含磷酰胆碱功能基团聚合物的制备与生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物医用材料(biomedical material)是用于对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料。磷酰胆碱(PC)是组成细胞膜的基本单元(如卵磷脂分子等)的亲水端基,在外层细胞膜中占重要地位,它直接影响生物体细胞如何与外界发生作用。基于仿细胞膜结构出发设计合成的磷酰胆碱聚合物因其具有良好的生物相容性而备受关注,为人们寻找生物相容性材料开辟了新途径。本论文拟创制新型含磷酰胆碱功能基团的聚合物,并对该类聚合物进行较为系统全面的性能表征,以期能够为不同生物医学领域(如人造器官、角膜接触镜等)新材料的开发和应用提供思路和支持,现取得研究结果如下:
     首先,经过环构化、氧化、缩合、开环四步反应,合成了磷酰胆碱单体2-甲基丙烯酰氧乙基磷酰胆碱(MPC)。环构化反应中以三氯化磷和乙二醇为原料,合成了中间体2-氯-1,3,2-二氧磷杂环戊烷(CDP),氧化反应是以氧气为氧化剂,对CDP进行氧化,制备了中间体2-氯-2-氧-1,3,2-二氧磷杂环戊烷(COP),缩合反应是以甲基丙烯酸羟乙酯(HEMA)和COP为原料,合成了中间体2-烷基-2-氧-1,3,2-二氧磷杂环戊烷(OPEMA),最后以三甲胺为开环试剂,经过对OPEMA的开环反应合成了MPC。对各步反应条件进行优化确定的最佳合成条件为:环构化反应在温度0℃,三氯化磷与乙二醇摩尔比1.1:l,滴加速度0.7mL/min时,产品收率为80%;氧化反应中,提高氧气流量可以缩短反应时间,但容易造成开环反应生成副产物,在反应温度15℃,氧气流量5mL/min时,产品收率最高(67%);在较高温度下不利于缩合反应进行,温度降至-16℃时,收率可以达到89%;开环反应中,当投料摩尔比为OPEMA:N(CH3)3=1:1.9时,产品MPC收率达到最高77%。
     其次,进行了含MPC二元共聚物的制备与性能研究。采用自由基聚合制备了MPC与甲基丙烯酸丁酯(BMA)的共聚物:PMB10(投料量nMPC=10%)、PMB20(投料量nMpc=20%)及MPC与甲基丙烯酸异辛酯(EHMA)的共聚物:PMEH10(投料量nMPC=10%)、PMEH20(投料量nMPc=20%),考察了共聚物薄膜的生物相容性及溶胀特性。牛血清蛋白(BSA)吸附性能测试显示,蛋白质吸附量随着磷酰胆碱在聚合物中含量的升高而降低,PMEH20薄膜对BSA的吸附量比均聚物薄膜PEHMA降低了73.6%;血小板黏附性能测试显示,含有MPC的PMEH20薄膜有更好的抗血小板黏附性;用菲克(Fickian)动力学模型描述共聚物薄膜溶胀初期的过程,PMB20、PMEH10、PMEH20薄膜在溶胀初期均属于菲克溶胀过程,说明水分了在聚合物中的扩散控制着聚合物溶胀过程,PMB10薄膜在溶胀初期属于非菲克(non-Fickian)溶胀过程,水分子扩散与高分子链段松弛共同控制着溶胀过程;用Schott动力学模型描述聚合物薄膜的整个溶胀过程,发现磷酰胆碱含量越高的聚合物其初始溶胀速率和最大平衡溶胀程度越大。
     再次,将含磷酰胆碱基团的共聚物PMEH20以不同质量百分比(5wt%、10wt%、15wt%)添加到基材聚氨酯(SPU)中,制备了共混薄膜SP-5、SP-10、SP-15。牛血清蛋白吸附性测试显示SP-15薄膜比空白SPU薄膜对BSA吸附量减少了81.7%,血小板黏附性能测试显示PMEH20的加入能够有效抑制聚氨酯薄膜对血小板的黏附;静态水接触角测试发现,共混膜中的不同极性高分子链段呈不均匀分布,进一步通过动态水接触角测试分析,随着PMEH20添加量的增加,前进角逐渐增大,而后退角逐渐减小,说明共混膜表面高分子链段在极性环境(水)中可以发生重排,磷酰胆碱基团在水环境中可以分布于共混膜表面,发挥其生物相容性作用;薄膜力学性能测试显示随着PMEH20的添加量增多,薄膜力学性能先增大,后降低,SP-10薄膜材料的综合力学性能最好;考察了SP-10薄膜的稳定性,经3wt%氯化钠溶液、30wt%双氧水、1wt%高锰酸钾水溶液、浓盐酸、20wt%硫酸、30wt%氢氧化钠溶液浸泡处理后,其质量损失均在0.2%以下,其稳定性与空白SPU相当;用热失重分析(TGA)考察了共混膜的热稳定性,发现在5wt%-10wt%的添加范围内,基体聚氨酯的热稳定性基本不受影响。
     第四,以MPC、甲基丙烯酸甲酯(MMA)、甲基丙烯酰氧丙基三(三甲基硅氧烷基)硅烷(TRIS)为原料制备了Poly(MMA-co-MPC-co-TRIS)三元共聚物(PMMT),以期在维持原有材料高透明性、透氧性的同时解决材料表面蛋白质沉积等问题。牛血清蛋白吸附性测试显示,对于PMMT-2薄膜(MPC摩尔含量16.6%),其蛋白质吸附量比不含MPC的PMMA和Poly(MMA-co-TRIS)聚合物薄膜分别下降了75.3%和76.8%;血小板黏附测定同样表明三元共聚物表面黏附的血小板细胞数量显著降低,生物相容性有了很大提高;水接触角及溶胀度测试显示,MPC的添加可以显著改善薄膜的界面润湿性,且PMMT-2的平衡含水量达到了55%;PMMT-、PMMT-2薄膜在全部可见光范围内具有较高的透光性,最高透光率超过97.0%;利用DSC分析了PMEH0、PMEH20、PMMT-1、PMMT-2四种MPC共聚物中水的状态,发现MPC含量更高的聚合物中,可冻结水的比例也更高,由此推测,正是由于其吸收的水分中可冻结水的比例高,在与蛋白质相接触时,排列在材料表面最外层的可冻结水使蛋白质自身的水化层不被破坏,起到了稳定蛋白质构象的作用,从而减少了蛋白质在材料表面的吸附。
     最后,以MPC、甲基丙烯酸羟乙酯(HEMA、甲基丙烯酰氧丙基三(三甲基硅氧烷基)硅烷(TRIS)为原料制备了含MPC的Poly(HEMA-co-MPC-co-TRIS)三元共聚物(PHMT),以期提高表面润湿性的同时解决材料表面蛋白质沉积等问题。通过水接触角测试发现,在PHMT三元共聚物表面存在着链段的重排现象,在极性环境(水)中,磷酰胆碱基团可以翻转重排于薄膜表面,使表面接触角从114.0°下降到24.2°,显著改善了薄膜的表面润湿性;PHMT薄膜表面吸附的牛血清白蛋白(BSA)、牛血清纤维蛋白(Fib)、牛血清球蛋白(IgG)三种蛋白质的量比不含MPC的聚合物薄膜明显减少,即MPC基团在聚合物中的引入可以显著提高材料表面抗蛋白质沉积的性能;用AFM对旋涂法制备的PHMT薄膜表面形貌进行考察,发现其在玻璃基片上可以形成平整光滑的表面,粗糙度Rq=1.01nm,并且在全部可见光范围内(400-700nm)透光率均超过93.0%;由于MPC基团的引入,PHMT共聚物在30℃时的平衡含水量达到63%,比不含MPC的聚合物有显著提高。
Biomedical materials are the advanced materials being studied and developed recently, which could diagnose, treat and repair the organism or being used as the artificial organs. The lipid bilayer membrane of many cells types have an asymmetric lipid composition, the zwitterionic lipid phosphatidylcholine is the major component. The bio-inspired polymer containing phosphorylcholine functional group has been focused due to its excellent biocompatibility and anti-biofouling properties. In this study, in order to provide a new way and support to the development and application of biomaterials (such as artificial organs, contact lens, etc), novel polymers containing phosphorylcholine functional group were prepared and characterized. The main results are as follows:
