Yudanova L. I., Bulusheva L. G., Chuvilin A. L., Bonard J. M., Fluorination of arc-produced carbon material containing multiwall nanotubes. Chemistry of Materials 2002, 14(4): 1472-1476.
    
    20. Touhara H., Inahara J., Mizuno T., Yokoyama Y, Okanao S., Yanagiuch K., Mukopadhyay I., Kawasaki S., Okino R, Shirai H., Xu W. H., Kyotani T., Tomita A., Property control of new forms of carbon materials by fluorination. Journal of Fluorine Chemistry 2002,114(2): 181-188.
    
    21. Kawasaki S., Komatsu K., Okino R, Touhara H., Kataura H., Fluorination of open- and closed-end single-walled carbon nanotubes. Physical Chemistry Chemical Physics 2004, 6(8): 1769-1772.
    
    22. Gu Z., Peng H., Hauge R. H., Smalley R. E., Margrave J. L., Cutting single-wall carbon nanotubes through fluorination. Nano Letters 2002, 2(9): 1009-1013.
    
    23. Mickelson E. T., Chiang I. W., Zimmerman J. L, Boul P. J., Lozano J., Liu J., Smalley R. E., Hauge R. H., Margrave J. L., Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. Journal of Physical Chemistry B 1999,103(21): 4318-4322.
    
    24. Khabashesku V. N. B. W. E., Margrave J. L., Fluorination of Single-Wall Carbon Nanotubes and Subsequent Derivatization Reactions Accounts of Chemical Research 2002, 35(12): 1087-1095.
    
    25. Boul P. J., Liu J., Mickelson E. T., Huffman C. B., Ericson L. M., Chiang I. W., Smith K. A., Colbert D. T., Hauge R. H., Margrave J. L., Smalley R. E., Reversible sidewall functionalization of buckytubes. Chemical Physics Letters 1999,310(3-4): 367-372.
    
    26. Saini R. K. C. I. W., Peng H, Smalley R. E., Billups W. E., Hauge R. H., Margrave J. L., Covalent Sidewall Functionalization of Single Wall Carbon Nanotubes Journal of American Chemical Society 2003,125(12): 3617-3621.
    
    27. Stevens J. L., Huang A. Y., Peng H. Q., Chiang L. W., Khabashesku V. N., Margrave J. L., Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Letters 2003, 3(3): 331-336.
    
    28. Zhang L. K. V. U., Peng H., Zhu J., Lobo R. F. M., Margrave J. L., Khabashesku V. N., Sidewall Functionalization of Single-Walled Carbon Nanotubes with Hydroxyl Group-Terminated Moieties Chemistry of Materials 2004,16(11): 2055-2061.
    
    29. Chen Y., Haddon R. C., Fang S., Rao A. M., Lee W. H., Dickey E. C, Grulke E. A., Pendergrass J. C, Chavan A., Haley B. E., Smalley R. E., Chemical attachment of organic functional groups to single-walled carbon nanotube material. Journal of Materials Research 1998, 13(9): 2423-2431.
    
    30. Chen J., Hamon M. A., Hu H., Chen Y. S., Rao A. M., Eklund P. C., Haddon R. C., Solution properties of single-walled carbon nanotubes. Science 1998, 282(5386): 95-98.
    31. Lee W. H., Kim S. J., Lee W. J., Lee J. G., Haddon R. C., Reucroft P. J., X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material. Applied Surface Science 2001, 181(1-2): 121-127.
    
    32. Kamaras K., Itkis M. E., Hu H., Zhao B., Haddon R. C, Covalent bond formation to a carbon nanotube metal. Science 2003, 301(5639): 1501-1501.
    
    33. Hu H., Zhao B., Hamon M. A., Kamaras K., Itkis M. E., Haddon R. C., Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. Journal of the American Chemical Society 2003, 125(48): 14893-14900.
    
    34. Hirsch A., Functionalization of single-walled carbon nanotubes. Angewandte Chemie-International Edition 2002,41 (11): 1853-1859.
    
    35. Holzinger M., Vostrowsky O., Hirsch A., Hennrich F., Kappes M., Weiss R., Jellen F., Sidewall functionalization of carbon nanotubes. Angewandte Chemie-International Edition 2001,40(21): 4002-4005.
    
    36. Bianco A., Prato M., Can carbon nanotubes be considered useful tools for biological applications? Advanced Materials 2003,15(20): 1765-1768.
    
    37. Bianco A., Kostarelos K., Partidos C. D., Prato M., Biomedical applications of functionalised carbon nanotubes. Chemical Communications 2005, (5): 571-577.
    
    38. Georgakilas V., Tagmatarchis N., Pantarotto D., Bianco A., Briand J. P., Prato M., Amino acid functionalisation of water soluble carbon nanotubes. Chemical Communications 2002, (24): 3050-3051.
    
    39. Pantarotto D., Partidos C. D., Graff R., Hoebeke J., Briand J. P., Prato M., Bianco A., Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. Journal of the American Chemical Society 2003,125(20): 6160-6164.
    
    40. Pantarotto D., Singh R., McCarthy D., Erhardt M., Briand J. P., Prato M., Kostarelos K., Bianco A., Functionalized carbon nanotubes for plasmid DNA gene delivery. Angewandte Chemie-International Edition 2004, 43(39): 5242-5246.
    
    41. Bianco A., Hoebeke J., Godefroy S., Chaloin O., Pantarotto D., Briand J. P., Muller S., Prato M., Partidos C. D., Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. Journal of the American Chemical Society 2005,127(1): 58-59.
    
    42. Singh R., Pantarotto D., McCarthy D., Chaloin 0., Hoebeke J., Partidos C. D., Briand J. P., Prato M., Bianco A., Kostarelos K., Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. Journal of the American Chemical Society 2005,127(12): 4388-4396.
    
    43. Ni B., Sinnott S. B., Chemical functionalization of carbon nanotubes through energetic radical collisions. Physical Review B 2000, 61(24): R16343-R16346.
    
