聚环氧乙烷(PEO)类聚合物的合成、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚环氧乙烷(PEO)是目前最常用的生物相容性聚合物之一。它有很多优异的性能:毒性低、水中溶解性很好、免疫性和抗原性极低等。药物可以用PEO修饰、也可以装载于具有PEO外层的纳米胶囊中,其结果都可以提高循环系统中药物的半衰期,得到极好的药代动力学性能和体内分布。具有支化结构的第二代PEO主要应用于蛋白质药物的修饰,其对小分子药物的修饰还研究甚少。另外,PEO修饰的液核纳米微胶囊较难功能化,而聚合物胶束的载药量又不太高。我们试图找到一个新的方法,得到载药量较高的液核纳米微胶囊,同时具有胶束易于功能化,易于修饰的优点。
     主要结果如下:
     1.首先合成了单甲氧基PEO(mPEOs,Mn=2000,3000,4700),然后将其端羟基转化为羧基,得到了端基转化效率很高的产物。然后用羧端基的mPEO-COOH和赖氨酸的两个氨基偶合,得到不同分子量的支化PEO(mPEO_2)(Mn=4000,6000,9400),将支化PEO通过官能化反应结合顺铂[cis-diammine(dichloro)platinum(Ⅱ),CDDP]。为了比较,我们还合成了相同分子量的线型PEO修饰的顺铂。细胞毒性实验显示支化PEO修饰的顺铂比相同分子量线型PEO药物对C6人乳腺癌细胞有更好的抑制作用。急毒实验显示,所有的聚合物药物毒性都远小于未修饰的顺铂。
     2.通过阴离子聚合,合成了环氧乙烷和乙氧基乙基缩水甘油共聚物,水解后得到聚环氧乙烷为主链、侧链挂有羟基的亲水聚合物。将部分侧链羟基和共轭亚油酸酯化,然后和油一起分散于水中。聚合物吸附于油滴表面,通过交联得到液核纳米微胶囊。胶囊的粒径小于350nm,分布一般较窄(<0.2)。通过改变乳化条件可以很容易地调节粒径。胶囊在水中非常稳定,至少可以保持5个月,用乙醇溶去核后其壳仍保持完整。我们还测试了胶囊对芘的装载,通过紫外检测,装载效率最高可达94%。因此我们提供了一个在界面上交联聚合物得到液核纳米微胶囊的新方法。
     3.用聚环氧乙烷大分子引发剂,通过ATRP聚合,合成了环氧乙烷/二甲氨基乙基甲基丙烯酸酯(DMA)嵌段共聚物。然后部分DMA单元通过季铵化接枝十八烷基溴,得到两亲性聚合物。所得的两亲性聚合物和油一起制备细乳液,聚合物吸附于油的表面。通过加入1,4-二溴丁烷使聚合物交联,得到稳定的pH响应的液核纳米微胶囊,并通过核磁共振测定实际交联的程度。我们还研究了胶囊对pH的响应,当pH降到3时,微胶囊的粒径会突然增大。不同壳核质量比的胶囊对pH的响应程度略有区别,壳层质量越大,粒径增幅越大,直径最大的增幅为80nm。壳层交联程度也对胶囊pH响应幅度有影响。
Poly(ethylene oxide) (PEO) is one of the most popular biocompatible polymers. It possesses an ideal array of properties: very low toxicity, excellent solubility in aqueous solutions, extremely low immunogenicity and antigenicity. Drugs can be chemically modified with PEO or lodded in the nanoparticles with PEO corona and reach long-circulating half-lives and excellent pharmacokinetic and biodistribution behavior. Yet the second generation Pegylation is focused on protein and peptide. As one method of the second generation Pegylation, branched PEO has been used to modify low molecular weight drugs rarely. However, the PEO modified liquid-core nanocapsules are difficult to be functionalized and the loading content by polymer micelles is not high. We try to find a novel method to prepare liquid-core nanocapsules with high loading content and varied functionalities. The main results have been obtained as follows:
     1. Monomethoxy-polyethylene oxides (mPEOs, Mn= 2000, 3000, 4700) were synthesized and the terminal hydroxyl group was converted to carboxyl group with high efficiency, and then mPEO-COOH was obtained. Two-arm branched PEO (mPEO_2) with different molecular weight (M_n=4000, 6000, 9400) were synthesized by coupling the carboxyl groups of mPEO-COOH with the amino groups of one lysine molecule. Then the obtained branched polymer was used as carrier for immobilization of cisplatin (cis-diammine (dichloro) platinum (II), CDDP). As a contrast, CDDP modified with linear mPEOs were also synthesized. All these polymeric drugs modified with branched PEO are water soluble and show higher cytotoxic activity against C6 human breast cancer cells than cisplatin modified with linear mPEO with the same molecular weight. All the polymeric CDDP showed the much lower toxicity than the CDDP.