     Firstly,2-methacryloyloxyethyl phosphorylcholine(MPC) was synthesized through four steps. In the first step,2-chloro-l,3,2-dioxaphospholane (CDP) was prepared by the reaction of ethylene glycol with phosphorus trichloride. In the second step, CDP was subsequently oxidized by oxygen to 2-chloro-2-oxo-l,3,2-dioxaphospholane (COP). In the third step, the synthesis of 2-(2-oxo-l,3,2-dioxaphospholoyloxy) ethyl methacrylate (OPEMA) was achieved by the reaction of COP with 2-hydroxyethyl methacrylate. In the fourth step, MPC was prepared by the reaction of OPEMA with triethylamine through the ring cleavage reaction. The optimized process was accomplished as follows:to give a yield of 80%for the synthesis of CDP, the reaction temperature was 0℃, the mole ratio of phosphorus trichloride: ethylene glycol=1.1:1, the dropwise speed of ethylene glycol was 0.7mL/min; in the second step, the number of oxidizing agents available for this is limited owing to possible cleavage of the ring, the highest yield of COP was achieved on the reaction condition:reaction temperature 15℃, flow rate of oxygen 5mL/min; in the third step, the synthesis of OPEMA at low reaction temperature(below-15℃) could give a higher yield(more than 80%); the increasing in the mole ratio of triethylamine to OPEMA was helpful to increase the yield of MPC, when the ratio was 1.9:1, the yield was the highest.
     Secondly, copolymers poly (MPC-co-BMA) and poly (MPC-co-EHMA) were prepared and characterized. MPC was copolymerized with butyl methacrylate(BMA) and 2-ethylhexyl methacrylate(EHMA), respectively, using 2,2'-azodiisobutyronitrile (AIBN) as initiator. They were PMB10, PMB20, PMEH10, PMEH20 according to the different feed mole fractions of MPC (10%,20%) in the polymers. The biocompatibility and swelling capacity were studied. The protein adsorption measurement showed that the amount of adsorbed proteins was reduced by the introduction of MPC in the polymers, for PMEH20 membrane, the amount of adsorbed proteins was reduced 73.6% compared with PEHMA homopolymer membrane. The platelet adhesion measurement showed that no evidence of any blood platelet attachment was apparent on the MPC containing polymer membranes (PMEH20). To study the initial stage of the water diffusion process in the polymers, Fickian diffusional mechanism was adopted. The diffusional mechanism in PMB20, PMEH10, and PMEH20 was Fickian, the diffusion of water control the rate of water content. While the water transport mechanism becomes non-Fickian in PMB10, both diffusion and polymer relaxation control the overall rate of water content. For extensive swelling, Schott second order dynamic equation was adopted, and it was found that both the maximum swelling and the initial swelling rate were increased due to the introduction of MPC in the polymers.
     Thirdly, the copolymer PMEH20 was blended with a segmented polyurethane (SPU), the blended membranes were SP-5, SP-10 and SP-15 according to the different weight percentage of PMEH20 (5%,10%,15%) in the membranes. The test of protein (bovine serum albumin) adsorption showed that the blended membrane SP-15 adsorbed fewer proteins than the blank SPU membrane (reduced 81.7%); the platelet adhesion measurement showed a decreased amount of platelet with an increasing amount of PMEH20 in the blended membrane. There existed unequal distribution of the polar and apolar polymer chains in the blended polymers as measured by the static water contact angle, and the dynamic contact angle measurement showed that the advancing angle increased and the reducing angle decreased with the increasing of PMEH20 in the blended membranes, which indicated that the surface of blended membranes exhibit surface rearrangement under different environmental conditions, the phosphorylcholine groups could rearranged on the upper surface of the membrane in the water environment and as a result increase the biocompatibility of the polymer. The mechanical properties of the SPU membranes were determined by tensile stress-strain measurements, and the SP-10 membrane showed a better mechanical property. The stability of SP-10 was evaluated by immersing the films in different solusions (3wt%NaCl,30wt%H22O2, lwt%KMnO4, HC1,20wt%H2SO4,30wt%NaOH) for a certain time, and the mass loss rate of SP-10 was all below 0.2%, it was comparable to the blank SPU film.As measured by TGA, it was found that in the range of 5wt%-10wt%(the weight percentage of PMEH20 in the blended films), there was no big difference of the thermal stability between the SPU-based films.
