基于无机层状纳米材料的新型电化学生物传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物传感器在医学、环境监测、食品及军事等领域有着重要的应用价值,已引起世界各国的极大关注。层状纳米材料具有结构规整、化学组成可调变及可插层组装等特性,而且层状纳米材料剥层后的纳米片具有更开放的结构。本课题基于层状二氧化锰、磷酸锆及其纳米片材料制备新型电化学生物传感器,得到的生物传感器具有良好的稳定性、抗干扰性等,为新型电化学生物传感器的开发提供了新思路,具有广阔的应用前景。
     1.采用生物相容性材料—磷酸锆纳米片(ZrPNS)固定辣根过氧化酶(HRP),X-射线衍射(XRD)结果表明ZrPNS在HRP-ZrPNS膜中保持无序结构。傅立叶变换红外光谱(FTIR)结果表明HRP在ZrPNS膜中保持了其基本结构。HRP-ZrPNS修饰玻碳电极(GCE)实现了HRP的直接电化学。以此为基础制备了第三代H_2O_2生物传感器,该传感器对H_2O_2具有较快的响应时间和较宽的线性响应范围。
     2.利用带相反电荷的肌红蛋白(Mb)和ZrPNS之间的静电吸引作用在固体基质表面交替吸附制备了{Mb/ZrPNS}_n层层白组装电活性薄膜,用电化学交流阻抗谱(EIS)监测和证明了膜的线性生长。场发射扫描电镜(FESEM)结果表明ZrPNS在{Mb/ZrPNS}_n层层自组装薄膜中趋向平行于固体基质表面而使组装薄膜非常平滑。该薄膜修饰GCE在空白底液中出现了一对峰形良好、几乎可逆的Mb亚铁血红素Fe~(Ⅲ)/Fe~(Ⅱ)的氧化还原峰,表明Mb在该膜内实现了与GCE表面的直接电子转移。与其它用非导电纳米粒子或聚离子与Mb层层自组装薄膜相比,{Mb/ZrPNS}_n膜具有许多优异的性能,如Mb高的表面覆盖度(Γ~*),对H_2O_2良好的电催化活性等。
     3.以阳离子型生物相容性聚合物—阳离子纤维素(QY)为固定化载体固定葡萄糖氧化酶(GOD),FTIR、紫外-可见光谱(UV-Vis)、圆二色光谱(CD)结果表明GOD在QY膜中保持了它的基本结构。用FESEM对聚合物膜以及酶膜的表面形貌进行了研究。以QY为固定化载体固定GOD制备的第一代葡萄糖生物传感器对葡萄糖响应迅速,并具有较高的灵敏度。以二茂铁为电子媒介体制备了第二代葡萄糖生物传感器,该媒介体型葡萄糖生物传感器表现出良好的抗干扰能力,对葡萄糖的线性响应范围也进一步扩展。QY价格低廉,而且固定化方法简便,因此这种基于QY的生物传感器有望获得实际应用。
     4.利用生物相容性聚合物QY—二氧化锰纳米片(MNS)纳米复合材料固定HRP,FTIR和CD结果表明HRP在QY-MNS膜中保持了其基本结构。HRP-QY-MNS修饰GCE在空白底液中于-0.272 V(vs.Ag/AgCl)处出现了一对几乎可逆的氧化还原峰,表明HRP在该膜内实现了和电极之间的直接电子转移。与固定HRP的其它材料相比,这种有机-无机纳米复合材料修饰酶电极展示出许多优良的性能:较高的表面覆盖度、较快的响应、对H_2O_2良好的电催化活性以及良好的长期稳定性等。
     5.用剥离/再组装方法把亚甲基蓝(MB)插入到层状二氧化锰(birnessite简写为Bir)层间制备了超分子插层结构的MB插层二氧化锰(MB-Bir),用XRD、FTIR及电化学方法对这种材料进行了表征。以MB-Bir作为电子媒介体制备了新型无试剂型H_2O_2电化学生物传感器。循环伏安和安培测试结果表明把MB以这种方式固定后可以稳定有效地在HRP和电极之间传递电子。该生物传感器对H_2O_2具有良好的响应性能,此外该传感器也具有良好的稳定性和抗干扰性。
Biosensor possesses important value in physic,environmental monitoring,food and military,and it has caused great concern to all countries in the world.Layered nanomaterials have many specialities, such as orderly structure,adjustable chemical composition, intercalationable,assembliable,and nanosheets obtained from the delamination of layered nanomaterials have a more open structure.Novel electrochemical biosensors have been fabricated based on zirconium phosphate,layered manganese oxide,and nanosheets gained from these layered nanomaterials in this topic.These biosensors possess good stability,anti-interference,and other favorable properties.It provides a new idea to develop new type of electrochemical biosensors,and it has broad application prospects.
     1.Horseradish peroxidase(HRP)has been immobilized in zirconium phosphate nanosheets(ZrPNS)which are derived via the delamination of layeredα-zirconium phosphate(α-ZrP).X-ray powder diffraction(XRD) and field emission scanning electron microscopy(FESEM)results revealed that HRP-ZrPNS film remained unorderly structure for the effect of HRP.Fourier transform infrared(FTIR)spectra results revealed that HRP almost remained the basal structure in ZrPNS film.Direct electrochemistry of HRP in ZrPNS film was investigated.Based on these, a third generation reagentless biosensor was constructed for the determination of hydrogen peroxide(H_2O_2).Rapid response and wide linear range to H_2O_2 has been obtained with this biosensor.