    44. Bahr J., Yang J., Kosynkin D., Bronikowski M., Smalley R., Tour J., Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. Journal of the American Chemical Society 2001, 123(27): 6536-6542.
    
    45. Marcoux P., Hapiot P., Batail P., Pinson J., Electrochemical functionalization of nanotube films: growth of aryl chains on single-walled carbon nanotubes. New Journal of Chemistry 2004, 28(2): 302-307.
    
    46. Strano M., Dyke C., Usrey M., Barone P., Allen M., Shan H., Kittrell C, Hauge R., Tour J., Smalley R., Electronic structure control of single-walled carbon nanotube functionalization. Science 2003, 301(5639): 1519-1522.
    
    47. Strano M. S., Probing Chiral Selective Reactions Using a Revised Kataura Plot for the Interpretation of Single-Walled Carbon Nanotube Spectroscopy Journal of the American Chemical Society 2003,125(51): 16148-16153.
    
    48. Dyke C. A., Tour J. M., Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Letters 2003, 3(9): 1215-1218.
    
    49. Bahr J. L., Tour J. M., Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chemistry of Materials 2001, 13(11): 3823-3824.
    
    50. Mitchell C. A., Bahr J. L., Arepalli S., Tour J. M., Krishnamoorti R., Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 2002,35(23):8825-8830.
    51.Pham J.Q.,Mitchell C.A.,Bahr J.L.,Tour J.M.,Krishanamoorti R.,Green P.F.,Glass transition of polymer/single-walled carbon nanotube composite films.Journal of Polymer Science Part B-Polymer Physics 2003,41(24):3339-3345.
    52.Hadjiev V.G.,Mitchell C.A.,Arepalli S.,Bahr J.L.,Tour J.M.,Krishnamoorti R.,Thermal mismatch strains in sidewall functionalized carbon nanotube/polystyrene nanocomposites.Journal of Chemical Physics 2005,122(12):124708-124710.
    53.Hudson J.L.,Casavant M.J.,Tour J.M.,Water-soluble,exfoliated,nonroping single-wall carbon nanotubes.Journal of the American Chemical Society 2004,126(36):11158-11159.
    54.Dyke C.A.,Tour J.M.,Solvent-free functionalization of carbon nanotubes.Journal of the American Chemical Society 2003,125(5):1156-1157.
    55.Peng H.Q.,Alemany L.B.,Margrave J.L.,Khabashesku V.N.,Sidewall carboxylic acid functionalization of single-walled carbon nanotubes.Journal of the American Chemical Society 2003,125(49):15174-15182.
    56.Barthos R.,Mehn D.,Demortier A.,Pierard N.,Morciaux Y.,Demortier G.,Fonseca A.,Nagy J.B.,Functionalization of single-walled carbon nanotubes by using alkyl-halides.Carbon 2005,43(2):321-325.
    57.Konya Z.,Vesselenyi I.,Niesz K.,Kukovecz A.,Demortier A.,Fonseca A.,Delhalle J.,Mekhalif Z.,Nagy J.B.,Koos A.A.,Osvath Z.,Kocsonya A.,Biro L.P.,Kiricsi I.,Large scale production of short functionalized carbon nanotubes.Chemical Physics Letters 2002,360(5-6):429-435.
    58.Pan H.L.,Liu L.Q.,Guo Z.X.,Dai L.M.,Zhang F.S.,Zhu D.B.,Czerw R.,Carroll D.L.,Carbon nanotubols from mechanochemical reaction.Nano Letters 2003,3(1):29-32.
    59.Chen S.M.,Shen W.M.,Wu G.Z.,Chen D.Y.,Jiang M.,A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups.Chemical Physics Letters 2005,402(4-6):312-317.
    60.Qin S.H.,Qin D.Q.,Ford W.T.,Herrera J.E.,Resasco D.E.,Bachilo S.M., Weisman R.B.,Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate.Macromolecules 2004,37(11):3965-3967.
    61.Liu Y.Q.,Yao Z.L.,Adronov A.,Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling.Macromolecules 2005,38(4):1172-1179.
    62.Shen J.,Hu Y.,Qin C.,Ye M.,Layer-by-Layer Self-Assembly of Multiwalled Carbon Nanotube Polyelectrolytes Prepared by in Situ Radical Polymerization.Langmuir 2008,ASAP.
    63.Chen S.M.,Wu G.Z.,Liu Y.D.,Long D.W.,Preparation of poly(acrylic acid) grafted multiwalled carbon nanotubes by a two-step irradiation technique.Macromolecules 2006,39(1):330-334.
    64.Wang G.J.,Huang S.Z.,Wang Y.,Liu L.,Qiu J.,Li Y.,Synthesis of water-soluble single-walled carbon nanotubes by RAFT polymerization.Polymer 2007,48(3):728-733.
    65.Ivanov V.,Fonseca A.,Nagy J.B.,Lucas A.,Lambin P.,Bernaerts D.,Zhang X.B.,Catalytic production and purification of nanotubules having fullerene-scale diameters.Carbon 1995,33(12):1727-1738.
    66.Liu J.,Rinzler A.G.,Dai H.J.,Hafner J.H.,Bradley R.K.,Boul P.J.,Lu A.,Iverson T.,Shelimov K.,Huffman C.B.,Rodriguez-Macias F.,Shon Y.S.,Lee T.R.,Colbert D.T.,Smalley R.E.,Fullerene pipes.Science 1998,280(5367):1253-1256.
    67.Li B.,Shi Z.J.,Lian Y.F.,Gu Z.N.,Aqueous soluble single-wall carbon nanotube.Chemistry Letters 2001,(7):598-599.
    68.Pompeo F.,Resasco D.E.,Water solubilization of single-walled carbon nanotubes by functionalization with glucosarnine.Nano Letters 2002,2(4):369-373.
    69.Matsuura K.,Hayashi K.,Kimizuka N.,Lectin-mediated supramolecular junctions of galactose-derivatized single-walled carbon nanotubes.Chemistry Letters 2003,32(3):212-213.
    70.Gu L.R.,Elkin T.,Jiang X.P.,Li H.P.,Lin Y.,Qu L.W.,Tzeng T.R.J., Joseph R., Sun Y. P., Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chemical Communications 2005, (7): 874-876.
    