     Fourthly, a novel poly (methyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine-co-tris(trimethylsiloxy)-3-methacryloxypropylsilane) terpolymer (PMMT) was synthesized and the anti-biofouling properties were studied in order to evaluate the potential of this silicone hydrogel to be used as contact lens material. Protein adsorption measurement showed that for PMMT-2 membrane (MPC:16.6mol%), the amount of adsorbed proteins was decreased by 75.3%and 76.8%compared with the MPC free polymers poly methyl methacrylate (PMMA) and poly (methyl methacrylate-co-tris (trimethylsiloxy)-3-methacryloxypropylsilane) (PMT), respectively. SEM pictures showed clearly that the terpolymer films suppressed the adhesion of platelets, the biocompatibility was increased dramatically. The introduction of MPC in PMMT-1 and PMMT-2 increased the wettability of the surface dramatically. The equilibrium water content of PMMT-2 membrane reached 55%, which may offer comfortable wear feeling. PMMT-1 and PMMT-2 films exhibited high transparency in the visible light wave range (the highest transmittance was 97.0%). Water structure in polymers was determined by differential scanning calorimetry (DSC), the polymers containing more amount of MPC possessed more freezing water content, which indicated that MPC containing polymers take up large quantities of freezing water and that proteins adsorbed on these copolymers assume conformations similar to those of the native proteins while the corresponding MPC free polymers induce significant changes in conformation. It was concluded that the water layer associated with the MPC containing surface preserves the native conformation of adsorbed proteins.
     Finally, a novel poly 2-hydroxyethyl methacrylate-co-2-methacryloyloxyethyl phosphorylcholine-co-tris(trimethylsiloxy)-3-methacryloxypropylsilane (PHMT) terpolymer was synthesized and the anti-biofouling properties were studied in order to evaluate the potential of this polymer to be used as contact lens material. The phosphorylcholine unit played an important role in the terpolymer:increasing both the surface hydrophilicity and the anti-biofouling properties of the original material. Water contact angle measurements suggested that the phosphorylcholine head groups could rearrange on the upper surface of the TRIS containing polymer in the water environment, improving the wettability of the surface. Compared with MPC free polymer poly 2-hydroxyethyl methacrylate-co-tris(trimethylsiloxy)-3-methacryloxypropylsilane membrane, lower protein adsorption (for three typical plasma proteins BSA, Fib and IgG) was observed on the surface of PHMT polymer. As observed by AFM, smooth surface (Rq=1.01nm) was formed by spin coating method from the terpolymer solution, and the equilibrium water content reached 63%, much higher than the polymers without MPC unit, which may offer comfortable wear feeling. Moreover, PHMT film exhibited high transparency in the visible light wave range (relatively constant at approximately 94.0%).
引文
[1]俞耀庭.生物医用材料[M].天津:天津大学出版社,2000:13.
    [2]冯祥芬,谢涵坤,张菁.低温等离子体表面处理技术在生物医用材料中的应用[J].物理学和高新技术.2002,31(1):27-30.
    [3]Xu Y, Takai M, Ishihara K. Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices[J]. Annals of Biomedical Engineering.2010,38(6):1938-1953.
    [4]Lewis A L. Phosphorylcholine-based polymers and their use in the prevention of biofouling[J]. Colloids and Surfaces B:Biointerfaces.2000,18(3-4):261-275.
    [5]Matsuda T, Nagase J, Ghoda A, et al. Phosphorylcholine-endcapped oligomer and block co-oligomer and surface biological reactivity [J]. Biomaterials.2003,153(2):85-97.
    [6]Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes[J]. Polymer Journal.1990,22(5):355-360.
    [7]Kadoma Y, Nakabayashi N, Masuhara E, et al. Synthesis and hemolysis test of the polymer containing phosphorylcholine groups[J]. Jpn J Polym Sci Technol.1978(35): 423-427.
    [8]Umeda T, Nakaya T, Imoto M. Synthesis and properties of a vinyl polymer containing both vitamin E and phosphatidylcholine analogous moieties[J]. Macromolecular Rapid Communications.1982(3):457-459.
    [9]吴雪,辛忠,袁渭康.基于磷酰胆碱有效基团的功能材料的结构及生化特性[J].化工进展.2008,27(9):1375-1383.
    [10]张世平,杨珊,李晶,等.含磷酰胆碱基团的聚合单体的新合成方法[J].西北大学学报:自然科学版.2006,36(6):915-919,923页.
    [11]Sibarani J, Takai M, Ishihara K. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption[J]. Colloids and Surfaces B:Biointerfaces.2007,54(1):88-93.
    [12]Seo J, Matsuno R, Takai M, et al. Cell adhesion on phase-separated surface of block copolymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane)[J]. Biomaterials.2009,50(3):404-405.
    [13]Goda T, Konno T, Takai M, et al. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization[J]. Biomaterials. 2006,27(30):5151-5160.
    [14]Goda T, Matsuno R, Konno T, et al. Photografting of 2-methacryloyloxyethyl phosphorylcholine from polydimethylsiloxane:Tunable protein repellency and lubrication property[J]. Colloids and Surfaces B:Biointerfaces.2008,63(1):64-72.
    [15]Kyomoto M, Moro T, Saiga K, et al. Lubricity and stability of poly(2-methacryloyloxyethyl phosphorylcholine) polymer layer on Co-Cr-Mo surface for hemi-arthroplasty to prevent degeneration of articular cartilage[J]. Biomaterials.2010,22(13):1883-1889.
    [16]Xu Y, Takai M, Ishihara K. Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces[J]. Biomaterials.2009,24(13):2431-2435.
    [17]Xu Y, Takai M, Ishihara K. Suppression of Protein Adsorption on a Charged Phospholipid Polymer Interface[J]. Biomacromolecules.2009,10(2):267-274.
    [18]Sawada S I, Iwasaki Y, Nakabayashi N, et al. Stress response of adherent cells on a polymer blend surface composed of a segmented polyurethane and MPC copolymers[J]. Journal of Biomedical Materials Research Part A.2006,79(3):476-484.
    [19]Kyomoto M, Moro T, Iwasaki Y, et al. Superlubricious surface mimicking articular cartilage by grafting poly(2-methacryloyloxyethyl phosphorylcholine) on orthopaedic metal bearings[J]. Journal of Biomedical Materials Research Part A.2009,91A(3): 730-741.
    [20]Lewis A L, Hughes P D, Kirkwood L C, et al. Synthesis and characterisation of phosphorylcholine-based polymers useful for coating blood filtration devices[J]. Biomaterials.2000,21(18):1847-1859.
    [21]Xu J, Ji J, Chen W, et al. Phospholipid based polymer as drug release coating for cardiovascular device[J]. European Polymer Journal.2004,40(2):291-298.
    [22]徐建平,计剑,陈伟东,等.磷酸胆碱基细胞膜仿生药物缓释涂层材料的研究[J].高等学校化学学报.2004,25(1):188-190.