     2. The hydrophilic copolymers poly[(ethylene oxide)-co-glycidol] [poly(EO-co-Gly)] was prepared by anionic polymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) first, then the hydroxyl groups on the backbone were recovered after hydrolysis and partly modified by hydrophobic conjugated linoleic acid (CLA). The copolymer with multiple linoleate pendants was absorbed at the oil/water interface and then crosslinked to form stable nanocapsules. The mean diameter of the nanocapsule was below 350nm and the size distribution was relatively narrow (<0.2) at low concentration of oil in acetone (<10 mg/mL). The particle size could be tuned easily by variation of the emulsification conditions. The nanocapsule was stable in water for at least 5 months, and the shell still kept integrity after removal of the oily core by solvent. Pyrene was encapsulated in these nanocapsules and high loading efficiency as 94% was measured by UV spectroscopy. Thus a convenient approach to prepare the liquid-core nanocapsules by cross-linking amphiphilic copolymer at oil-water interface was provided.
     3. Poly(ethylene oxide)-block-poly[2-(dimethylamino)ethyl methacrylate] (PEO-b-PDMA) was synthesized by ATRP polymerization of DMA using PEO-based macroinitiator. Then the DMA units of the block copolymer were partly modified with bromooctadecane. The obtained amphiphilic copolymer was absorbed at the oil/water interface and to form stable nanocapsules, the cross-linking procedure was performed by adding 1,4-dibromobutane and the efficiency was estimated by ~1H NMR. The pH-responsive properties of the capsules were investigated. When the pH of the dispersion decreased to 3, the diameters of the nanocapsules increased sharply. Capsules with different core/shell mass ratio showed the different PH-responsive properties, the larger the core/shell mass ratio, the higher the diameter increase, and the maximum change of the diameter was 80nm. The cross-linking degree also affects the increasing degree.
引文
[1] Zalipsky, S. Chemistry of Polyethylene-Glycol Conjugates with Biologically-Active Molecules [J]. Advanced Drug Delivery Reviews, 1995, 16(2-3): 157-182.
    [2] Veronese, F. M. Peptide and protein PEGylation: a review of problems and solutions [J]. Biomaterials, 2001, 22(5): 405-417.
    [3] Harris, J. M. Chess R. B. Effect of pegylation on pharmaceuticals [J]. Nature Reviews Drug Discovery, 2003, 2(3): 214-221.
    [4] Pang, S. N. J. Final Report on the Safety Assessment of Polyethylene Glycols (Pegs) -6, -8, -32, -75, -150, -14m, -20m [J]. Journal of the American College of Toxicology, 1993, 12(5): 429-457.
    [5] 徐静,倪道明,张振龙.聚乙二醇对蛋白质类药物的修饰[J].微生物学免疫学进展,2004,32(4):85-88.
    [6] Dreborg, S. Akerblom E. B. Immunotherapy with Monomethoxypolyethylene Glycol Modified Allergens [J]. Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 6(4): 315-365.
    [7] Abuchowski, A., Van E. T., Palczuk N. C. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol [J]. J. Biol. Chem., 1977, 252(11): 3578-3581.
    [8] Harris, J. M., Martin N. E., Modi M. Pegylation - A novel process for modifying pharmacokinetics [J]. Clinical Pharmacokinetics, 2001, 40(7): 539-551.
    [9] Yamaoka, T., Tabata Y., Ikada Y. Distribution and Tissue Uptake of Poly(Ethylene Glycol) with Different Molecular-Weights after Intravenous Administration to Mice [J]. Journal of Pharmaceutical Sciences, 1994, 83(4): 601-606.
    [10] Davis, F. F. Enzyme polyethylene glycol adducts: modified enzymes with unique properties [J]. Enzyme Eng., 1978, 4: 169-173.
    [11] Nucci, M. L., Shorr R., Abuchowski A. The Therapeutic Value of Poly(Ethylene Glycol)-Modified Proteins [J]. Advanced Drug Delivery Reviews, 1991, 6(2): 133-151.
    [12] Kozlowski, A. Harris J. M. Improvements in protein PEGylation: pegylated interferons for treatment of hepatitis C [J]. Journal of Controlled Release, 2001, 72(1-3): 217-224.
    [13] Monfardini, C., Schiavon O., Caliceti P., Morpurgo M., Harris J. M., Veronese F. M. A Branched Monomethoxypoly(Ethylene Glycol) for Protein Modification [J]. Bioconjugate Chemistry, 1995, 6(1): 62-69.
    [14] Kozlowski, A., Charles S. A., Harris J. M. Development of pegylated interferons for the treatment of chronic hepatitis C [J]. Biodrugs, 2001, 15(7): 419-429.
    [15] 胡永祥,牛津梁,张文博,高林.聚乙二醇修饰药物技术的研究进展[J].中国生化药物杂志,2004,25(6):369-372.
    [16] Stone, M., Harvey S. B., Kisiel W., Foster D., Nelsestuen G. L. Unusual benefits of macromolecular shielding by polyethylene glycol for reactions at the diffusional limit: The case of factor Ⅶai and tissue factor [J]. Biochemistry, 2002, 41(52): 15820-15825.
    [17] Huber, J. D., Campos C. R., Egleton R. D., Witt K., Guo L. H., Roberts M. J., Bentley M. D., Davis T. P. Conjugation of low molecular weight poly(ethylene glycol) to biphalin enhances antinociceptive profile [J]. Journal of Pharmaceutical Sciences, 2003, 92(7): 1377-1385.