    71. Williams K. A., Veenhuizen P. T. M., de la Torre B. G, Eritja R., Dekker C, Nanotechnology - Carbon nanotubes with DNA recognition. Nature 2002, 420(6917): 761-761.
    
    72. Dwyer C., Guthold M., Falvo M., Washburn S., Superfine R., Erie D., DNA-functionalized single-walled carbon nanotubes. Nanotechnology 2002, 13(5): 601-604.
    
    73. Dwyer C., Johri V., Cheung M., Patwardhan J., Lebeck A., Sorin D., Design tools for a DNA-guided self-assembling carbon nanotube technology. Nanotechnology 2004,15(9): 1240-1245.
    
    74. Guo M. L., Chen J. H., Liu D. Y., Nie L. H., Yao S. Z., Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry 2004,62(1): 29-35.
    
    75. Nguyen C. V., Delzeit L., Cassell A. M., Li J., Han J., Meyyappan M., Preparation of nucleic acid functionalized carbon nanotube Arrays. Nano Letters 2002, 2(10): 1079-1081.
    
    76. Li J., Ng H. T., Cassell A., Fan W., Chen H., Ye Q., Koehne J., Han J, Meyyappan M., Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Letters 2003,3(5): 597-602.
    
    77. Koehne J., Li J., Cassell A. M., Chen H, Ye Q., Ng H. T., Han J., Meyyappan M., The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays. Journal of Materials Chemistry 2004,14(4): 676-684.
    
    78. He P. G., Dai L. M., Aligned carbon nanotube-DNA electrochemical sensors. Chemical Communications 2004, (3): 348-349.
    
    79. Taft B. J., Lazareck A. D., Withey G. D., Yin A. J., Xu J. M., Kelley S. O., Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes. Journal of the American Chemical Society 2004, 126(40): 12750-12751.
    
    80. Jung D. H., Kim B. H., Ko Y. K., Jung M. S., Jung S., Lee S. Y, Jung H. T., Covalent attachment and hybridization of DNA oligonucleotides on patterned single-walled carbon nanotube films. Langmuir 2004,20(20): 8886-8891.
    
    81. Hazani M., Naaman R., Hennrich F., Kappes M. M, Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Letters 2003, 3(2): 153-155.
    
    82. Baker S. E., Cai W, Lasseter T. L., Weidkamp K. P., Hamers R. J., Covalently Bonded Adducts of Deoxyribonucleic Acid (DNA) Oligonucleotides with Single-Wall Carbon Nanotubes: Synthesis and Hybridization Nano Letters 2002,2(12): 1413-1417.
    
    83. Riggs J. E., Guo Z. X., Carroll D. L., Sun Y. P., Strong luminescence of solubilized carbon nanotubes. Journal of the American Chemical Society 2000,122(24): 5879-5880.
    
    84. Czerw R., Guo Z., Ajayan P. M, Sun Y.-P., Carroll D. L., Organization of Polymers onto Carbon Nanotubes: A Route to Nanoscale Assembly Nano Letters 2001,1(8): 423-427.
    
    85. Lin Y., Rao A. M., Sadanadan B., Kenik E. A., Sun Y. P., Functionalizing multiple-walled carbon nanotubes with aminopolymers. Journal of Physical Chemistry B 2002, 106(6): 1294-1298.
    
    86. Huang W. J., Lin Y, Taylor S., Gaillard J., Rao A. M, Sun Y. P., Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Letters 2002,2(3): 231-234.
    
    87. Lin Y, Hill D. E., Bentley J., Allard L. R, Sun Y.-P., Characterization of Functionalized Single-Walled Carbon Nanotubes at Individual Nanotube-Thin Bundle Level The Journal of Physical Chemistry B 2003, 107(38): 10453-10457.
    
    88. Riggs J. E., Walker D. B., Carroll D. L., Sun Y.-P., Optical Limiting Properties of Suspended and Solubilized Carbon Nanotubes. The Journal of Physical Chemistry B 2000, 104(30): 7071-7076.
    
    89. Yamaguchi 1., Yamamoto T., Soluble self-doped single-walled carbon nanotube. Materials Letters 2004, 58(5): 598-603.
    
    90. Hu H., Ni Y. C., Mandal S. K., Montana V., Zhao N., Haddon R. C., Parpura V., Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. Journal of Physical Chemistry B 2005, 109(10): 4285-4289.
    
    91. Jin Z. X., Sun X., Xu G. Q., Goh S. H., Ji W., Nonlinear optical properties of some polymer/multi-walled carbon nanotube composites. Chemical Physics Letters 2000, 318(6): 505-510.
    
    92. Sano M, Kamino A., Okamura J., Shinkai S., Self-organization of PEO-graft-single-walled carbon nanotubes in solutions and Langmuir-Blodgett films. Langmuir 2001,17(17): 5125-5128.
    
    93. Huang W. J., Fernando S., Allard L. F., Sun Y. P., Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene glycol) in different functionalization reactions. Nano Letters 2003,3(4): 565-568.
    
    94. Huang W. J., Fernando S., Lin Y., Zhou B., Allard L. F., Sun Y. P., Preferential solubilization of smaller single-walled carbon nanotubes in sequential functionalization reactions. Langmuir 2003,19(17): 7084-7088.
    
    95. Zhou B., Lin Y, Li H. P., Huang W. J., Connell J. W., Allard L. F., Sun Y. P., Absorptivity of functionalized single-walled carbon nanotubes in solution. Journal of Physical Chemistry B 2003,107(49): 13588-13592.
    
    96. Lin Y, Zhou B., Fernando K. A. S., Liu P., Allard L. F., Sun Y. P., Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 2003, 36(19): 7199-7204.
    