    [23]Futamura K, Matsuno R, Konno T, et al. Rapid Development of Hydrophilicity and Protein Adsorption Resistance by Polymer Surfaces Bearing Phosphorylcholine and Naphthalene Groups[J]. Langmuir.2008,24(18):10340-10344.
    [24]Ishiyama N, Moro T, Ishihara K, et al. The prevention of peritendinous adhesions by a phospholipid polymer hydrogel formed in situ by spontaneous intermolecular interactions [J]. Biomaterials.2010,47(4):1390-1396.
    [25]Ishihara K, Iwasaki Y, Ebihara S, et al. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance[J]. Colloids and Surfaces B:Biointerfaces. 2000,18(3-4):325-335.
    [26]Miyamoto D, Watanabe J, Ishihara K. Effect of water-soluble phospholipid polymers conjugated with papain on the enzymatic stability[J]. Biomaterials.2004,25(1):71-76.
    [27]Liu P, Chen Q, Wu S, et al. Surface modification of cellulose membranes with zwitterionic polymers for resistance to protein adsorption and platelet adhesion[J]. Journal of Membrane Science.2010,29(35):4592-4597.
    [28]Feng W, Zhu S, Ishihara K, et al. Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl Phosphorylcholine) via Surface-Initiated Atom Transfer Radical Polymerization[J]. Langmuir.2005,21(13):5980-5987.
    [29]马佳妮,宫铭,杨珊,等.2-甲基丙烯酰氧基乙基磷酰胆碱单体及其聚合物的合成与应用[J1.化学进展.2008,20(7):1151-1157.
    [30]Xu J, Yuan Y, Shan B, et al. Ozone-induced grafting phosphorylcholine polymer onto silicone film grafting 2-methacryloyloxyethyl phosphorylcholine onto silicone film to improve hemocompatibility[J]. Colloids and Surfaces B:Biointerfaces.2003,30(3): 215-223.
    [31]孙懿,刘惠兰.不同透析膜对凝血纤溶功能的影响[J].首都医科大学学报.2002(1):49-51.
    [32]Ye S H, Watanabe J, Iwasaki Y, et al. Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system[J]. Journal of Membrane Science.2002,210(2):411-421.
    [33]Ishihara K, Fukumoto K, Iwasaki Y, et al. Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization[J]. Biomaterials.1999,20(17):1545-1551.
    [34]施洪臣,周强,许建中.组织工程中胶原支架材料的研究进展[J].中华创伤骨科杂志.2006(10):974-976.
    [35]Watanabe J, Eriguchi T, Ishihara K. Cell Adhesion and Morphology in Porous Scaffold Based on Enantiomeric Poly(lactic acid) Graft-type Phospholipid Polymers[J]. Biomacromolecules.2002,3(6):1375-1383.
    [36]Hong Y, Ye S, Nieponice A, et al. A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend Yi Honga, b, c, Sang-Ho Yea, c, Alejandro Nieponicea, b, c, Lorenzo Solettia, b, d, David A. Vorpa, b, c, d and William R. Wagnera, b, c, d, e,,[J]. Biomaterials.2009,30(13):2457-2467.
    [37]Zhang Z, Cao X, Zhao X, et al. Controlled Delivery of Antisense Oligodeoxynucleotide from Cationically Modified Phosphorylcholine Polymer Films[J]. Biomacromolecules. 2006,7(3):784-791.
    [38]Jean M. Copolymers of polyolefine/phosphorylcholine in cosmetic compositions[P]. WO2006IB5104320060405.2006-10-12.
    [39]Oka T M K. Polysiloxane having phosphorylcholine group and process for producing the same[P]. CN2003810406220031120.2006-01-04.
    [40]Xu J, Ji J, Chen W, et al. Novel biomimetic polymersomes as polymer therapeutics for drug delivery[J]. Journal of Controlled Release.2005,11(1):269-278.
    [41]Salvage J P, Rose S F, Phillips G J, et al. Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery[J]. Journal of Controlled Release.2005, 104(2):259-270.
    [42]Matsuno R, Ishihara K. Molecular-Integrated Phospholipid Polymer Nanoparticles with Highly Biofunctionality[J]. Macromolecular Symposia.2009,279(1):125-131.
    [43]Chang Y, Chen S, Yu Q, et al. Development of Biocompatible Interpenetrating Polymer Networks Containing a Sulfobetaine-Based Polymer and a Segmented Polyurethane for Protein Resistance[J]. Biomacromolecules.2007,8(1):122-127.
    [44]武卫莉,张琦,徐国志.硅橡胶、聚氨酯医用材料[J].高分子通报.2005(3):96-99.
    [45]冯亚凯,吴珍珍.可生物降解聚氨酯在医学中的应用[J].材料导报.2006,20(6):115-118.
    [46]袁江,沈健,林思聪.血液相容生医材料的合成研究15苯乙烯型磺酸铵内盐单体的合成及其聚合物的抗血小板粘附性能[J1.应用化学.2003,20(3):3.
    [47]周静,沈健,林思聪.血液相溶材料的合成研究(Ⅷ)-一类新的抗血小板粘附高分子材料[J].高等学校化学学报.2002,23(12):3.
    [48]Li Y, Nakamura N, Wang Y, et al. Synthesis and Hemocompatibilities of New Segmented Polyurethanes and Poly(urethane urea)s with Poly(butadiene) and Phosphatidylcholine Analogues in the Main Chains and Long-Chain Alkyl Groups in the Side Chains[J]. Chemistry of Materials.1997,9(7):1570-1577.
    [49]Li Y, Tomita T, Tanda K, et al. Synthesis and Hemocompatibility Evaluation of Novel Segmented Polyurethanes with Phosphatidylcholine Polar Headgroups[J]. Chemistry of Materials.1998,10(6):1596-1603.
    [50]Yung L L, Cooper S L. Neutrophil adhesion on phosphorylcholine-containing polyurethanes[J]. Biomaterials.1998,19(1):31-40.
    [51]Li Y, Hanada T, Nakaya T. Surface Modification of Segmented Polyurethanes by Grafting Methacrylates and Phosphatidylcholine Polar Headgroups To Improve Hemocompatibility [J]. Chemistry of Materials.1999,11(3):763-770.
    [52]Korematsu A, Takemoto Y, Nakaya T, et al. Synthesis, characterization and platelet adhesion of segmented polyurethanes grafted phospholipid analogous vinyl monomer on surface[J]. Biomaterials.2002,23(1):263-271.