    [18] Kinstler, O. B., Brems D. N., Lauren S. L., Paige A. G., Hamburger J. B., Treuheit M. J. Characterization and stability of N-terminally PEGylated rhG-CSF [J]. Pharmaceutical Research, 1996, 13(7): 996-1002.
    [19] Kinstler, O., Molineux G., Treuheit M., Ladd D., Gegg C. Mono-N-terminal poly(ethylene glycol)-protein conjugates [J]. Advanced Drug Delivery Reviews, 2002, 54(4): 477-485.
    [20] Lee, H., Jang I. H., Ryu S. H., Park T. G. N-terminal site-specific mono-PEGylation of epidermal growth factor [J]. Pharmaceutical Research, 2003, 20(5): 818-825.
    [21] Hao, Y., Chen J. H., Wang X. C., Zhu H. W., Rong Z. G. Effects of site-specific polyethylene glycol modification of recombinant human granulocyte colony-stimulating factor on its biologic activities [J]. Biodrugs, 2006, 20(6): 357-362.
    [22] Balan, S., Choi J. W., Godwin A., Teo I., Laborde C. M., Heidelberger S., Zloh M., Shaunak S., Brocchini S. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge [J]. Bioconjugate Chemistry, 2007, 18(1): 61-76.
    [23] Woghiren, C., Sharma B., Stein S. Protected Thiol Polyethylene-Glycol-a New Activated Polymer for Reversible Protein Modification [J]. Bioconjugate Chemistry, 1993, 4(5): 314-318.
    [24] Morpurgo, M., Schiavon O., Caliceti P., Veronese EM. Covalent modification of mushroom tyrosinase with different amphiphic polymers for pharmaceutical and biocatalysis applications [J]. Applied Biochemistry and Biotechnology, 1996, 56(1): 59-72.
    [25] Rosendahl, M.S., Doherty D.H., Smith D.J., Carlson S.J., Chlipala E.A., Cox G.N. A long-acting, highly potent interferon alpha-2 conjugate created using site-specific PEGylation [J]. Bioconjugate Chemistry, 2005, 16(1): 200-207.
    [26] Sartore, L., Caliceti P., Schiavon O., Veronese F.M. Enzyme Modification by mPEG with an Amino-Acid or Peptide as Spacer Arms [J]. Applied Biochemistry and Biotechnology, 1991, 27(1): 45-54.
    [27] Zhao, H., Yang K., Martinez A., Basu A., Chintala R., Liu H.C., Janjua A., Wang M.L., Filpula D. Linear and branched bicin linkers for releasable PEGylation of macromolecules: Controlled release in vivo and in vitro from mono-and multi-PEGylated proteins [J]. Bioconjugate Chemistry, 2006, 17(2): 341-351.
    [28] Zhao, H., Greenwald R.B., Reddy P., Xia J., Peng P. A new platform for oligonucleotide delivery utilizing the PEG prodrug approach [J]. Bioconjugate Chemistry, 2005, 16(4): 758-766.
    [29] Greenwald, R.B., Yang J., Zhao H., Conover C.D., Lee S., Filpula D. Controlled release of proteins from their poly(ethylene glycol) conjugates: Drug delivery systems employing 1, 6-elimination [J]. Bioconjugate Chemistry, 2003, 14(2): 395-403.
    [30] Lee, S., Greenwald R.B., McGuire J., Yang K., Shi C. Drug delivery systems employing 1, 6-elimination: Releasable poly(ethylene glycol) conjugates of proteins [J]. Bioconjugate Chemistry, 2001, 12(2): 163-169.
    [31] Zalipsky, S., Qazen M., Walker J.A., Mullah N., Quinn Y.P., Huang S.K. New detachable poly(ethylene glycol) conjugates: Cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine [J]. Bioconjugate Chemistry, 1999, 10(5): 703-707.
    [32] Schlapak, R., Pammer P., Armitage D., Zhu R., Hinterdorfer P., Vaupel M., Fruhwirth T., Howorka S. Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays [J]. Langmuir, 2006, 22(1): 277-285.
    [33] Chen, H., Chen Y., Sheardown H., Brook M. A. Immobilization of heparin on a silicone surface through a heterobifunctional PEG spacer [J]. Biomaterials, 2005, 26(35): 7418-7424.
    [34] Lundberg, B. B., Griffiths G., Hansen H. J. Cellular association and cytotoxicity of anti-CD74-targeted lipid drug-carders in B lymphorna cells [J]. Journal of Controlled Release, 2004, 94(1): 155-161.
    [35] Hamidi, M., Azadi A., Rafiei P. Pharmacokinetic consequences of pegylation [J]. Drug Delivery, 2006, 13(6): 399-409.
    [36] Boulestin, A., Kamar N., Sandres-Saune K., Alric L., Vinel J. P., Rostaing L., Izopet J. Pegylation of IFN-alpha and antiviral activity [J]. Journal of Interferon and Cytokine Research, 2006, 26(12): 849-853.
    [37] Salmaso, S., Semenzato A., Bersania S., Chinol M., Paganelli G., Caliceti P. Preparation and characterization of active site protected poly(ethylene glycol)-avidin bioconjugates [J]. Biochimica Et Biophysica Acta-General Subjects, 2005, 1726(1): 57-66.