     2.Alternate adsorption of oppositely charged myoglobin(Mb)and ZrPNS were used to assemble {Mb/ZrPNS}_n layer-by-layer films on solid surfaces by electrostatic interaction between them.Electrochemical impedance spectroscopy(EIS)was used to monitor or confirm the growth of the films.FESEM results indicate that edges of ZrPNS overlap with each other and are faintly recognized,and a smooth film without cracks was formed on the surface of the substrate.The direct electrochemistry of Mb was realized in {Mb/ZrPNS},,films at glassy carbon electrodes(GCE), showing a pair of well-defined,nearly reversible cyclic voltammetry(CV) peaks for the Mb heme Fe~Ⅲ/Fe~Ⅱredox couple.Compared with other Mb layer-by-layer films with nonconductive nanoparticles or polyions, {Mb/ZrPNS}_n films showed much improved properties,such as higher surface concentration of electroactive Mb(Γ*),and better electrocatalytic activity toward reduction of H_2O_2.
     3.A cationic biocompatible polymer-polyquaternium(QY)has been used to immobilize glucose oxidase(GOD).FTIR spectrophotometer, circular dichroism(CD)and Ultraviolet-visble(UV-Vis)results indicate that GOD retains its basal structure within the polymer film.The form of the QY film and synthesized composite film have been characterized using FESEM.The first-generation glucose biosensor based on QY exhibits rapid response and good sensitivity.In addition,the characteristics of the second-generation biosensor with ferrocene(Fc)as an electron mediator have also been discussed.The Fc mediated biosensor exhibits a good anti-interference ability,and the extended linear range.Furthermore,QY is inexpensive,and the enzyme immobilization method is very simple, which make the biosensor be promising for practical application.
     4.A novel biocompatible polyquaternium(QY)-manganese oxide nanosheet(MNS)nanocomposite has been prepared and shown to be a promising matrix for horseradish peroxidase(HRP)immobilization.The resulting HRP-QY-MNS film was characterized by Fourier transform infrared(FTIR)and circular dichroism(CD)spectroscopy,which indicated that HRP retained its native structure in the nanocomposite film. An HRP-QY-MNS film-modified glassy carbon electrode exhibited a pair of well-defined and quasi-reversible cyclic voltammetric peaks centered at -0.272 V(vs.Ag/AgCl)in pH 7.0 phosphate buffer solution.The direct electrochemical behavior of HRP was greatly enhanced in the QY-MNS nanocomposite film compared with that in single-component QY or MNS films.The immobilized HRP showed excellent electrocatalysis in the reduction of hydrogen peroxide(H_2O_2),which was exploited in the construction of an H_2O_2 biosensor.The biosensor exhibited rapid response and good long-term stability.
     5.Methylene blue(MB)has been intercalated into layered manganese oxide(birnessite,shortening as Bir)by a delamination/reassembly process and the resulting MB-intercalated bimessite(MB-Bir)material characterized by XRD,FTIR spectroscopy,and electrochemical measurements.A novel reagentless hydrogen peroxide biosensor was fabricated by using the MB-Bir as an electron mediator.Cyclic voltammetry and amperometric measurements demonstrated that MB coimmobilized with HRP displayed good stability and that electrons were efficiently shuttled between HRP and the electrode.The biosensor showed good properties.Moreover,the biosensor exhibited a good stability and anti-interference ability.
引文
[1]司士辉,生物传感器[M].北京:化学工业出版社,2003,1-3
    [2]Cenas N K,Kulys J J.Biocatalytic oxidation of glucose on the conductive charge transfer complexes[J].Bioelectrochem.Bioenerg.,1981,8:103-113
    [3]Cass A E C,Francis G D,Hill H A O,Aston W J,Higgins I J,Plotkin E V,Scott L D L,Turner A P F.Ferrocene-mediated enzyme electrode for amperometric determination of glucose[J].Anal.Chem.,1984,56:667-671
    [4]Kobos R K.Enzyme-based electrochemical biosensors[J].Trends Anal.Chem.,1987,6:6-9
    [5]Oyamam N,Ikeda S,Suzuki M,Ohsaka T.A redox-active polymer film mediated enzyme electrode for amperometric determination of free cholesterol[J].Electroanalysis,1991,3:667-671
    [6]Dave B C,Dunn B,Valentine J S,Zink J I.Sol-gel encapsulation methods for biosensors [J].Anal.Chem.,1994,66:1120A-1126A
    [7]Hodak J,Etchenique R,Calvo E J,Singhal K,Bartlett P N.Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine)ferrocene redox mediator[J].Langmuir,1997,13:2708-2716
    [8]Liu Z,Liu B,Zhang M,Kong J,Ding J.Probing trace phenols based on mediator-free alumina sol-gel derived tyrosinase biosensor[J].Anal.Chem.,2000,72:4707-4712