    [53]Tan H, Li J, Luo J, et al. Synthesis and properties of novel segmented polyurethanes containing alkyl phosphatidylcholine side groups[J]. European Polymer Journal.2005, 101(1):21-34.
    [54]Yoo H, Kim H. Characteristics of crosslinked blends of Pellethene and multiblock polyurethanes containing phospholipid[J]. Biomaterials.2005,26(16):2877-2886.
    [55]Tan H, Liu J, Li J, et al. Synthesis and Hemocompatibility of Biomembrane Mimicing Polycarbonate urethane)s Containing Fluorinated Alkyl Phosphatidylcholine Side Groups[J]. Biomacromolecules.2006,7(9):2591-2599.
    [56]Ye S H, Jr C A J, Woolley J R, et al. Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance[J]. Colloids and Surfaces B.2009,516(8):2130-2137.
    [57]Kujawa P, Schmauch G, Viitala T, et al. Construction of Viscoelastic Biocompatible Films via the Layer-by-Layer Assembly of Hyaluronan and Phosphorylcholine-Modified Chitosan[J]. Biomacromolecules.2007,8(10):3169-3176.
    [58]黎新明.共聚物水凝胶接触镜材料的制备与性能研究[D].西北工业大学西北工业大学,2003.
    [59]蔡立彬,刘正堂,崔英德,等.有机硅改性共聚物水凝胶接触镜材料的合成与性能研究[J].化工进展.2005,24(4):399-402.
    [60]崔英德,黎新明.水凝胶接触镜材料进展[J].广州化工. 2002,30(4):103-105.
    [61]Goda T, Ishihara K. Soft contact lens biomaterials from bioinspired phospholipid polymers[J]. Expert Review of Medical Devices.2006,3(2):167-174.
    [62]李海航.高透氧软性角膜接触镜研究进展[J].化工时刊.2007,21(4):5-10.
    [63]Santos L, Rodrigues D, Lira M, et al. The influence of surface treatment on hydrophobicity. protein adsorption and microbial colonisation of silicone hydrogel contact lenses[J]. Contact Lens and Anterior Eye.2007,30(3):183-188.
    [64]Guo D, Han H, Jing-Wang, et al. Surface-hydrophilic and protein-resistant silicone elastomers prepared by hydrosilylation of vinyl poly(ethylene glycol) on hydrosilanes-poly(dimethylsiloxane) surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects.2007,308(1-3):129-135.
    [65]赵燕杰.新型的长戴型角膜接触镜[J].眼视光学杂志.2000,2(3):175.
    [66]Willis S L, Court J L, Redman R P, et al. A novel phosphorylcholine-coated contact lens for extended wearuse[J]. Biomaterials.2001,22(24):3261-3272.
    [67]Shimizu T, Goda T, Minoura N, et al. Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) networks[J]. Biomaterials.2010,274(2):465-471.
    [68]周晓蓓,陈元维,罗娟,等.含磷脂胆碱新型水凝胶的制备及性能初探[J1.功能材料.2008,5(39):838-840.
    [69]Goda T, Watanabe J, Takai M, et al. Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker[J]. Polymer.2006,47(4):1390-1396.
    [70]Okajima Y, Saika S, Sawa M. Effect of surface coating an acrylic intraocular lens with poly(2-methacryloyloxyethyl phosphorylcholine) polymer on lens epithelial cell line behavior[J]. Journal of Cataract & Refractive Surgery.2006,32(4):666-671.
    [71]郑玉峰,李莉.生物医用材料学[M].哈尔滨工业大学出版社,2005:25.
    [72]Xu J, Yuan Y, Shan B, et al. Ozone-induced grafting phosphorylcholine polymer onto silicone film grafting 2-methacryloyloxyethyl phosphorylcholine onto silicone film to improve hemocompatibility[J]. Colloids and Surfaces B:Biointerfaces.2003,30(3): 215-223.
    [73]Yang Z M, Wang L, Yuan J, et al. Synthetic studies on nonthrombogenic biomaterials 14:synthesis and characterization of poly(ether-urethane) bearing a Zwitterionic structure of phosphorylcholine on the surface.[J]. Journal of Biomaterials Science--Polymer Edition.2003,14(7):707.
    [74]Xu Z, Dai Q, Wu J, et al. Covalent Attachment of Phospholipid Analogous Polymers To Modify a Polymeric Membrane Surface:A Novel Approach[J]. Langmuir.2004, 20(4):1481-1488.
    [75]Huang X, Xu Z, Wan L, et al. Surface Modification of Polyacrylonitrile-Based Membranes by Chemical Reactions To Generate Phospholipid Moieties[J]. Langmuir. 2005,21(7):2941-2947.
    [76]Xu J, Ji J, Chen W, et al. Novel Biomimetic Surfactant:Synthesis and Micellar Characteristics[J]. Macromolecular Bioscience.2005,5(2):164-171.
    [77]Yang S, Zhang S, Winnik F M, et al. Group reorientation and migration of amphiphilic polymer bearing phosphorylcholine functionalities on surface of cellular membrane mimicking coating[J]. Journal of Biomedical Materials Research Part A.2008,84A(3): 837-841.
    [78]张玉.甲基丙烯酰氧基乙基磷酸胆碱及其共聚合物的合成[D].天津:天津大学,2008.
    [79]Edmundson R S. Oxidation of Cyclic Phosphorochloridites[J]. Chemistry and industry. 1962,10:1828-1829.
    [80]Cox J, Westheimer F. The oxidation of trisubstituted phosphates by dinitrogen tetroxide[J]. Am.Chem.Soc.1958(80):5441.
    [81]Lucas H J, Mitchell F W. New route for the preparation of 2-chloro-1,3,2-dioxaphospholane[J]. Journal of the American Chemical Society.1950, 72:5491-5497.
    [82]Nakaya T, Yasuzawa M, Imoto M. Poly(phosphatidylcholine) Analogues [J]. Macromolecules.1989,22:3181-3183.
    [83]Li Y, Nakamura N, Chen T, et al. Synthesis of comb-like polyurethanes containing hydrophilic phosphatidylcholine analogues in the main chains and hydrophobic long chain alkyl groups in the side chains[J]. Macromolecular Rapid Communications.1996, 17(10):737-744.
    [84]Li Y, Matthews K H, Kodama M, et al. Novel blood compatible polyurethanes containing long-chain alkyl groups and phosphatidylcholine analogues [J]. Macromolecular Chemistry and Physics.1995,196(10):3143-3153.
    [85]Costerton J W, Lewandowski Z. Microbial biofilms[J]. Annual Review of Microbiology. 1995,49(1):711-747.