    [38] Veronese, F. M., Monfardini C., Caliceti P., Schiavon O., Scrawen M. D., Beer D. Improvement of pharmacokinetic, immunological and stability properties of asparaginase by conjugation to linear and branched monomethoxy poly(ethylene glycol) [J]. Journal of Controlled Release, 1996, 40(3): 199-209.
    [39] Roberts, M. J., Bentley M. D., Harris J. M. Chemistry for peptide and protein PEGylation [J]. Advanced Drug Delivery Reviews, 2002, 54(4): 459-476.
    [40] Veronese, F. M. Pasut G. PEGylation, successful approach to drug delivery [J]. Drug Discovery Today, 2005, 10(21): 1451-1458.
    [41] Zalipsky, S., Gilon C., Zilkha A. Attachment of drugs to polyethylene glycols [J]. Eur. Polym. J., 1983, 19: 1177-1183.
    [42] Zalipsky, S., Gilon C., Zilkha A. Esteritication of polyethylene glycols [J]. J. Macromol. Sci. Chem., 1984, A21: 839-845.
    [43] Ouchi, T., Yuyama H., Vogl O. Synthesis of poly(ethylene glycols) capped with 5-fluorouracil units through ester bonds and their antitumor activity. [J]. J. Polym. Sci. Polym. Lett., 1987, 25: 279-285.
    [44] Veronese, F. M., Schiavon O., Pasut G., Mendichi R., Andersson L., Tsirk A., Ford J., Wu G. F., Kneller S., Davies J., Duncan R. PEG-doxorubicin conjugates: Influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity [J]. Bioconjugate Chemistry, 2005, 16(4): 775-784.
    [45] Rodrigues, P. C. A., Roth T., Fiebig H. H., Unger C., Mulhaupt R., Kratz F. Correlation of the acid-sensitivity of polyethylene glycol daunorubicin conjugates with their in vitro antiproliferative activity [J]. Bioorganic & Medicinal Chemistry, 2006, 14(12): 4110-4117.
    [46] 蒋霁,贾新桥,黄骏廉.高分子抗肿瘤导向药物的研究现状和发展[J].复旦学报(自然科学版),1997,36(4):409-416.
    [47] 黄骏廉,陈胜,谈立松,王海原.含磺胺嘧啶和DTPA端基PEO的合成及在肿瘤中的富集[J].中国科学(B辑),1998,28(1):85-90.
    [48] Chen, S., Huang Z. H., Huang J. L. Synthesis and characterization of novel kinds of polyethylene oxide drugs containing 5-Fluorouracil and nitrogen mustard at one end and 4-amino-N-(2-pyrimidinyl) benzene sulfonamide at the other end [J]. European Polymer Journal, 2000, 36: 1703-1710.
    [49] Jia, Z. F., Zhang H. T., Huang J. L. Synthesis of Poly(Ethylene Glycol) with Sulfadiazine and Chlorambucil End Groups and Investigation of Its Antitumor Activity [J]. Bioorganic & Medicinal Chemistry Letters, 2003, 13: 2531-2534.
    [50] Nathan, A., Zalipsky S., Ertel S. I., Agathos S. N., Yarmush M. L., Kohn J. Copolymers of Lysine and Polyethylene-Glycol - a New Family of Functionalized Drug Carriers [J]. Bioconjugate Chemistry, 1993, 4: 54-62.
    [51] Nathan, A., Bolikal D., Vyavahare N., Zalipsky S., Kohn J. Hydrogels Based on Water-Soluble Poly(Ether Urethanes) Derived from L-Lysine and Poly(Ethylene Glycol) [J]. Macromolecules, 1992, 25(18): 4476-4484.
    [52] Nathan, A., Zalipsky S., Kohn J. Strategies for Covalent Attachment of Doxorubicin to Poly(Peg-Lys), a New Water-Soluble Poly(Ether Urethane) [J]. Journal of Bioactive and Compatible Polymers, 1994, 9(3): 239-251.
    [53] Poiani, G. J., Riley D. J., Fox J. D. Conjugates of Cis-4-Hydroxy-L-Proline and Poly(Peg-Lys), a Water-Soluble Poly(Ether Urethane) - Synthesis and Evaluation of Antifibrotic Effects in-Vitro and in-Vivo [J]. Bioconjugate Chemistry, 1994, 5(6): 621-630.
    [54] Yokoyama, M., Kwon G. S., Okano T., Sakurai Y., Seto T., Kataoka K. Preparation of Micelle-Forming Polymer Drug Conjugates [J]. Bioconjugate Chemistry, 1992, 3(4): 295-301.
    [55] Kwon, G., Suwa S., Yokoyama M., Okano T., Sakurai Y., Kataoka K. Enhanced Tumor Accumulation and Prolonged Circulation Times of Micelle-Forming Poly(Ethylene Oxide-Aspartate) Block Copolymer-Adriamycin Conjugates [J]. Journal of Controlled Release, 1994, 29(1-2): 17-23.
    [56] Greenwald, R. B., Conover C. D., Choe Y. H. Poly(ethylene glycol) conjugated drugs and prodrugs: A comprehensive review [J]. Critical Reviews in Therapeutic Drug Carrier Systems, 2000, 17(2): 101-161.