    [9]Collinson M M.Recent trends in analytical qpplications of organically modified silicate materials[J].Trends in Anal.Chem.,2002,21:30-38
    [10]Lim S H,Wei J,Lin J,Li W,You J K.A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nation- solubilized carbon nanotube electrode[J].Bioelectrochem.Bioenerg.,2005,20:2341-2346
    [11]Gorodetsky A A,Boal A K,Barton J K.Direct Electrochemistry of Endonuclease Ⅲ in the Presence and Absence of DNA.J.Am.Chem.Soc.,2006,128:12082-12083
    [12]Zhang J,Feng M,Tachikawa H.Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes,Biosen.Bioelectron.,2007,22:3036-3041
    [13]Hevenot D R,Toth K,Durst R A,Wilson G S.Electrochemical biosensors:recommended definitions and classification[J].Anal.Lett.,2001,34:635-658
    [14]Yang Y H,Yang H F,Yang M H,Liu Y L,Shen G L,Yu R Q.Amperometric glucose biosensor based on a surface treated nanopotous ZrO_2/Chitosan compsite film as immobilization matrix[J].Anal.Chim.Acta,2004,525:213-220
    [15] Vidal J C, Esperanza G R, Castillo J R. Recent advances in electropolymerized conducting polymers in amperometric biosensors [J]. Microchim. Acta, 2003, 143: 93-111
    [16] Guilbault G G, Montalvo J G. A Urea-Specific Enzyme Electrode [J]. J. Am. Chem. Soc., 1969,91:2164-2165
    [17] Kobos R, Rechnitz G A. Regenerable Bacterial Membrane Electrode for L-Aspartate [J]. Anal. Lett., 1977, 10:751-758
    [18] Bergreld P, Palecek E, Nielsen P E. Peptide nucleic acid probes for sequence-spicific DNA biosensors [J]. J. Am. Chem. Soc, 1996, 118: 7667-7670
    
    [19] Rechnitz R A. Biosensors into the 1990s [J]. Electroanalysis, 1991, 3: 73-76
    [20] Sasso S, Pierce R, Walla R, Yacynych A. Electropolymerized 1,2- diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors [J]. Anal. Chem.,1990,62: 1111-1117
    [21] Malitesta C, Palmisano F, Torsi L, Zambonin P. Glucose fast-response ampeometric sensor based on glucose oxidase immobilized in an electropolymerized poly (o-phenylenediamine) [J]. Anal. Chem., 1990, 62: 2735-2740
    [22] Zhang Y, Hu Y, Wilson G S, Moatti-Sirat D, Poitout B, Reach G. Elimination of the acetaninaphen interference in an implantable glucose sensor [J]. Anal. Chem., 1994, 66: 1183-1188
    [23] Newman J, White S, Tothill I, Turner A P. Catalytic materials,membranes and fabrication technologies suitable for the construction of amperometric biosensors [J]. Anal. Chem., 1995, 67: 4594-4599
    [24] Karaykin A, Gitelmacher O, Karaykina E. Prussian blue-based first- generation biosensor, a sensitive amperometric electrode for glucose [J]. Anal. Chem., 1995, 67: 2419-2423
    [25] Chi Q, Dong S. Amperometric biosensors based on the immobilization of oxidases in a Prussian blue film by electrochemical codeposition [J]. Anal. Chim. Acta, 1995, 310: 429-436
    [26] Wang J, Wu H. Highly selective biosensing of glucose utilizing a glucose oxidase +rhodium+Nafion(?) biocatalytic-electrocatalytic-permselective surface microstructure [J]. J. Electroanal. Chem., 1995, 395: 287-291
    [27] Gorton G, Csoregi E, Dominguez E, Emneus J, Pettersson G J, Marko-Varga G, Persson B. Selective detection in flow analysis based on combination of immobilized enzymes and chemically modified electrodes [J]. Anal. Chim. Acta, 1991, 250: 203-248
    [28] Hale P D, Boguslavsky L I, Inagake T, Karan H I, Lee H S, Skotheim T A, Okamoto Y. Amperometric glucose biosensor based on redox polymer mediated electron transfer [J]. Anal. Chem., 1991, 63: 677-682
    [29] Hale P D, Inagaki T, Karan H I, Okamoto Y, Skotheim T A. A new class of amperometric biosensor incorporating a polymeric electron transfer mediator [J]. J. Am. Chem. Soc., 1989,111:3482-3484
    [30] Pandy P C, Glazier S G, Weetall H H. An amperometric flow injection analysis for glucose based on graphite paste modified with tetracyanoquinodimethane [J]. Anal. Biochem., 1993,214:233-237
    [31] Umana M, Waller J. Protein-modified electrodes. The glucose oxidase/ polypyrrole system [J]. Anal. Chem., 1986, 58: 2979-2983
    [32] Li J, Tan S N, Ge H. Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide [J]. Anal. Chim.Acta, 1996,335: 137-145
    [33] Wilson G S, Hu Y. Enzyme based biosensor for in vivo measurements [J]. Chem. Rev., 2000, 100: 2693-2704
    [34] Popescu I C, Dominguez E, Narvaez A, Pavlov V, Katakis I. Electrocatalytic oxidation of NADH at graphite electrodes modified with osmium phenanthrolinedione [J]. J. Electroanal. Chem., 1999, 464: 208-214
    [35] Leech D, Feerick K O. Biosensor warning devices: reagentless detection of modulators of laccase activity [J]. Electroanaiysis, 2000, 12: 1339-1342