    [86]Herrwerth S, Eck W, Reinhardt S, et al. Factors that Determine the Protein Resistance of Oligoether Self-Assembled Monolayers-Internal Hydrophilicity, Terminal Hydrophilicity, and Lateral Packing Density[J]. Journal of the American Chemical Society.2003,125(31):9359-9366.
    [87]Kobayashi K. Segmented polyurethane modified by photopolymerization and cross-linking with 2-methacryloyloxyethyl phosphorylcholine polymer for blood-contacting surfaces of ventricular assist devices[J]. Journal of Artificial Organs. 2005,8(4):237-244.
    [88]Konno T, Kurita K, Iwasaki Y, et al. Preparation of nanoparticles composed with bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer[J]. Biomaterials. 2001,22(13):1883-1889.
    [89]Chunxue B. Electrochemical luminescence composite material with anti-biofouling properties[P]. US20050196305 20050804.2006.02.09.
    [90]Jean M. Copolymers of polyolefine/phosphorylcholine in cosmetic compositions[P]. WO2006IB5104320060405.2006.10.12.
    [91]王丽红,陈欢林.改善生物医用高分子膜表面血液相容性的PC技术[J].膜科学与技术.2006,26(3):90-94.
    [92]Nakaya T, Li Yujun T. Recent progress of phospholipid polymers.[J]. Designed Monomers & Polymers.2003,6(4):309-351.
    [93]蔡立彬.有机硅改性水凝胶角膜接触镜材料的研究[D].西安:西北工业大学,2006.
    [94]张晓冬,倪忠斌,李英,等MMA/MPC共聚物膜的制备及其抗凝血性能研究[J].化学学报.2007,65(22):2623-2628.
    [95]刘荷英,何淑漫,陈楚敏,等.阻抗蛋白质吸附材料研究进展[J].化工进展. 2009(03).
    [96]张蕾.人泪腺ACC的发病与转移机制及<'125>I粒子植入的实验研究[D].天津医科大学,2009.
    [97]王俊华,辛忠,李琳MPC/MMA共聚物的合成及血液相容性[J].华东理工大学学报(自然科学版).2010,36(4):506-511.
    [98]刘鹏飞,彭静,吴季兰.辐射交联制备改性CMC水凝胶的溶胀行为研究[J].高分子学报.2002(6):756-759.
    [99]周树华,杨建国,吴承佩.聚N,N-二乙基丙烯酰胺蒙脱土纳米复合物的合成及溶胀性能[J].高分子学报.2003(3):326-329.
    [100]白渝平,杨荣杰,李建民,等PVA-PAA IPN水凝胶的制备及其溶胀性质研究[J1.高分子材料科学与工程.2002(1):98-101.
    [101]Tranoudis I, Efron N. Water properties of soft contact lens materials[J]. Contact Lens and Anterior Eye.2004,27(4):193-208.
    [102]Long S F, Clarke S, Davies M C, et al. Controlled biological response on blends of a phosphorylcholine-based copolymer with poly(butyl methacrylate)[J]. Biomaterials. 2003,25(21):5125-5135.
    [103]Kim S J, Lee C K, Kim S I. Characterization of the water state of hyaluronic acid and poly(vinyl alcohol) interpenetrating polymer networks[J]. Journal of Applied Polymer Science.2004,92(3):1467-1472.
    [104]Kim H I, Kim H, Pang E S, et al. Structural Characterization of Unsaturated Phosphatidylcholines Using Traveling Wave Ion Mobility Spectrometry[J]. Analytical Chemistry.2009,81(20):8289-8297.
    [105]El Sayed A M, Kawasaki H, Maeda H. Gel shrinking resulting from uneven distribution of ionic micelles between the inside and the outside of the polymer gel network. [J]. Journal of Applied Polymer Science.2004,93(5):2001-2006.
    [106]Garcia D M, Escobar J L, Bada N, et al. Synthesis and characterization of poly(methacrylic acid) hydrogels for metoclopramide delivery [J]. European Polymer Journal.2004,40(8):1637-1643.
    [107]Ritger P L, Peppas N A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs[J]. Journal of Controlled Release.1987,5(1):23-36.
    [108]Tas.delen B, Kayaman-Apohan N, Güven O, et al. Swelling and diffusion studies of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels in water and aqueous solutions of drugs[J]. Journal of Applied Polymer Science.2004,91(2):911-915.
    [109]Schott H. Swelling kinetics of polymers[J]. Journal of Macromolecular Science, Part B. 1992,31(1):1-9.
    [110]殷以华,杨亚江,徐辉碧.结肠位点药物传载凝胶的溶胀动力学研究[J].高分子学报.2001(5):650-655.
    [111]Lewis A, Tang Y, Brocchini S, et al. Poly(2-methacryloyloxyethyl phosphorylcholine) for Protein Conjugation[J]. Bioconjugate Chemistry.2008,19(11):2144-2155.
    [112]Yamada M, Li Y, Nakaya T. Synthesis and Properties of Polymers Containing Phosphatidylcholine Analogues in the Main Chains and Long Alkyl Groups in the Side Chains[J]. Journal of Macromolecular Science, Part A,32:10.1995:1723-1733.
    [113]Korematsu A, Li Y, Nakaya T. Synthesis and properties of polyurethanes containing phosphatidylcholine analogues in the main chains and long-chain alkyl groups in the side chains[J]. Polymer Bulletin.1997(38):133-140.
    [114]蒋红梅.聚硅氧烷/聚氨酯嵌段共聚物的制备、结构与性能及动力学研究[D].上海交通大学,2007.
    [115]Ishihara K. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs[J]. Science and Technology of Advanced Materials.2000, 1(3):131.
    [116]施政余,李梅,赵燕,等.润湿性可控智能表面的研究进展[J].材料研究学报.2008(06).
    [117]滕新荣.表面物理化学[M].北京:化学工业出版社,2009:28-29.
    [118]Mccloskey C B, Yip C M, Santerre J P. Effect of Fluorinated Surface-Modifying Macromolecules on the Molecular Surface Structure of a Polyether Poly(urethane urea)[J]. Macromolecules.2002,35(3):924-933.
    [119]Chapman T M. Models for polyurethane hydrolysis under moderately acidic conditions: A comparative study of hydrolysis rates of urethanes, ureas, and amides. [J]. Journal of Polymer Science Part A:Polymer Chemistry.1989,27(6):1993-2005.