    [57] Stolnik, S., Illum L., Davis S. S. Long Circulating Microparticulate Drug Carriers [J]. Advanced Drug Delivery Reviews, 1995, 16(2-3): 195-214.
    [58] 王杰,张强,易翔.表面修饰对环孢菌素A聚乳酸钠米粒体内外细胞摄取和体内组织分布的影响[J].北京医科大学学报,2000,32(3):235-238.
    [59] Hoarau, D., Delmas P., David S., Roux E., Leroux J. C. Novel long-circulating lipid nanocapsules [J]. Pharmaceutical Research, 2004, 21(10): 1783-1789.
    [60] Zahr, A. S., Davis C. A., Pishko M. V. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol) [J]. Langrnuir, 2006, 22(19): 8178-8185.
    [61] Torchilin, V. P. Micellar nanocarriers: Pharmaceutical perspectives [J]. Pharmaceutical Research, 2007, 24(1): 1-16.
    [62] Weissig, V., Whiteman K. R., Torchilin V. P. Accumulation of protein-loaded long-circulating micelles and liposomes in subcutaneous Lewis lung carcinoma in mice [J]. Pharmaceutical Research, 1998, 15(10): 1552-1556.
    [63] Monsky, W. L., Fukumura D., Gohongi T., Ancukiewcz M., Weich H. A., Torchilin V. P., Yuan F., Jain R. K. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor [J]. Cancer Research, 1999, 59(16): 4129-4135.
    [64] Helmlinger, G., Yuan F., Dellian M., Jain R. K. Interstitial pH and pO(2) gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation [J]. Nature Medicine, 1997, 3(2): 177-182.
    [65] Le Garrec, D., Taillefer J., Van Lier J.E., Lenaerts V., Leroux J.C. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model [J]. Journal of Drug Targeting, 2002, 10(5): 429-437.
    [66] Yoo, H.S., Lee E.A., Park T.G. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages [J]. Journal of Controlled Release, 2002, 82(1): 17-27.
    [67] Jones, M.C., Ranger M., Leroux J.C. pH-sensitive unimolecular polymeric micelles: Synthesis of a novel drug carrier [J]. Bioconjugate Chemistry, 2003, 14(4): 774-781.
    [68] Hsiue, G.H., Wang C.H., Lo C.L., Wang C.H., Li J.P., Yang J.L. Environmental-sensitive micelles based on poly(2-ethyl-2-oxazoline)-b-poly(L-lactide) diblock copolymer for application in drug delivery [J]. International Journal of Pharmaceutics, 2006, 317(1): 69-75.
    [69] Wang, C.H., Wang C.H., Hsiue G.H. Polymeric micelles with a pH-responsive structure as intracellular drug carriers [J]. Journal of Controlled Release, 2005, 108(1): 140-149.
    [70] Giacomelli, C., Le Men L., Borsali R., Lai-Kee-Him J., Brisson A., Armes S.P., Lewis A.L. Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: Light scattering, electron microscopy, and fluorescence experiments [J]. Biomacromolecules, 2006, 7(3): 817-828.
    [71] Hruby, M., Konak C., Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin [J]. Journal of Controlled Release, 2005, 103(1): 137-148.
    [72] Shim, W.S., Kim S.W., Choi E.K., Park H.J., Kim J.S., Lee D.S. Novel pH sensitive block copolymer micelles for solvent free drug loading [J]. Macromolecular Bioscience, 2006, 6(2): 179-186.
    [73] Bae, Y., Nishiyama N., Fukushima S., Koyama H., Yasuhiro M., Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy [J]. Bioconjugate Chemistry, 2005, 16(1): 122-130.
    [74] Soga, O., van Nostrum C.F., Fens M., Rijcken C.J.F., Schiffelers R.M., Storm G., Hennink W.E. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery [J]. Journal of Controlled Release, 2005, 103(2): 341-353.
    [75] Gao, Z.G., Fain H.D., Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound [J]. Journal of Controlled Release, 2005, 102(1): 203-222.
    [76] Torchilin, V.P. Targeted polymeric micelles for delivery of poorly soluble drugs [J]. Cellular and Molecular Life Sciences, 2004, 61(19-20): 2549-2559.
    [77] Vinogradov, S., Batrakova E., Li S., Kabanov A. Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells [J]. Bioconjugate Chemistry, 1999, 10(5): 851-860.
    [78] Nagasaki, Y., Yasugi K., Yamamoto Y., Harada A., Kataoka K. Sugar-installed block copolymer micelles: Their preparation and specific interaction with lectin molecules [J]. Biomacromolecules, 2001, 2(4): 1067-1070.
    [79] Jule, E., Nagasaki Y., Kataoka K. Lactose-installed poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study [J]. Bioconjugate Chemistry, 2003, 14(1): 177-186.
    [80] Dash, P.R., Read M.L., Fisher K.D., Howard K.A., Wolfert M., Oupicky D., Subr V., Strohalm J., Ulbrich K., Seymour L.W. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin [J]. Journal of Biological Chemistry, 2000, 275(6): 3793-3802.
    [81] Leamon, C.P.Low P.S. Folate-mediated targeting: from diagnostics to drug and gene delivery [J]. Drug Discovery Today, 2001, 6(1): 44-51.