    [36] Wring S A, Hart J P. Chemically modified, Carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds [J]. Analyst, 1992, 117: 1215-1219
    [37] Hendry S P, Cardosi M F, Neuse E W, Turner A P F. Polyferrocenes as mediators in amperometric biosensors for glucose [J]. Anal. Chim. Acta, 1995, 281: 453-459
    [38] Wring S A, Hart J P, Birch B J. Development of an improved carbon electrode chemically modified with cobalt phthalocyanine as a re-usable sensor for glutathione [J]. Analyst, 1989,114: 1563-1570
    [39] Katrlik J, Brandsteter R, Svorc J, Rosenberg M, Miertus S. Mediator type of glucose microbial biosensor based on Aspergillus niger [J]. Anal. Chim. Acta, 1997, 356: 217-224
    [40] Wang J, Golden T. Metalloporphyrin chemically modified glass carbon electrodes as catalytic voltammetric sensors [J]. Anal. Chim. Acta, 1989, 217: 343-351
    [41] Leech D, Wang J, Smyth M R. Electrocatalytic detection of streptomycin and related antibiotics at ruthenium dioxide modified graphite-epoxy composite electrodes [J]. Analyst, 1990, 115: 1447-1450
    [42] Pereira A C, Aguiar M R, Kisner A, Macedo D V, Kubota L T. Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube [J]. Sens. and Acruat. B: Chemical, 2007, 124: 269-276
    [43] Ni F, Feng H, Gorton L, Cotton T M. Electrochemical and SERS studies of chemically modified electrodes: Nile Blue A, a mediator for NADH oxidation [J]. Langmuir, 1990, 6: 66-73
    [44] Karyakin A A, Karyakina E E, Schuhmann W, Schmidt H L, Varfolomeyev S D. New amperometric dehydrogenase electrodes based on electrocatalytic NADH-oxidation at poly(methylene blue)-modified electrodes [J]. Electroanalysis, 1994,6: 821-829
    [45] Schlereth D D, Katz E, Schmidt H L. Toluidine blue covalently immobilized onto gold electrode surfaces: an electrocatalytic system for NADH oxidation [J]. Electroanalysis, 1994,6:725-734
    [46] Persson B, Gorton L. A comparative study of some 3,7-diaminophenoxazine derivatives and related compounds for electrocatalytic oxidation of NADH [J]. J. Electroanal. Chem., 1990,292:115-138
    [47] Persson B, Lan H L, Gorton L, Okamoto V, Hale P D, Boguslavsky L I, Skotheim T, Amperometric biosensor based on electrocatalytic regeneration of NAD~+ at redox polymer modified electrodes [J]. Biosens. Bioelectron., 1993, 8: 81-88
    [48] Qing J, Liu Y, Liu H, Yu T, Deng J. Immobilization of horseradish peroxidase with regenerated silk fibroin membrane and its application to tetrathiafulvalene mediating H_2O_2 sensor [J]. Biosens. Bioelectron., 1997, 12: 1213-1218
    [49] Lima Filho J L, Pandy P C, Weetall H H. An amperometric flow injection analysis enzyme sensor for sucrose using a tetracyanofulvalene graphite paste electrode [J]. Biosens. Bioelectron., 1996, 11: 719-723
    [50] Niu J, Lee J Y. Renewable-surface graphite-cerarnic enzyme sensors for the determination of hypoxanthine in fish meat [J]. Anal. Commun., 1999, 36: 81-83
    [51] Albery W J, Bartlett P N, Craston D H. Amperometric enzyme electrodes part II. Conducting salts as electrode materials for the oxidation of glucose oxidation [J]. J. Electroanal. Chem., 1985, 194: 223-235
    [52] Wang J. Glucose biosensors: 40 years of advances and challenges [J]. Electroanalysis, 2001, 13: 983-988
    [53] Khan G F, Ohwa M, Wernet W. Design of a stable charge transfer complex electrode for a third-generation amperometric glucose gensor [J]. Anal. Chem., 1996, 68: 2939-2945
    [54] Tian Y, Mao L, Okajima T, Ohsaka T. Superoxide dismutase-based third- generation biosensor for superoxide anion [J]. Anal. Chem., 2002, 74: 2428-2434
    [55] Zhang Y, He P L, Hu N F. Horseradish peroxidase immobilized in TiO2 nanoparticale films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis [J]. Electrochim. Acta, 2004, 49: 1981-1988
    [56]Jaegfeldt H,Torstensson A,Gorton L,Johansson G.Catalytic oxidation of reduced nicotinamide adenine dinucleotide(NADH)by graphite electrodes modified with adsorbed aromatics containing catechol functionalities[J].Anal.Chem.,1981,53:1979-1982
    [57]Lanniello R M,Yacynych A M.Immobilized enzyme chemically modified electrode as an amperometric sensor[J].Anal.Chem.,1981,53:2090-2095
    [58]Rockel H,Huber J,Gleiter R,Schuhmann W.Synthesis of functionalized poly(dithienylpyrrol)-derivatives and their application in amperometric biosensors[J].Adv.Mater.,1994,6:568-571
    [59]Weizel H P,Kossmehl G,Engelmann G,Neumann B,Wollenberger U,Scheller F,Schroder W.Reactive groups on polymer coverd electrodes,4 Lactate-oxidase- biosensor based on electrodes modified by polythiophene[J].Macromol.Chem.Phys.,1996,197:3355-3363