    97. Paiva M. C., Zhou B., Fernando K. A. S., Lin Y, Kennedy J. M., Sun Y P., Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes. Carbon 2004, 42(14): 2849-2854.
    
    98. Fernando K. A. S., Lin Y, Sun Y P., High aqueous solubility of functionalized single-walled carbon nanotubes. Langmuir 2004, 20(11): 4777.4778.
    
    99. Zhao B., Hu H., Yu A. P., Perea D., Haddon R. C, Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. Journal of the American Chemical Society 2005, 127(22): 8197-8203.
    
    100. Pei X. W., Hao J. C., Liu W. M, Preparation and characterization of carbon nanotubes-polymer/Ag hybrid nanocomposites via surface RAFT polymerization. Journal of Physical Chemistry C 2007, 111(7): 2947-2952.
    
    101. Ke G., Guan W. C., Tang C. Y., Guan W. J., Deng F., Covalent functionalization of multiwalled carbon nanotubes with a low molecular weight chitosan. Biomacromolecules 2007, 8(2): 322-326.
    
    102. Lu X., Imae T., Dendrimer-mediated synthesis of water-dispersible carbon-nanotube-supported oxide nanoparticles. Journal of Physical Chemistry C 2007,111(24): 8459-8462.
    
    103. Lu X., Imae T., Size-controlled in situ synthesis of metal nanoparticles on dendrimer-modified carbon nanotubes. Journal of Physical Chemistry C 2007, 111(6): 2416-2420.
    
    104. Thostenson E. T., Ren Z. R, Chou T. W., Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology 2001, 61(13): 1899-1912.
    
    105. Andrews R., Jacques D., Qian D., Rantell T., Multiwall Carbon Nanotubes: Synthesis and Application Accounts of Chemical Research 2002, 35(12): 1008-1017.
    
    106. Zhang J., Lee J. K., Wu Y., Murray R. W., Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Letters 2003, 3(3): 403-407.
    
    107.Fernando K. A. S., Lin Y, Wang W., Kumar S., Zhou B., Xie S. Y., Cureton L. T., Sun Y P., Diminished band-gap transitions of single-walled carbon nanotubes in complexation with aromatic molecules. Journal of the American Chemical Society 2004, 126(33): 10234-10235.
    
    108. Fifield L. S., Dalton L. R., Addleman R. S., Galhotra R. A., Engelhard M. H., Fryxell G. E., Aardahl C. L., Noncovalent functionalization of carbon nanotubes with molecular anchors using supercritical fluids. Journal of Physical Chemistry B 2004, 108(25): 8737-8741.
    109. Paloniemi H., Aaritalo T., Laiho T., Liuke H., Kocharova N., Haapakka K., Terzi F., Seeber R., Lukkari J., Water-soluble full-length single-wall carbon nanotube polyelectrolytes: Preparation and characterization. Journal of Physical Chemistry 5 2005,109(18): 8634-8642.
    
    110. Islam M. F., Rojas E., Bergey D. M., Johnson A. T., Yodh A. G, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters 2003, 3(2): 269-273.
    
    111. Moore V. C, Strano M. S, Haroz E. H., Hauge R. H., Smalley R. E., Schmidt J., Talmon Y., Individually suspended single-walled carbon nanotubes in various surfactants. Nano Letters 2003, 3(10): 1379-1382.
    
    112. Matarredona O., Rhoads H., Li Z. R., Harwell J. H., Balzano L., Resasco D. E., Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. Journal of Physical Chemistry B 2003,107(48): 13357-13367.
    
    113. Katz E., Willner I., Biomolecule-functionalized carbon nanotubes: Applications in nanobioelectronics. Chemphyschem 2004, 5(8): 1085-1104.
    
    114. O'Connell M. J., Boul P., Ericson L. M., Huffman C, Wang Y. H., Haroz E., Kuper C., Tour J., Ausman K. D., Smalley R. E., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters 2001,342(3-4): 265-271.
    
    115. Sinani V. A., Gheith M. K., Yaroslavov A. A., Rakhnyanskaya A. A., Sun K., Mamedov A. A., Wicksted J. P., Kotov N. A., Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. Journal of the American Chemical Society 2005, 127(10): 3463-3472.
    
    116. Shvartzman-Cohen R., Levi-Kalisman Y, Nativ-Roth E., Yerushalmi-Rozen R., Generic approach for dispersing single-walled carbon nanotubes: The strength of a weak interaction. Langmuir 2004,20(15): 6085-6088.
    
    117. Shvartzman-Cohen R., Nativ-Roth E., Baskaran E., Levi-Kalisman Y., Szleifer I., Yerushalmi-Rozen R., Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales. Journal of the American Chemical Society 2004, 126(45): 14850-14857.
    
    118. Kim T. H., Doe C, Kline S. R., Choi S. M., Water-redispersible isolated single-walled carbon nanotubes fabricated by in situ polymerization of micelles. Advanced Materials 2007,19(7): 929-933.
    
    119. Tomonari Y., Murakami H., Nakashima N., Solubilization of single-walled carbon nanotubes by using polycyclic aromatic ammonium amphiphiles in water - Strategy for the design of high-performance solubilizers. Chemistry-a European Journal 2006,12(15): 4027-4034.
    
    120. Lee J. U., Huh J., Kim K. H., Park C, Jo W. H., Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol). Carbon 2007, 45(5): 1051-1057.
    
    121. O'Connell M. J., Bachilo S. M., Huffman C. B., Moore V. C, Strano M. S., Haroz E. H, Rialon K. L., Boul P. J., Noon W. H., Kittrell C, Ma J. P., Hauge R. H., Weisman R. B., Smalley R. E., Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297(5581): 593-596.
    
    122. Li L. J., Nicholas R. J., Chen C. Y., Darton R. C, Baker S. C, Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology 2005, 16(5): S202-S205.
    