    [82] Park, E.K., Kim S.Y., Lee S.B., Lee Y.M. Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery [J]. Journal of Controlled Release, 2005, 109(1-3): 158-168.
    [83] Jeong, J.H., Kim S.H., Kim S.W., Park T.G. In vivo tumor targeting of ODN-PEG-folic acid/PEI polyelectrolyte complex micelles [J]. Journal of Biomaterials Science-Polymer Edition, 2005, 16(11): 1409-1419.
    [84] Lee, E. S., Na K., Bae Y. H. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor [J]. Journal of Controlled Release, 2005, 103(2): 405-418.
    [85] Torchilin, V. P., Levchenko T. S., Lukyanov A. N., Khaw B. A., Klibanov A. L., Rammohan R., Samokhin G. P., Whiteman K. R. p-nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups [J]. Biochimica Et Biophysica Acta-Biomembranes, 2001, 1511(2): 397-411.
    [1] 孙积辉,徐鸣霞,杨华元.药物化学.北京:人民卫生出版社,1990:365-374.
    [2] Haag, R. Kratz F. Polymer therapeutics: Concepts and applications [J]. Angewandte Chemie-International Edition, 2006, 45(8): 1198-1215.
    [3] Kopecek, J., Kopeckova P., Minko T., Lu Z. R. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(1): 61-81.
    [4] Lasic, D. D., Martin F. J., Gabizon A., Huang S. K., Papahadjopoulos D. Sterically Stabilized Liposomes - a Hypothesis on the Molecular-Origin of the Extended Circulation Times [J]. Biochimica Et Biophysica Acta, 1991, 1070(1): 187-192.
    [5] Monfardini, C., Schiavon O., Caliceti P., Morpurgo M., Harris J. M., Veronese F. M. A Branched Monomethoxypoly(Ethylene Glycol) for Protein Modification [J]. Bioconjugate Chemistry, 1995, 6(1): 62-69.
    [6] Reddy, K. R., Modi M. W., Pedder S. Use of peginterferon alfa-2a (40 KD) (Pegasys (R)) for the treatment of hepatitis C [J]. Advanced Drug Delivery Reviews, 2002, 54(4): 571-586.
    [7] Harris, J. M. Chess R. B. Effect of pegylation on pharmaceuticals [J]. Nature Reviews Drug Discovery, 2003, 2(3): 214-221.
    [8] Schiavon, O., Caliceti P., Ferruti P., Veronese F. M. Therapeutic proteins: a comparison of chemical and biological properties of uricase conjugated to linear or branched poly(ethylene glycol) and poly(N-acryloylmorpholine) [J]. Farmaco, 2000, 55(4): 264-269.
    [9] Veronese, F. M., Monfardini C., Caliceti P., Schiavon O., Scrawen M. D., Beer D. Improvement of pharmacokinetic, immunological and stability properties of asparaginase by conjugation to linear and branched monomethoxy poly(ethylene glycol) [J]. Journal of Controlled Release, 1996, 40(3): 199-209.
    [10] Rosenberg, B., Vancamp L., Trosko J. E., Mansour V. H. Platinum Compounds: a New Class of Potent Antitumour Agents [J]. Nature, 1969, 222: 385-386.
    [11] Wong, E. Giandomenico C. M. Current status of platinum-based antitumor drugs [J]. Chemical Reviews, 1999, 99(9): 2451-2466.
    [12] Warnecke, A., Fichtner I., Garmann D., Jaehde U., Kratz F. Synthesis and biological activity of water-soluble maleimide derivatives of the anticancer drug carboplatin designed as albumin-binding prodrugs [J]. Bioconjugate Chemistry, 2004, 15(6): 1349-1359.
    [13] Schechter, B., Rosing M. A., Wilchek M., Arnon R. Blood levels and serum protein binding of cis-platinum (Ⅱ) complexed to carboxymethyl-dextran [J]. Cancer Chenother Pharmacol, 1989, 24: 161-166.
    [14] 吕正荣,余家会,卓仁禧,王旭立,杨夏华.聚(L-天冬氨酸) 衍生物-顺铂结合物的制备及体外细胞毒性研究[J].高等化学学报,1998,19(5):817-820.
    [15] Ohya, Y., Nagatomi K., Ouchi T. Synthesis and cytotoxic activity of macromolecular prodrug of cisplatin using poly(ethylene glycol) with galactose residues or antennary galactose units [J]. Macromolecular Bioscience, 2001, 1(8): 355-363.
    [16] Ohya, Y., Shirakawa S., Matsumoto M., Ouchi T. Design of poly(ethylene glycol) immobilizing platinum complex through chelate-type coordination bond [J]. Polymers for Advanced Technologies, 2000, 11(8-12): 635-641.
    [17] Zalipsky, S. Chemistry of Polyethylene-Glycol Conjugates with Biologically-Active Molecules [J]. Advanced Drug Delivery Reviews, 1995, 16(2-3): 157-182.
    [18] Guiotto, A., Pozzobon M., Sanavio C., Schiavon O., Orsolini P., Veronese F. M. An improved procedure for the synthesis of branched polyethylene glycols (PEGs) with the reporter dipeptide Met-beta Ala for protein conjugation [J]. Bioorganic & Medicinal Chemistry Letters, 2002, 12(2): 177-180.