    [60]Oyama N,Ohsaka T,Mizunuma M,Kobayashi M.Electropolymerized cobalt tetrakis(o-aminophenyl)porphyrin fihn mediated enzyme electrode for amperometric determination of glucose[J].Anal.Chem.,1988,60:2534-2536
    [61]Huang T,Warsinke A,Kuwana T,Scheller F W.Determination of L-phenylalanine based on an NADH-detecting biosensor[J].Anal.Chem.,1998,70:991-997
    [62]Fortier G,Vaillancourt M,Belanger D.Evaluation of Nafion as media for glucose oxidase immobilization for the development of an amperometric glucose biosensor[J].Electroanalysis,1992,4:275-285
    [63]Mcquade D T,Pullen A E,Swager T M.Conjugated polymer-based chemical sensors[J].Chem.Rev.,2000,100:2537-2574
    [64]Schuhmann W,Kranz C,Huber J,Wohlschager H.Conducting polymer based amperometric enzyme electrodes:towards the development of miniaturized reagentless biosensors[J].Synth.Met.,1993,61:31-35
    [65]Hiller M,Kranz C,Huber J,Bauerle P,Schuhmann W.Amperometric biosensors produced by immobilization of redox enzymes at polythiophene- modified electrode surfaces[J].Adv.Mater.,1996,8:219-222
    [66]Gill I.Bio-doped nanocomposite polymers:sol-gel bioencapsulates[J].Chem.Mater.,2001,13:3404-3421
    [67]Jin W,Brennan J D.Properties and applications of proteins encapsulated within sol-gel derived materials[J].Anal.Chim.Acta,2002,461:1-36
    [68]Tien H T,Salamon Z,Ottova A V,Zviman M.以双层脂膜为基础的生物传感器和器件及其应用及进展[J].生物化学与生物物理进展,1992,19:100-104
    [69]Tien H T,Ottova A L.Supported planar lipid bilayers as electrochemical biosensors[J]. Electrochim.Acta,1998,43:3587-3610
    [70]Siontorou C G,Brett A M,Nikolelis D P.Evaluation of a glassy carbon electrod modified by a bilayer lipid membrane with incorporated DNA[J].Talanta,1996,43:1137-1144
    [71]Wu Z Y,Wang B Q,Cheng Z I,Yang X R,Dong S J,Wang E K.A facile approach to immobilize protein for biosensor:self-assembled supported bilayer lipid membranes on glassy carbon electrode[J].Bisens.Bioelectron.,2001,16:47-52
    [72]Rusling J F.Enzyme bioelectrochemisry in cast biomembrane-like films[J].Acc.Chem.Res.,1998,31:363-369
    [73]Wu Z Y,Wang B Q,Dong S J,Wang E K.Amperometric glucose biosensor based on lipid film[J].Biosens.Bioelectron.,2000,15:143-147
    [74]Hu Y,Sun H,Hu N.,Assembly of layer-by-layer films of electroactive hemoglobin and surfactant didodecyldimethylammonium bromide[J].J.of Colloid and Interface Sci.2007,314:131-140
    [75]Bourdillon C,Demaille C,Moiroux J,Saveant J M.From homogeneous electroenzymatic kinetics to antigen-antibody construction and characterization of spatially ordered catalytic enzyme assemblies on electrodes[J].Acc.Chem.Res.,1996,29:529-535
    [76]王纪孝,马建标,何炳林.生物电化学传感器中的聚合物材料[J].高分子通报,1999,6:77-81
    [77]Wang G,Xu J J,Ye L H,Zhu J J,Chen H Y.Highly sensitive sensors based on the immobilization of tyrosinase in chitosan[J].Bioelectrochemistry,2002,57:33-38
    [78]Wang G,Xu J J,Chen H Y,Lu Z H.Amperometric hydrogen peroxide biosensor with sol-gel/chitosan network-like film as immobilization matrix[J].Biosens.and Bioelectron.,2003,18:335-343
    [79]Yang M,Yang Y,Liu B,Shen G,Yu R.Amperometric glucose biosensor based on chitosan with improved selectivity and stability[J].Sens.and Actu.B:Chem.,2004,101:269-276
    [80]Coche-Guerente L,Desbrieres J,Fatisson J,LabbeP,Rodriguez M C,Rivas G.Physicochemical characterization of the layer-by-layer self-assembly of polyphenol oxidase and chitosan on glassy carbon electrode[J].Electrochim.Acta,2005,50:2865-2877
    [81]Yamato H,Ohwa M,Wemet W.A polypyrrole/three-enzyme electrode for creatinine detection[J].Anal.Chem.,1995,67:2776-2780
    [82]Warriner K,Higson S,Christie I,Ashworth D,Vadgama P.Electrochemical characteristics of two model electropolymerised films for enzyme electrodes[J].Biosens.Bioelectron.1996,11:615-623
    [83]Cooper J C,Hammerle M,Schuhmann W,Schmidt H L.Selectivity of conducting polymer electrodes and their application in flow injection analysis of amino acids[J].Biosens.Bioelectron.,1993,8:65-74
    [84]Cho J H,Shin M C,Kim H S.Electrochemical adsorption of glucose oxidase onto polypyrrole film for the construction of a glucose biosensor[J].Sens.Actu.B:Chem.,1996,30:137-141
    [85]穆绍林,薛怀国.聚苯胺黄嘌呤氧化酶电极的生物电化学活性[J].化学学报,1995,53:521-525
    [86]Cooper J M,Foreman P L,Ling T W,Pritchard D J.Glutamate oxidase enzyme electrodes:microsensors for neurotransmitter determination using electrochemically polymerized permselective films[J].J.Electroanal.Chem.,1995,388:143-149
    [87]Palmisano F,Guerrieri A,Quinto M,Zambonin P G.Electrosynthesized bilayer polymeric membrane for effective elimination of electroactive interferents in amperometric biosensors[J].Anal.Chem.,1995,67:1005-1009