    123. Wenseleers W., Vlasov I. I., Goovaerts E., Obraztsova E. D., Lobach A. S., Bouwen A., Efficient Isolation and Solubilization of Pristine Single-Walled Nanotubes in Bile Salt Micelles. Advanced Functional Materials 2004, 14(11): 1105-1112.
    
    124. Zheng M., Jagota A., Semke E. D., Diner B. A., Mclean R. S., Lustig S. R., Richardson R. E., Tassi N. G, DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials 2003, 2(5): 338-342.
    
    125. Nakashima N., Okuzono S., Murakami H., Nakai T., Yoshikawa K., DNA dissolves single-walled carbon nanotubes in water. Chemistry Letters 2003, 32(5): 456-457.
    
    126. Star A., Steuerman D. W., Heath J. R., Stoddart J. F., Starched carbon nanotubes. Angewandte Chemie-lnternational Edition 2002, 41(14): 2508-2512.
    
    127. Star A., Joshi V., Han T. R., Altoe M. V. P., Gruner G., Stoddart J. F., Electronic detection of the enzymatic degradation of starch. Organic Letters 2004,6(13): 2089-2092.
    
    128. Kim O. K., Je J. T., Baldwin J. W., Kooi S., Pehrsson P. E., Buckley L. J., Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. Journal of the American Chemical Society 2003, 125(15): 4426-4427.
    
    129. Lii C.-Y., Stobinski L., Tomasik P., Liao C.-D., Single-walled carbon nanotube—potato amylose complex. Carbohydrate Polymers 2003, 51(1): 93-98.
    
    130. Stobinski L., Tomasik P., Lii C.-Y., Chan H.-H., Lin H.-M., Liu H.-L., Kao C.-T., Lu K.-S., Single-walled carbon nanotube-amylopection complexes. Carbohydrate Polymers 2003, 51 (3): 311 -316.
    
    131. Hasegawa T., Fujisawa T., Numata M., Umeda M., Matsumoto T., Kimura T., Okumura S., Sakurai K., Shinkai S., Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan. Chemical Communications 2004, (19): 2150-2151.
    
    132. Zhang M. G., Smith A., Gorski W., Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Analytical Chemistry 2004,76(17): 5045-5050.
    
    133. Numata M., Asai M., Kaneko K., Bae A. H., Hasegawa T., Sakurai K., Shinkai S., Inclusion of cut and as-grown single-walled carbon nanotubes in the helical superstructure of schizophyllan and curdlan (ss-1,3-glucans). Journal of the American Chemical Society 2005,127(16): 5875-5884.
    
    134. Chen J., Dyer M. J., Yu M. F., Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. Journal of the American Chemical Society 2001, 123(25): 6201-6202.
    
    135. Chambers G., Carroll C., Farrell G. F., Dalton A. B., McNamara M., Panhuis M. I. H., Byrne H. J., Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Letters 2003, 3(6): 843-846.
    
    136. Dodziuk H., Ejchart A., Anczewski W., Ueda H., Krinichnaya E., Dolgonos G., Kutner W., Water solubilization, determination of the number of different types of single-wall carbon nanotubes and their partial separation with respect to diameters by complexation with eta-cyclodextrin. Chemical Communications 2003, (8): 986-987.
    
    137. Ikeda A., Hayashi K., Konishi T., Kikuchi J., Solubilization and debundling of purified single-walled carbon nanotubes using solubilizing agents in an aqueous solution by high-speed vibration milling technique. Chemical Communications 2004, (11): 1334-1335.
    
    138. Liu Y., Liang P., Zhang H. Y., Guo D. S., Cation-controlled aqueous dispersions of alginic-acid-wrapped multi-walled carbon nanotubes. Small 2006,2(7): 874-878.
    
    139. Wang Y. B., Iqbal Z., Mitra S., Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 2005, 43(5): 1015-1020.
    
    140. Wang Y. B., Mitra S., Iqbal Z., Microwave-induced, "green" and rapid chemical functionalization of single-walled carbon nanotubes. Abstracts of Papers of the American Chemical Society 2005, 229, U938-U938.
    
    141. Wang Y. B., Iqbal Z., Mitra S., Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. Journal of the American Chemical Society 2006,128(1): 95-99.
    
    142. Chen Z. Y, Kobashi K., Rauwald U., Booker R., Fan H., Hwang W. F., Tour J. M., Soluble ultra-short single-walled carbon nanotubes. Journal of the American Chemical Society 2006, 128(32): 10568-10571.
    
    143. Wang J., Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005, 17(1): 7-14.
    144. Gooding J. J., Wibowo R., Liu J. Q., Yang W. R., Losic D., Orbons S., Mearns F. J., Shapter J. G., Hibbert D. B., Protein electrochemistry using aligned carbon nanotube arrays. Journal of the American Chemical Society 2003,125(30): 9006-9007.
    
    145. Guiseppi-Elie A., Lei C., Baughman R. H., Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 2002,12(5): 559-564.
    
    146. Cai C. X., Chen J., Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Analytical Biochemistry 2004, 332(1): 75-83.
    
    147. Cai C. X., Chen J., Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Analytical Biochemistry 2004, 325(2): 285-292.
    
    148. Luong J. H. T., Hrapovic S., Wang D., Bensebaa F., Simard B., Solubilization of multiwall carbon nanotubes by 3-aminopropyltriethoxysilane towards the fabrication of electrochemical biosensors with promoted electron transfer. Electroanalysis 2004,16(1-2): 132-139.
    
    149. Patolsky R, Weizmann Y., Willner I., Long-range electrical contacting of redox enzymes by SWCNT connectors. Angewandte Chemie-lnternational Edition 2004,43(16): 2113-2117.
    
    150. Wang J., Musameh M., Lin Y. H., Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society 2003,125(9): 2408-2409.
    
    151. Wen D., Liu Y, Yang G, Dong S., Electrochemistry of glucose oxidase immobilized on the carbon nanotube wrapped by polyelectrolyte. Electrochimica Acta 2007, 52(16): 5312-5317.
    