    [120]Chapman T M, Benrashid R, Gribbin K L, et al. Determination of Low Critical Surface Energies of Novel Fluorinated Poly(amide urethane) Block Copolymers.1. Fluorinated Side Chains[J]. Macromolecules.1995,28(1):331-335.
    [121]Zhuang H, Marra K G, Ho T, et al. Surface Composition of Fluorinated Poly(amide urethane) Block Copolymers by Electron Spectroscopy for Chemical Analysis[J]. Macromolecules.1996,29(5):1660-1665.
    [122]Dettre R H, Johnson R E. Contact Angle Hysteresis. IV. Contact Angle Measurements on Heterogeneous Surfaces[J]. The Journal of Physical Chemistry.1965,69(5): 1507-1515.
    [123]Wang T, Wang Y, Su Y, et al. Improved protein-adsorption-resistant property of PES/SPC blend membrane by adjustment of coagulation bath composition[J]. Colloids and Surfaces B.2005,351(1):141-148.
    [124]Zhu Q, Feng S, Zhang C. Synthesis and thermal properties of polyurethane-polysiloxane crosslinked polymer networks.[J]. Journal of Applied Polymer Science. 2003,90(1):310-315.
    [125]Aelion R, Loebel A, Eirich F. Hydrolysis of Ethyl Silicate[J]. Journal of the American Chemical Society.1950,72(12):5705-5712.
    [126]Chambon P, Cloutet E, Cramail H. Synthesis of Core-Shell Polyurethane-Polydimethylsiloxane Particles by Polyaddition in Organic Dispersant Media:Mechanism of Particle Formation[J]. Macromolecular Symposia.2005,226(1): 227-238.
    [127]Li C, Liu X. Meng L. Novel amphiphilic copolymer with pendant tris(trimethylsiloxy)silyl group:synthesis, characterization and employment in CE DNA separation[J]. Polymer.2004,45(2):337-344.
    [128]张淑娴,杜小兰,廖俊,等.三(三甲基硅氧基)甲基丙烯酰氧丙基硅烷的合成研究[J].武汉大学学报(理学版).2003,49(6):717-719.
    [129]Hoffman A S. Hydrogels for biomedical applications[J]. Advanced Drug Delivery Reviews.2002,54(1):3-12.
    [130]Hennink W E, van Nostrum C F. Novel crosslinking methods to design hydrogels[J]. Advanced Drug Delivery Reviews.2002,54(1):13-36.
    [131]Deligkaris K, Tadele T S, Olthuis W, et al. Hydrogel-based devices for biomedical applications[J]. Sensors and Actuators B:Chemical.2010,147(2):765-774.
    [132]Ueda T, Oshida H, Kurita K, et al. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility[J]. polymer journal.1992,24(11):1259-1269.
    [133]Chen H, Yuan L, Song W, et al. Biocompatible polymer materials:Role of protein-surface interactions [J]. Progress in Polymer Science.2008,23(3):787-795.
    [134]Ho C, Hlady V. Fluorescence assay for measuring lipid deposits on contact lens surfaces[J]. Biomaterials.1995,16(6):479-482.
    [135]Castillo E J, Koenig J L, Anderson J M. Characterization of protein adsorption on soft contact lenses:Ⅳ. Comparison of in vivo spoilage with the in vitro adsorption of tear proteins[J]. Biomaterials.1986,7(2):89-96.
    [136]Lloyd A W, Faragher R G A, Denyer S P. Ocular biomaterials and implants[J]. Biomaterials.2001,22(8):769-785.
    [137]Wang L, Wei Y, Chen K, et al. Properties of phospholipid monolayer deposited on a fluorinated polyurethane.[J]. Journal of Biomaterials Science--Polymer Edition.2004, 15(8):957-969.
    [138]Ishihara K, Tsuji T, Kurosaki T, et al. Hemocompatibility on graft copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) side chain and poly(n-butyl methacrylate) backbone[J]. Journal of Biomedical Materials Research. 1994,28(2):225-232.
    [139]Nicolson P C, Vogt J. Soft contact lens polymers:an evolution[J]. Biomaterials.2001, 22(24):3273-3283.
    [140]谭帼馨,崔英德NVP-HEMA角膜接触镜材料的透氧性能[J].膜科学与技术.2004(02):26-29.
    [141]Young G, Bowers R, Hall B. Clinical comparison of omafilcon A with four control materials[J]. The CLAO Journal.1997,23:249-258.
    [142]Yin Y, Yang Y, Xu H. Hydrogels for colon-specific drug delivery:Swelling kinetics and mechanism of degradation in vitro[J]. Journal of Polymer Science Part B:Polymer Physics.2001,39(24):3128-3137.
    [143]Yin Y, Yang Y, Xu H. Swelling behavior of hydrogels for colon-site drug delivery. [J]. Journal of Applied Polymer Science.2002,83(13):2835-2842.
    [144]Ruiz L, Hilborn J G, Lionard D, et al. Synthesis, structure and surface dynamics of phosphorylcholine functional biomimicking polymers[J]. Biomaterials.1998,19(11): 987-998.
    [145]Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications[J]. Analytical and Bioanalytical Chemistry.2005,381(3):534-546.
    [146]Jhon M S, Andrade J D. Water and hydrogels[J]. Journal of Biomedical Materials Research.1973,7(6):509-522.
    [147]田帅.聚乙二醇、聚乙烯醇改性双网络水凝胶的制备与表征[D].浙江大学化学工程与生物工程学系,2010.
    [148]Tanaka M, Mochizuki A, Ishii N, et al. Study of Blood Compatibility with Poly(2-methoxyethyl acrylate). Relationship between Water Structure and Platelet Compatibility in Poly(2-methoxyethylacrylate-co-2-hydroxyethylmethacrylate)[J]. Biomacromolecules.2002,3(1):36-41.
    [149]Andrade J, Lee H, John M, et al. Water As A Biomaterial[J]. ASAIO Journal.1973, 19(1):1-7.
    [150]Yamada-Nosaka A, Ishikiriyama K, Todoki M, et al.1H-NMR studies on water in methacrylate hydrogels. I[J]. Journal of Applied Polymer Science.1990,39(11-12): 2443-2452.
    [151]Yamada-Nosaka A, Tanzawa H.1H-NMR studies on water in methacrylate hydrogels. Ⅱ[J]. Journal of Applied Polymer Science.1991,43(6):1165-1170.
    [152]Israelachvili J, Wennerstrom H. Role of hydration and water structure in biological and colloidal interactions.[J]. Nature.1996,379(6562):219.
    [153]de Queiroz A A A, Barrak R, de Castro S C. Thermodynamic analysis of the surface of biomaterials[J]. Journal of Molecular Structure:THEOCHEM.1997,394(2-3): 271-279.