    [88]Zhang Z,Liu H,Deng J.A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glussy carbon electrode[J].Anal.Chem.,1996,68:1632-1638
    [89]Ihab A H,Atanasov P,Wilkins E.Development of a needle-type biosensor for intravascular glucose monitoring[J].Anal.Chim.Acta,1995,313:45-54
    [90]Losito I,Zambonin C G.Double electropolymer modified platinum electrode to follow the kinetic process H_2O_2+ascorbic acid.Influence of the reaction on amperometric biosensor applications[J].J.Electroanal.Chem.,1996,410:181-187
    [91]Inagaki T,Lee H S,Hale P D,Skotheim T A,Okamoto Y.Synthesis and electrochemical characterization of siloxane polymers containing hydroquinone and 1,4-naphthohydroquinone[J].Macromolecules,1989,22:4641-4643
    [92]Katz E,Riklin A,Willner I.Application of stilbene-(4,4'-diisothiocyanate)-2,2'-disulfonic acid as a bifunctional reagent fo the organization of organic materials and proteins onto electrode surfaces[J].J.Electroanal.Chem.,1993,354:129-144
    [93]Cooper J M,Greenough K R,McNeil C J.Direct electron transfer reactions between immobilized cytochrome c and modified gold electrodes[J].J.Electroanal.Chem.,1993,347:267-275
    [94]Cai C,Chen J.Direct electron transfer of glucose oxidase promoted by carbon nanotubes [J].Anal.Biochem.,2004,332:75-83
    [95]Dai Z H,Ni J,Huang X H,Lu G F,Bao J C.Direct electrochemistry of glucose oxidase immobilized on a hexagonal lnesoporous silica-MCM-41 matrix[J].Bioelectrochemistry, 2007,70:250-256
    [96]Hong J,Moosavi-Movahedi A A,Ghourchian H,Rad A M,Rezaei-Zarchi S.Direct electron transfer of horseradish peroxidase on Nafion-cysteine modified gold electrode[J].Electrochim.Acta,2007,52:6261-6267
    [97]Konga J,Mbindyob J N,Wua X,Zhouc J X,Rusling J F.Electrochemical generation of ferrylmyoglobin during oxidation of styrene with films of DNA and a polyester sulfonic acid/ionomer[J].Biophy.Chem.,1999,79:219-229
    [98]Li Z,Hu N.Assembly of electroactive layer-by-layer films of myoglobin and ionomer poly(ester sulfonie acid)[J].J.of Colloid and Interface Sci.2002,254:257-265
    [99]He J L,Yang Y,Yang X,Liu Y L,Liu Z H,Shen G L,Yu R Q.β-Cyclodextrin incorporated carbon nanotube modified electrode as an electrochemical sensor for rutin [J].Sens.and Actuat.B:Chem.,2006,114:94-100
    [100]Vago J M,Dall' Orto V C,Forzani E,Hurst J,Rezzano Noemi I.New bimetallic porphyrin film:An electrocatalytic transducer for hydrogen peroxide reduction,applicable to first-generation oxidase-based biosensors[J].Sens.and Actuat.B:Chem.,2003,96:407-412
    [101]Ozoemena K I,Nyokong T.Novel amperometric glucose biosensor based on an ether-linked cobalt(Ⅱ)phthalocyanine-cobalt(Ⅱ)tetraphenylporphyrin pentamer as a redox mediator[J].Electrochim Acta,2006,51:5131-5136
    [102]钱军民,李旭祥.聚合物在生物传感器中的应用研究进展[J].高分子材料科学与工程,2002,18:21-26
    [103]Liu S,Ju H.Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode[J].Biosens.Bioelectron.2003,19:177-183
    [104]Chen J,Yao S.Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode[J].Anal.Biochem.,2004,331:89-97
    [105]Xu J J,Luo X L,Du Y,Chen H Y.Application of MnO_2 nanoparticles as an eliminator of ascorbate interence to amperometric glucose biosensor[J].Electrochem.Commun.,2004,6:1169-1173
    [106]Liu S,Dai Z,Chen H,Ju H.Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor[J].Biosens.Bioelectron.,2004,19:963-969
    [107]Liu S,Yu J,Ju H.Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode[J].J.Electroanal.Chem.,2003,540:61-67
    [108]Zhao J,O'Daly J P,Hen Kens R W.A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications[J].Biosens.Bioelectron.1996,11:493-502
    [109]Xu S,Han X.A novel method to construct a third-generation biosensor:self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co- acrylic acid)nanospheres[J].Biosens.Bioelectron.,2004,19:1117-1120
    [110]张金芳,张改莲,唐方琼,沈继风.超细Ag颗粒对葡萄糖氧化酶生物传感器响应灵敏度的增强效应[J].高等化学学报 1999,20:634-636
    [111]任湘菱,唐方琼.纳米铜颗粒—酶—复合功能敏感膜生物传感器[J].催化学报2000,21:455-458
    [112]Lim S H,Wei J,Lin J,Li Q,You J.K.A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nation- solubilized carbon nanotube electrode[J].Biosens.and Bioelectron.,2005,20:2341-2346
    [113]Shi M,Xu J,Zhang S,Liu B,Kong J.A mediator-free screen-printed amperometric biosensor for screening of organophosphorus pesticides with flow -injection analysis (FIA)system[J].Talanta,2006,68:1089-1095
    [114]Luque G L,Rodriguez M C,Rivas G A.Glucose biosensors based on the immobilization of copper oxide and glucose oxidase within a carbon paste matrix[J].Talanta,2005,66:467-471