    152. Zou Y. J., Xian C. L., Sun L. X., Xu R, Amperometric glucose biosensor prepared with biocompatible material and carbon nanotube by layer-by-layer self-assembly technique. Electrochimica Acta 2008, 53(12): 4089-4095.
    
    153. Zhao H. T., Ju H. X., Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Analytical Biochemistry 2006,350(1): 138-144.
    
    154. Xie J. N., Wang S., Aryasomayajula L., Varadan V. K., Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing. Nanotechnology 2007,18(6): 065503.
    
    155. Jeykumari D. R. S., Narayanan S. S., A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Biosensors & Bioelectronics 2008,23(9): 1404-1411.
    
    156. Yao Y.-L., Shiu K.-K., Low potential detection of glucose at carbon nanotube modified glassy carbon electrode with electropolymerized poly(toluidine blue O) film. Electrochimica Acta 2007, 53(2): 278-284.
    
    157. Huang W. J., Taylor S., Fu K. F., Lin Y, Zhang D. H., Hanks T. W., Rao A. M., Sun Y. P., Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Letters 2002,2(4): 311-314.
    
    158. Bandyopadhyaya R., Nativ-Roth E., Regev O., Yerushalmi-Rozen R., Stabilization of individual carbon nanotubes in aqueous solutions. Nano Letters 2002,2(1): 25-28.
    
    159. Abatemarco T., Stickel J., Belfort J., Frank B. P., Ajayan P. M., Belfort G., Fractionation of multiwalled carbon nanotubes by cascade membrane microfiltration. Journal of Physical Chemistry B 1999, 103(18): 3534-3538.
    
    160. Hamon M. A., Chen J., Hu H., Chen Y. S., Itkis M. E., Rao A. M., Eklund P. C., Haddon R. C., Dissolution of single-walled carbon nanotubes. Advanced Materials 1999, 11(10): 834-840.
    
    161. Zhang X. F., Liu T., Sreekumar T. V., Kumar S., Moore V. C., Hauge R. H., Smalley R. E., Poly(vinyl alcohol)/SWNT composite film. Nano Letters 2003,3(9): 1285-1288.
    
    162. Narimatsu K., Nishioka J., Murakami H., Nakashima N., Design, synthesis, and characterization of carbon nanotube solubilizers carrying a reactive group. Chemistry Letters 2006, 35(8): 892-893.
    
    163. Wang T. L., Lee H. M., Kuo P. L., Functional polymers for colloidal applications. XIV. Syntheses of styrene-maleic anhydride copolymers with different charges and their ability to disperse kaolinite particles. Journal of Applied Polymer Science 2000, 78(3): 592-602.
    
    164. Chen R. J., Zhang Y. G., Wang D. W., Dai H. J., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society 2001, 123(16): 3838-3839.
    
    165. Petrov P., Stassin F., Pagnoulle C., Jerome R., Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. Chemical Communications 2003, (23): 2904-2905.
    
    166. Lou X. D., Daussin R., Cuenot S., Duwez A. S., Pagnoulle C, Detrembleur C., Bailly C., Jerome R., Synthesis of pyrene-containing polymers and noncovalent sidewall functionalization of multiwalled carbon nanotubes. Chemistry of Materials 2004,16(21): 4005-4011.
    
    167. Wang D., Ji W. X., Li Z. C., Chen L. W., A biomimetic "polysoap" for single-walled carbon nanotube dispersion. Journal of the American Chemical Society 2006,128(20): 6556-6557.
    
    168.Carrillo A., Swartz J. A., Gamba J. M., Kane R. S., Chakrapani N., Wei B. Q., Ajayan P. M., Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles. Nano Letters 2003,3(10): 1437-1440.
    
    169. Atici O. G., Akar A., Rahimian R., Modification of poly(maleic anhydride-co-styrene) with hydroxyl containing compounds. Turkish Journal of Chemistry 2001,25(3): 259-266.
    
    170. Lian Y., Maeda Y., Wakahara T., Akasaka T., Kazaoui S., Minami N., Shimizu T., Choi N., Tokumoto H., Nondestructive and high-recovery-yield purification of single-walled carbon nanotubes by chemical functionalization. Journal of Physical Chemistry B 2004,108(26): 8848-8854.
    
    171.Zeng L. L., Zhang L., Barron A. R., Tailoring aqueous solubility of functionalized single-wall carbon nanotubes over a wide pH range through substituent chain length. Nano Letters 2005, 5(10): 2001-2004.
    
    172. Fu J. M., Li Y., Guo J. L., Optical behavior of organic pigments in aqueous dispersions and its application. Journal of Colloid and Interface Science 1998,202(2): 450-455.
    
    173. Zelenak V, Vargova Z, K G., Correlation of infrared spectra of zinc(II) carboxylates with their structures. Spectrochimica Acta Part A 2007, 66: 262-272.
    
    174. Chen J., Rao A. M., Lyuksyutov S., Itkis M. E., Hamon M. A., Hu H., Cohn R. W., Eklund P. C, Colbert D. T., Smalley R. E., Haddon R. C, Dissolution of full-length single-walled carbon nanotubes. Journal of Physical Chemistry B 2001,105(13): 2525-2528.
    
    175. Alvaro M., Atienzar P., Bourdelande J. L, Garcia H., An organically modified single wall carbon nanotube containing a pyrene chromophore: fluorescence and diffuse reflectance laser flash photolysis study. Chemical Physics Letters 2004, 384(1-3): 119-123.
    
    176. Martin R. B., Qu L. W., Lin Y., Harruff B. A., Bunker C. E., Gord J. R., Allard L. F., Sun Y. P., Functionalized carbon nanotubes with tethered pyrenes: Synthesis and photophysical properties. Journal of Physical Chemistry B 2004, 108(31): 11447-11453.
    
    177. Yao Y, Li W. W., Wang S. B., Yan D. Y, Chen X. S., Polypeptide modification of multiwalled carbon nanotubes by a graft-from approach. Macromolecular Rapid Communications 2006,27(23): 2019-2025.
    