    [154]Wang R L C, Kreuzer H J, Grunze M. Molecular Conformation and Solvation of Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers and Their Resistance to Protein Adsorption [J]. The Journal of Physical Chemistry B.1997,101(47): 9767-9773.
    [155]Harder P, Grunze M, Dahint R, et al. Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption[J]. The Journal of Physical Chemistry B.1998,102(2):426-436.
    [156]Feldman K, Hahner G, Spencer N D, et al. Probing Resistance to Protein Adsorption of Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers by Scanning Force Microscopy [J]. Journal of the American Chemical Society.1999,121(43): 10134-10141.
    [157]Kikuchi A, Karasawa M, Tsuruta T, et al. Differential Affinity of Lymphocyte Subpopulations toward PHEMA Surface Derivatized with a Small Amount of Amino Groups--Evaluation under the Regulated Shear Stress[J]. Journal of Colloid and Interface Science.1993,158(1):10-18.
    [158]Kataoka K, Ito H, Amano HL et al. Minimized platelet interaction with poly(2-hydroxyethyl methacrylate-block-4-bis(trimethylsilyl)methylstyrene) hydrogel showing anomalously high free water content[J]. Journal of Biomaterials Science, Polymer Edition.1998,9(2):111-129.
    [159]Iwasaki Y, Fujiike A, Kurita K, et al. Protein adsorption and platelet adhesion on polymer surfaces having phospholipid polar group connected with oxyethylene chain. [J]. Journal of Biomaterials Science, Polymer Edition.1996,8:91-102.
    [160]Ishihara K, Nomura H, Mihara T, et al. Why do phospholipid polymers reduce protein adsorption?[J]. Journal of Biomedical Materials Research.1998,39(2):323-330.
    [161]Morisaku T, Watanabe J, Konno T, et al. Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis[J]. Polymer. 2008,49(21):4652-4657.
    [162]Lewis A L, Cumming Z L, Goreish H H, et al. Crosslinkable coatings from phosphorylcholine-based polymers[J]. Biomaterials.2001,22(2):99-111.
    [163]Nicolson P C, Vogt J. Soft contact lens polymers:an evolution[J]. Biomaterials.2001, 22(24):3273-3283.
    [164]Grobe G, K. Unzler J, Seelye D, et al. Silicone hydrogels for contact lens application [J]. Polym Mater Sci Eng.1999,80:108-109.
    [165]Yacoub A, Urban M W. Release of Phospholipids from Colloidal Particles to Polymeric Surfaces[J]. Biomacromolecules.2003,4(1):52-56.
    [166]Inoue Y, Watanabe J, Ishihara K. Dynamic motion of phosphorylcholine groups at the surface of poly(2-methacryloyloxyethyl phosphorylcholine-random 2,2,2-trifluoroethyl methacrylate)[J]. Journal of Colloid and Interface Science.2004, 31(12):3274-3280.
    [167]Meiron T S, Marmur A, Saguy I S. Contact angle measurement on rough surfaces[J]. Journal of Colloid and Interface Science.2004,274(2):637-644.
    [168]Yu X, Wang Z, Jiang Y, et al. Reversible pH-Responsive Surface:From Superhydrophobicity to Superhydrophilicity[J]. Advanced Materials.2005,17(10): 1289-1293.
    [169]Holly F J, Refojo M F. Wettability of hydrogels. I. Poly(2-hydroxyethyl methacrylate)[J]. Journal of Biomedical Materials Research.1975,9:315-326.
    [170]Lavielle L, Schultz J. Surface properties of graft polyethylene in contact with water. I. Orientation phenomena[J]. J Colloid Interface.1985,106: 438-445.
    [171]Lavielle L, Schultz J, Sanfeld A. Surface properties of graft polyethylene in contact with water. I. Thermodynamic aspects[J]. J Colloid Interface Sci.1985,106:446-451.
    [172]Ratner B, Pweathersby, Man A H, et al. Radiation-grafted hydrogels for biomaterial applications as studied by the ESCA technique[J]. J Appl Polym Sci.1978,22: 643-664.
    [173]Yoshida H, Hatakeyama T, Hatakeyama H. Phase transitions of the water-xanthan system[J]. Polymer.1990,31(4):693-698.
    [174]Finer E G. Interpretation of deuteron magnetic resonance spectroscopic studies of the hydration of macromolecules[J]. Journal of the Chemical Society, Faraday Transactions 2:Molecular and Chemical Physics.1973,69:1590-1600.
    [175]Guryca V, Hobzova R, Pradny M, et al. Surface morphology of contact lenses probed with microscopy techniques[J]. Contact Lens and Anterior Eye.2007,30(4):215-222.
    [176]Curtis A, Wilkinson C. Topographical control of cells[J]. Biomaterials.1997,18(24): 1573-1583.
    [177]Fitton J, Dalton B, Beumer G, et al. Surface topography can interfere with epithelial tissue migration[J]. J Biomed Mater Res.1998,42(2):245-257.
    [178]Finer E, Darke A. Phospholipid hydration studied by deuteron magnetic resonance spectroscopy[J]. Chem Phys Lipids.1974,12:1-16.
    [179]Refojo M F, Yasuda H. Hydrogels from 2-hydroxyethyl methacrylate and propylene glycol monoacrylate[J]. Journal of Applied Polymer Science.1965,9(7):2425-2435.
    [180]Refojo M F. Hydrophobic interaction in poly(2-hydroxyethyl methacrylate) homogeneous hydrogel[J]. Journal of Polymer Science Part A-l:Polymer Chemistry. 1967,5(12):3103-3113.
    [181]Peniche C, Cohen M E, Vazquez B, et al. Water sorption of flexible networks based on 2-hydroxyethyl methacrylate-triethylenglycol dimethacrylate copolymers[J]. Polymer. 1997,38(24):5977-5982.
    [182]Corkhill P H, Jolly A M, Ng C O, et al. Synthetic hydrogels:1. Hydroxyalkyl acrylate and methacrylate copolymers-water binding studies[J]. Polymer.1987,28(10): 1758-1766.
    [183]Fatt I. A Predictive Model for Dehydration of a Hydrogel Contact Lens in the Eye[J]. Journal of the British Contact Lens Association.1989,12(2):15-31.
    [184]Fatt I. A new procedure for measuring a water transport characteristic of dehydrating hydrogels--how this characteristic controls dehydration of the lens in the eye[J]. International Contact Lens Clinic.1990,17(5-6):144-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700