    [115]Turkusic E,J Kalcher,Kahrovic E,Beyenec N W,Moderegger H,Sofica E,Begica S,Kalcher K.Amperometric determination of bonded glucose with an MnO_2 and glucose oxidase bulk-modified screen-printed electrode using flow-injection analysis[J].Talanta,2005,65:559-564
    [116]Choi S H,Lee S D,Shin J H,Ha J,Nam H,Cha G S.Amperometric biosensors employing an insoluble oxidant as an interference-removing agent[J].Anal.Chim.Acta,2002,461:251-260
    [117]Yang H,Zhu Y.A high performance glucose biosensor enhanced via nanosized SiO_2[J].Anal.Chim.Acta,2005,554:92-97
    [118]Zhou H,Gan X,Wang J,Zhu X,Li G.Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide[J].Anal.Chem.2005,77:6102-6104
    [119]Zhao Z W,Chen X J,Tay B K,Chen J S,Han Z J,Khor K A.A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose[J].Biosens.and Bioelectron.,2007,23:135-139
    [120]Zhao G,Xu J J,Chen H Y.Fabrication,characterization of Fe_3O_4 multilayer film and its application in promoting direct electron transfer of hemoglobin[J].Electrochem. Commun., 2006, 8: 148-154
    [121] Lu X, Zou G, Li J. Hemoglobin entrapped within a layered spongy Co_3O_4 based nanocomposite featuring direct electron transfer and peroxidase activity [J]. J. Mater. Chem.,2007,17: 1427-1432
    [122] Zhao G, Feng J J, Xu J J, Chen H Y. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO_2 film [J]. Electrochem. Commun., 2005, 7: 724-729
    [123] Zhang L, Tang F Q, Yuan J S, Jiang L. Preparation of glucose oxidase electrode containing hydrophobic silica nanoparticles by the sol-gel method [J]. Science in China., 1995, 38(12): 1434-1438
    [124] Poyard S, Jaffrezic-Renault N, Martelet C, Cosnier S, Labbe P. Optimizaion of an inorganic/bio-organic matrix for the development of new glucose biosensor membranes [J]. Anal. Chim. Acta, 1998, 364: 165-172
    [125] Lei C, Deng J. Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovin serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface [J]. Anal, Chem., 1996,68:3344-3349
    [126] Shyu S C, wang C M. Characterization of iron containing clay modified electrodes and their applications for glucose sensing [J]. J. Electrochem. Soc, 1998,145: 134-158
    [127] Senillou A, Jaffrezic N, Martelet C, Cosnier S. A laponite clay-poly (pyridinium) matrix for the fabrication of conductimetric microbiosensors [J]. Anal. Chim. Acta, 1999, 401: 117-124
    [128] de Melo J V, Cosnier S, Mousty C, Jaffrezic-Renault N. Urea biosensors based on immobilization of urease into two oppositely charged clays (laponite and Zn-Al layered double hydroxides) [J]. Anal. Chem., 2002, 74: 4037-4043
    [129] Poyard S, Martelet C, Jaffrezic-Renault N, Cosnier S, LabbeP Association of a poly(4-vinylpyridine-co-styrene) membrane with an inorganic/organic mixed matrix for the optimization of glucose biosensors [J]. Sens. Actuators B, 1999, 58: 380-383
    [130] Cosnier S, Gondran C, Senillou A, Gratzel M, Vlachopoulos N. Mesoporous TiO_2 films: new catalytic electrode materials for fabrieating amperometric biosensors based on oxidases [J]. Electroanalysis, 1997, 9: 1387-1392
    [131] Cosnier S, Lambert F, Stoyteheva M. A composite clay glucose biosensor based on an electrically connected HRP [J]. Electroanalysis, 2000, 12: 356-360
    [132] Shan D, Cosnier C, Mousty C. HRP wiring by redox active layered double hydroxides: application to the mediated H_2O_2 detection [J]. Anal. Lett., 2003, 36: 909-922
    [133] Besombes J L, Cosnier S, LabbeP. Immprovement of poly (amphiphilic pyrrole) enzyme electrodes via the incorporation of synthetic laponite -clay- nanoparticles [J]. Talanta, 1997,44:2209-2215
    [134] Shan D, Cosnier C, Mu S. A new polyphenol oxidase biosensor mediated by Azure B in laponite clay matrix [J]. Electroanalysis, 2003, 15: 1506-1512
    [135] Coche-Guerente L, Deprez V, Labbe P. Characterization of organo- silasesquioxane-intercalated-laponite-clay modified electrodes and (bio) electrochemical applications [J]. J. Electroanal. Chem., 1998, 458: 73-86
    [136] Coche-Guerente L, Deprez V, Labbe P, Therias S. Amplification of amperometric biosensor responses by electrocheical substrate recycling: Part II. Experimettal study of the catechol-polyphenol oxidase system immobilized in a laponite clay matrix [J]. J. Electroanal. Chem., 1999,470: 61-69 [137] Coche-Guerente L, Labbe P, Mengeaud V. Amplification of amperometric biosensor response by electrochemical substrate recycling. 3. Theoretical and experimental study of phenol-polyphenol wxidase system immobilized in laponite hydrogels and layer-by-layer self-assembled structures [J]. Anal. Chem., 2001, 71: 3206-3218
    [138] Zen J M, Lo C W. A glucose sensor made of an enzyinatic clay modified electrode andmethyl viologen mediator [J]. Aanl. Chem., 1996, 68: 2635-2640