    [19] Ouchi, T. Ohya Y. Macromolecular Prodrugs [J]. Progress in Polymer Science, 1995, 20(2): 211-257.
    [20] 王蔚文主编.实验肿瘤学基础(第二版):人民卫生出版社,1988.
    [1] Couvreur, P., Barratt G., Fattal E., Legrand P., Vauthier C. Nanocapsule technology: A review [J]. Critical Reviews in Therapeutic Drug Carrier Systems, 2002, 19(2): 99-134.
    [2] Takasu, M. Kawaguchi H. Preparation of colored latex with polyurea shell by miniemulsion polymerization [J]. Colloid and Polymer Science, 2005, 283(7): 805-811.
    [3] Rigler, P. Meier W. Encapsulation of fluorescent molecules by functionalized polymeric nanocontainers: Investigation by confocal fluorescence Imaging and fluorescence correlation Spectroscopy [J]. Journal of the American Chemical Society, 2006, 128(1): 367-373.
    [4] Tiarks, E, Landfester K., Antonietti M. Preparation of polymeric nanocapsules by miniemulsion polymerization [J]. Langmuir, 2001, 17(3): 908-918.
    [5] Torini, L., Argillier J. F., Zydowicz N. Interfacial polycondensation encapsulation in miniemulsion [J]. Macromolecules, 2005, 38(8): 3225-3236.
    [6] Scott, C., Wu D., Ho C. C., Co C. C. Liquid-core capsules via interfacial polymerization: A free-radical analogy of the nylon rope trick [J]. Journal of the American Chemical Society, 2005, 127(12): 4160-4161.
    [7] Li, S., He Y., Li C., Liu X. B. In vitro release of protein from poly(butylcyanoacrylate) nanocapsules with an aqueous core [J]. Colloid and Polymer Science, 2005, 283(5): 480-485.
    [8] Sukhorukov, G., Fery A., Mohwald H. Intelligent micro- and nanocapsules [J]. Progress in Polymer Science, 2005, 30(8-9): 885-897.
    [9] Dou, H. J., Jiang M., Peng H. S., Chen D. Y., Hong Y. pH-dependent self-assembly: Micellization and micelle-hollow-sphere transition of cellulose-based copolymers [J]. Angewandte Chemie-International Edition, 2003, 42(13): 1516-1519.
    [10] Zhang, Y. W., Jiang M., Zhao J. X., Zhou J., Chen D. Y. Hollow spheres from shell cross-linked, noncovalently connected micelles of carboxyl-terminated polybutadiene and poly(vinyl alcohol) in water [J]. Macromolecules, 2004, 37(4): 1537-1543.
    [11] Atkin, R., Davies P., Hardy J., Vincent B. Preparation of aqueous core/polymer shell microcapsules by internal phase separation [J]. Macromolecules, 2004, 37(21): 7979-7985.
    [12] Liu, F. T. Eisenberg A. Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine) [J]. Journal of the American Chemical Society, 2003, 125(49): 15059-15064.
    [13] Antonietti, M. Forster S. Vesicles and liposomes: A self-assembly principle beyond lipids [J]. Advanced Materials, 2003, 15(16): 1323-1333.
    [14] Rodriguez-Hernandez, J., Checot E, Gnanou Y., Lecommandoux S. Toward 'smart' nano-objects by self-assembly of block copolymers in solution [J]. Progress in Polymer Science, 2005, 30(7): 691-724.
    [15] Soo, P. L. Eisenberg A. Preparation of block copolymer vesicles in solution [J]. Journal of Polymer Science Part B-Polymer Physics, 2004, 42(6): 923-938.
    [16] Choucair, A., Soo P. L., Eisenberg A. Active loading and tunable release of doxorubicin from block copolymer vesicles [J]. Langmuir, 2005, 21(20): 9308-9313.
    [17] Breitenkamp, K. Emrick T. Novel polymer capsules from amphiphilic graft copolymers and cross-metathesis [J]. Journal of the American Chemical Society, 2003, 125(40): 12070-12071.
    [18] Ali, M. M. Stover H. D. H. Polymeric capsules prepared by in situ synthesis and cross-linking of amphiphilic copolymer by atom transfer radical polymerization [J]. Macromolecules, 2003, 36(6): 1793-1801.
    [19] Zahr, A. S., Davis C. A., Pishko M. V. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol) [J]. Langrnuir, 2006, 22(19): 8178-8185.
    [20] Stolnik, S., Ilium L., Davis S. S. Long Circulating Microparticulate Drug Carriers [J]. Advanced Drug Delivery Reviews, 1995, 16(2-3): 195-214.
    [21] Amiji, M. Park K. Surface Modification of Polymeric Biomaterials with Poly(Ethylene Oxide), Albumin, and Heparin for Reduced Thrombogenicity [J]. Journal of Biomaterials Science-Polymer Edition, 1993, 4(3): 217-234.
    [22] Hoarau, D., Delmas P., David S., Roux E., Leroux J. C. Novel long-circulating lipid nanocapsules [J]. Pharmaceutical Research, 2004, 21(10): 1783-1789.