    178. Liu Z., Winters M., Holodniy M., Dai H. J., siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angewandte Chemie-International Edition 2007,46(12): 2023-2027.
    
    179. Liu Z., Sun X., Nakayama-Ratchford N., Dai H., Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery ACS Nano 2007,1(1): 50 -56.
    
    180. Liu Z., Cai W., He L., Nakayama N., Chen K., Sun X., Chen X., Dai H., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology 2006, 2(1): 47 - 52.
    
    181. Nakayama-Ratchford N., Bangsaruntip S., Sun X. M., Welsher K., Dai H. J., Noncovalent functionalization of carbon nanotubes by fluorescein-polyethylene glycol: Supramolecular conjugates with pH-dependent absorbance and fluorescence. Journal of the American Chemical Society 2007,129(9): 2448-2449.
    182. Feazell R. P., Nakayama-Ratchford N., Dai H., Lippard S. J., Soluble Single-Walled Carbon Nanotubes as Longboat Delivery Systems for Platinum(IV) Anticancer Drug Design Journal of the American Chemical Society 2007,129(27): 8438-8439.
    
    183. Britz D. A., Khlobystov A. N., Noncovalent interactions of molecules with single walled carbon nanotubes. Chemical Society Reviews 2006, 35(7): 637-659.
    
    184.Zorbas V., Ortiz-Acevedo A., Dalton A. B., Yoshida M. M., Dieckmann G. R., Draper R. K., Baughman R. H., Jose-Yacaman M., Musselman I. H., Preparation and characterization of individual peptide-wrapped single-walled carbon nanotubes. Journal of the American Chemical Society 2004, 126(23): 7222-7227.
    
    185. Gao C., Vo C. D., Jin Y. Z, Li W. W., Armes S. P., Multihydroxy polymer-functionalized carbon nanotubes: Synthesis, derivatization, and metal loading. Macromolecules 2005,38(21): 8634-8648.
    
    186. Hong C. Y., You Y. Z., Pan C. Y, Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization. Chemistry of Materials 2005,17(9): 2247-2254.
    
    187. Zhang Y. J., Li J., Shen Y. F., Wang M. J., Li J. H., Poly-L-lysine functionalization of single-walled carbon nanotubes. Journal of Physical Chemistry B 2004,108(39): 15343-15346.
    
    188. Satishkumar B. C., Govindaraj A., Nath M., Rao C. N. R., Synthesis of metal oxide nanorods using carbon nanotubes as templates. Journal of Materials Chemistry 2000,10(9): 2115-2119.
    
    189. Song Y. J., Challa S. R., Medforth C. J., Qiu Y., Watt R. K., Pena D., Miller J. E., van Swol F., Shelnutt J. A., Synthesis of peptide-nanotube platinum-nanoparticle composites. Chemical Communications 2004(9): 1044-1045.
    
    190. Sainsbury T., Fitzmaurice D., Templated assembly of semiconductor and insulator nanoparticles at the surface of covalently modified multiwalled carbon nanotubes. Chemistry of Materials 2004,16(19): 3780-3790.
    191. Xue B., Chen P., Hong Q., Lin J. Y., Tan K. L., Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. Journal of Materials Chemistry 2001, 11(9): 2378-2381.
    
    192. Liu Z. L., Lin X. H., Lee J. Y., Zhang W., Han M., Gan L. M., Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir 2002, 18(10): 4054-4060.
    
    193. Ang L. M., Hor T. S. A., Xu G. Q., Tung C. H., Zhao S. P, Wang J. L. S., Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. Chemistry of Materials 1999,11(8): 2115-2118.
    
    194. Ang L. M., Hor T. S. A., Xu G. Q., Tung C. H., Zhao S. P., Wang J. L. S., Decoration of activated carbon nanotubes with copper and nickel. Carbon 2000,38(3): 363-372.
    
    195. Lee Y, Song H. J., Shin H. S., Shin H. J., Choi H. C., Spontaneous formation of transition-metal nanoparticles on single-walled carbon nanotubes anchored with conjugated molecules. Small 2005,1(10): 975-979.
    
    196. Choi H. C., Shim M., Bangsaruntip S., Dai H. J., Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. Journal of the American Chemical Society 2002, 124(31): 9058-9059.
    
    197. Tzitzios V., Georgakilas V., Oikonomou E., Karakassides M, Petridis D., Synthesis and characterization of carbon nanotube/metal nanoparticle composites well dispersed in organic media. Carbon 2006,44(5): 848-853.
    
    198. Wang Y., Xu X., Tian Z. Q., Zong Y., Cheng H. M., Lin C. J., Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution. Chemistry-a European Journal 2006, 12(9): 2542-2549.
    
    199. Kong J., Chapline M. G., Dai H. J., Functionalized carbon nanotubes for molecular hydrogen sensors. Advanced Materials 2001,13(18): 1384-1386.
    
    200. Pender M. J., Sowards L. A., Hartgerink J. D., Stone M. O., Naik R. R., Peptide-mediated formation of single-wall carbon nanotube composites. Nano Letters 2006,6(1): 40-44.
    201. Wang Y, Yang H., Synthesis of CoPt nanorods in ionic liquids. Journal of the American Chemical Society 2005, 127(15): 5316-5317.
    
    202. Chen J. Y, McLellan J. M., Siekkinen A., Xiong Y. J., Li Z. Y, Xia Y. N., Facile synthesis of gold-silver nanocages with controllable pores on the surface. Journal of the American Chemical Society 2006, 128(46): 14776-14777.
    
    203. Ostermann R., Li D., Yin Y D., McCann J. T., Xia Y N., V2O5 nanorods on TiO2 nanofibers: A new class of hierarchical nanostructures enabled by electrospinning and calcination. Nano Letters 2006,6(6): 1297-1302.
    
    204. Ajayan P. M., Nanotubes from carbon. Chemical Reviews 1999, 99(7): 1787-1799.
    
    205. Ajayan P. M., Ebbesen T. W., Nanometre-size tubes of carbon. Reports on Progress in Physics 1997,60(10): 1025-1062.
    
    206. Yakobson B. I., Smalley R. E., Fullerene nanotubes: C-1000000 and beyond. American Scientist 1997, 85(4): 324-337.
    
    207. Bale S. S., Asuri P., Karajanagi S. S., Dordick J. S., Kane R. S., Protein-directed formation of silver nanoparticles on carbon nanotubes. Advanced Materials 2007,19(20): 3167-3170.
    
    208. Ou Y Y, Huang M. H., High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker. Journal of Physical Chemistry B 2006,110(5): 2031-2036.
    
    209. Xianglong L., Yunq L., Le F., Lingchao C, Dacheng W., Wang W., Efficient Synthesis of Carbon Nanotube-Nanoparticle Hybrids. Advanced Functional Materials 2006,16(18): 2431-2437.
    
    210. Doll K. M., Shogren R. L, Willett J. L., Swift G, Solvent-free polymerization of citric acid and D-sorbitol. Journal of Polymer Science Part A: Polymer Chemistry 2006,44(14): 4259-4267.
    
    211. Zelenak V., Vargova Z., Gyoryova K., Correlation of infrared spectra of zinc(II) carboxylates with their structures. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2007,66(2): 262-272.
    
    212. Sun X. M., Li Y. D., Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angewandte Chemie-International Edition 2004,43(5): 597-601.
    
    213. Mostafavi M, Dey G. R., Francois L., Belloni J., Transient and stable silver clusters induced by radiolysis in methanol. Journal of Physical Chemistry A 2002,106(43): 10184-10194.
    
    214. Dimitrijevic N. M. B. D. M., Jonah C. D., Takahashi K., Rajh T., Radiolytically Induced Formation and Optical Absorption Spectra of Colloidal Silver Nanoparticles in Supercritical Ethane. Journal of Physical Chemistry B 2001,105(5): 954-959.
    
    215. Gooding J. J., Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochimica Acta 2005, 50(15): 3049-3060.
    
    216. Liu J. Q., Chou A., Rahmat W., Paddon-Row M. N., Gooding J. J., Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 2005, 17(1): 38-46.
    
    217. Wang J., Musameh M., Enzyme-dispersed carbon-nanotube electrodes: a needle microsensor for monitoring glucose. Analyst 2003, 128(11): 1382-1385.
    
    218. Dai Y. Q., Shiu K. K., Glucose biosensor based on multi-walled carbon nanotube modified glassy carbon electrode. Electroanalysis 2004, 16(20): 1697-1703.
    
    219. Wang J., Electrochemical glucose biosensors. Chemical Reviews 2008, 108(2): 814-825.
    
    220. Park C., Crooks R. E., Siochi E. J., Harrison J. S., Evans N., Kenik E., Adhesion study of polyimide to single-wall carbon nanotube bundles by energy-filtered transmission electron microscopy. Nanotechnology 2003, 14(9): L11-L14.
    
    221. Rivas G. A., Rubianes M. D., Rodriguez M. C., Ferreyra N. F., Luque G. L., Pedano M. L., Miscoria S. A., Parrado C., Carbon nanotubes for electrochemical biosensing. Talanta 2007, 74(3): 291-307.
    
    222. Chen J., Hamon M. A., Hu H., Chen Y., Rao A. M., Eklund P. C., Haddon R. C., Solution Properties of Single-Walled Carbon Nanotubes. Science 1998, 282: 95-98.
    
    223. Chen Z., Kobashi K., Rauwald U., Booker R., Fan H., Hwang W.-F., Tour J. M., Soluble Ultra-Short Single-Walled Carbon Nanotubes. Journal of the American Chemical Society 2006, 128(32): 10568-10571.
    
    224. Liu J., Rinzler A. G, Dai H., Hafner J. H., Bradley R. K, Boul P. J., Lu A., Iverson T., Shelimov K., Huffman C. B., Rodriguez-Macias F., Shon Y.-S., Lee T. R., Colbert D. T., Smalley R. E., Fullerene Pipes. Science 1998, 280(5367): 1253-1256.
    
    225. Liu Y., Qu X. H., Guo H. W., Chen H. J., Liu B. F., Dong S. J., Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. Biosensors & Bioelectronics 2006,21(12): 2195-2201.
    
    226. Bollo S., Ferreyra N. F., Rivas G. A., Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in chitosan. Electroanalysis 2007,19(7-8): 833-840.
    
    227. Rubianes M. D., Rivas G. A., Dispersion of multi-wall carbon nanotubes in polyethylenimine: A new alternative for preparing electrochemical sensors. Electrochemistry Communications 2007, 9(3): 480-484.
    
    228. Arribas A., Bermejo E., Chicharro M., Zapardiel A., Luque G. L., Ferreyra N. E., Rivas G. A., Analytical applications of glassy carbon electrodes modified with multi-wall carbon nanotubes dispersed in polyethylenimine as detectors in flow systems. Analytica Chimica Acta 2007, 596(2): 183-194.
    
    229. Shim M., Kam N. W. S., Chen R. J., Li Y, Dai H, Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition. Nano Letters 2002,2002(2): 285-288.
    
    230. Zhang W. J., Huang Y. X., Dai H., Wang X. Y, Fan C. H., Li G. X., Tuning the redox and enzymatic activity of glucose oxidase in layered organic films and its application in glucose biosensors. Analytical Biochemistry 2004, 329(1): 85-90.
    
    231. Liu S., Ju H., Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosensors and Bioelectronics 2003,19(3): 177-183.
    
    232. Patolsky F., Weizmann Y., Willner I., Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angewandte Chemie International Edition 2004,43(16): 2113 -2117.
    
    233. Qiu J. D., Guo J., Liang R. P., Xiong M., A nanocomposite chitosan based on ferrocene-modified silica nanoparticles and carbon nanotubes for biosensor application. Electroanalysis 2007,19(22): 2335-2341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700