    [23] Fitton, A., Hill J., Jane D., Miller R. Synthesis of simple oxetanes carrying reactive 2-substituents [J]. Synthesis, 1987: 1140-1142.
    [24] Li, Z. Y., Li P. P., Huang J. L. Synthesis of amphiphilic copolymer brushes: Poly(ethylene oxide)-graft-polystyrene [J]. Journal of Polymer Science Part a-Polymer Chemistry, 2006, 44(15): 4361-4371.
    [25] Schork, F. J., Luo Y. W., Smulders W., Russum J. P., Butte A., Fontenot K., Miniemulsion polymerization, in Polymer Particles. 2005: 129-255.
    [26] Ganachaud, F. Katz J. L. Nanoparticles and nanocapsules created using the Ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices [J]. Chemphyschem, 2005, 6(2): 209-216.
    [27] Vitale, S. A. Katz J. L. Liquid droplet dispersions formed by homogeneous liquid-liquid nucleation: "The ouzo effect" [J]. Langmuir, 2003, 19(10): 4105-4110.
    [28] Antonietti, M. Landfester K. Polyreactions in miniemulsions [J]. Progress in Polymer Science, 2002, 27(4): 689-757.
    [29] Cao, D. P. Wu J. Z. Theoretical study of cooperativity in multivalent polymers for colloidal stabilization [J]. Langmuir, 2005, 21(21): 9786-9791.
    [30] Eckert, A. R. Webber S. E. Naphthalene-tagged copolymer micelles based on polystyrene-alt-maleic anhydride-graft-poly(ethylene oxide) [J]. Macromolecules, 1996, 29(2): 560-567.
    [31] Wilhelm, M., Zhao C. L., Wang Y. C., Xu R. L., Winnik M. A., Mura J. L., Riess G., Croucher M. D. Poly(Styrene-Ethylene Oxide) Block Copolymer Micelle Formation in Water - a Fluorescence Probe Study [J]. Macromolecules, 1991, 24(5): 1033-1040.
    [32] Ma, Y. H., Cao T., Webber S. E. Polymer micelles from poly(acrylic acid)-graft-polystyrene [J]. Macromolecules, 1998, 31(6): 1773-1778.
    [33] Chen, C., Yu C. H., Cheng Y. C., Yu P. H. F., Cheung M. K. Biodegradable nanoparticles of amphiphilic triblock copolymers based on poly(3-hydroxybutyrate) and poly(ethylene glycol) as drug carriers [J]. Biomaterials, 2006, 27(27): 4804-4814.
    [1] Rodriguez-Hemandez, J., Checot F., Gnanou Y., Lecommandoux S. Toward 'smart' nano-objects by self-assembly of block copolymers in solution [J]. Progress in Polymer Science, 2005, 30(7): 691-724.
    [2] Gil, E. S.Hudson S. A. Stimuli-reponsive polymers and their bioconjugates [J]. Progress in Polymer Science, 2004, 29(12): 1173-1222.
    [3] Gohy, J. E, Willet N., Varshney S., Zhang J. X., Jerome R. Core-shell-corona micelles with a responsive shell [J]. Angewandte Chemie-International Edition, 2001, 40(17): 3214-+.
    [4] Butun, V., Billingham N. C., Armes S. P. Synthesis and aqueous solution properties of novel hydrophilic-hydrophilic block copolymers based on tertiary amine methacrylates [J]. Chemical Communications, 1997(7): 671-672.
    [5] Liu, S. Y., Weaver J. V. M., Save M., Armes S. P. Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles [J]. Langmuir, 2002, 18(22): 8350-8357.
    [6] Pilon, L. N., Armes S. P., Rannard S. P., Findlay P. Synthesis and characterization of temperature-responsive shell cross-linked (SCL) micelles with functional coronas [J]. Abstracts of Papers of the American Chemical Society, 2003, 226: U474-U475.
    [7] Liu, S. Y., Weaver J. V. M., Tang Y. Q., Billingham N. C., Arrnes S. P., Tribe K. Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers [J]. Macromolecules, 2002, 35(16): 6121-6131.
    [8] Dou, H. J., Jiang M., Peng H. S., Chen D. Y., Hong Y. pH-dependent self-assembly: Micellization and micelle-hollow-sphere transition of cellulose-based copolymers [J]. Angewandte Chemic-International Edition, 2003, 42(13): 1516-1519.
    [9] Checot, F., Lecommandoux S., Gnanou Y., Klok H. A. Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers [J]. Angewandte Chemic-International Edition, 2002, 41(8): 1339-1343.
    [10] Sukhorukov, G. B., Antipov A. A., Voigt A., Donath E., Mohwald H. pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules [J]. Macromolecular Rapid Communications, 2001, 22(1): 44-46.
    [11] Duan, H. W., Kuang M., Zhang G., Wang D. Y., Kurth D. G., Mohwald H. pH-Responsive capsules derived from nanocrystal templating [J]. Langmuir, 2005, 21(24): 11495-11499.
    [12] Zeng, EQ., Shen Y. Q., Zhu S. P., Pelton R. Rapid communication - Atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate in aqueous media [J]. Journal of Polymer Science Part a-Polymer Chemistry, 2000, 38(20): 3821-3827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700