    [139] Zen J M, Lo C W, Chen P J. An enzymatic clay modified electrode for aerobic glucose monitoring with dopamine as mediator [J]. Anal. Chem., 1997, 69: 1669-1673
    [140] Qian D I, Nakamura C, Wenk S O, Ishikawa H, Zorin N, Miyake J. A hydrogen biosensormade of clay, poly(butylviologen) and hydrogenase sandwiched on a glass carbon electrode [J]. Biosens. Bioelectron., 2002, 17: 789-796
    [141] Shan D, Cosnier C, Mousty C. HRP/[Zn-Cr-ABTS] redox clay-based biosensor: design and optimization for cyanide detection [J]. Biosens. Bioelectron., 2004, 20: 390-396
    [142] Zhou Y, Hu N, Zeng Y, Rusling J F. Heme protein clay films: direct electrochemistry and electrochemical catalysis [J]. Langmuir, 2002, 18: 211-219
    [143] Fan C, Zhuang Y, Li G, Zhu J, Zhu D. Direct electrochemistry and enhanced catalytic activity for hemoglobin in a sodium montmorillonite film [J]. Electroanalysis, 2000, 12: 1156-1158
    [144] Chen X, Hu N, Zeng Y, Rusling J F, Yang J. Ordered electrochemically acctive films of hemoglobin, didodecyldimethylammonium ions, and clay [JJ. Langmuir, 1999, 15: 7022-7030
    [145] Lei C, Listad F, Wollenberger U, Scheller F W. Cytochrome c/clay modified electrodes [J]. Electroanalysis, 1999, 11: 274-276
    [146] Shan D, Cosnier S, Mousty C, Layered double hydroxides: an attractive material for electrochemical biosensor design [J]. Anal. Chem., 2003,75: 3872-3879
    [147] Lvov Y, Munge B, Giraldo O, Ichinose I, Suib S L, Rusling J F. Films of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption [J]. Langmuir, 2000, 16: 8850-8857
    [148] Tsiafoulis C G, Florou A B, Trikalitis P N, Bakas T, Prodromidis M I. Electrochemical study of ferrocene intercalated vanadium pentoxide xerogel /polyvinyl alcohol composite films: Application in the development of amperometric biosensors [J]. Electrochem. Commun., 2005, 7: 781-788
    [149] Luo X L, Xu J J, Zhao W, Chen H Y. A novel glucose ENFET based on the special reactivity of MnO_2 nanoparticles [J]. Biosens. Bioelectron. 2004,19: 1295-1300
    [150] Xu J J, Zhao W, Luo X L, Chen H Y. A sensitive biosensor for lactate based on layer-by-layer assembling MnO_2 nanoparticles and lactate oxidase on ion-sensitive field-effect Transistors [J]. Chem.Commun., 2005,5: 792-794
    [151] Bellezza F, Cipiciani A, Costantino U, et al. Zirconium Phosphate and Modified Zirconium Phosphates as Supports of Lipase. Preparation of the Composites and Activity of the Supported Enzyme[J]. Langmuir, 2002, 18: 8737-8742
    [152] Bellezza F, Cipiciani A, Costantino U. Esterase activity of biocomposites constituted by lipases adsorbed on layered zirconium phosphate and phosphonates: selective adsorption of different enzyme isoforms[J]. J. Mol. Catal. B-Enzym, 2003, 26: 47-56
    [153] Geng L N, Li N, Dai N, Wen X F, et al. Layered β-zirconium phosphate a new matrix for immobilization of hemoglobin[J]. Colloid Surface B, 2003, 29: 81-88
    [154] Geng L N, Li N, Xiang M H, et al. The covalent immobilization of trypsin at the galleries of layered y-zirconium phosphate[J]. Colloid Surface B, 2003, 30: 99-109
    [155] Feng J J, Xu J J, Chen H Y, Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode [J]. J. Electroanal. Chem., 2005, 585: 44-50
    [156] MacEwan D M C, Wilson M J. Crystal structures of clay minerals and their X-ray identification, Ed. By Brindley G W and Brown G. Mineralogical Society, London (1980)
    [157] Omomo Y, Sasaki T, Wang L, Watanabe M. Redoxable Nanosheet Crystallites of MnO_2 Derived via Delamination of a Layered Manganese Oxide[J]. J. Am. Chem. Soc, 2003, 125: 3568-3575
    [158] Sasaki T, Watanabe M. Semiconductor Nanosheet Crystallites of Quasi-TiO_2 and Their Optical Properties[J]. J. Phys. Chem. B., 1997, 101: 10159-10161
    [159] Osada M, Ebina Y, Takada K, etc. Gigantic Magneto-Optical Effects in Multilayer Assemblies of Two-Dimensional Titania Nanosheets[J].Adv.Mater.,2006,18:295-299
    [160]Liu Z,Ma R,Osada M,etc.Synthesis,Anion Exchange,and Delamination of Co-Al Layered Double Hydroxide:Assembly of the Exfoliated Nanosheet/ Polyanion Composite Films and Magneto-Optical Studies[J].J.Am.Chem.Soc.,2006,128:4872-4880
    [161]Science and application of inorganic nanosheets.Ed.By Kuroda K and Sasaki T.,CMC Publication,Tokyo,2005[in Japanese]
    [162]Sugimoto W,Iwata H,Yasunaga Y,et al.Preparation of Ruthenic Acid Nanosheets and Utilization of Its Interlayer Surface for Electrochemical Energy Storage[J].Angew,Chem.Int.Ed.,2003,42:4092-4096
    [163]Yui T,Moil Y,Tsuchino T,Itoh T,Hattori T,Fukushima Y,Takagi K.Synthesis of Photofunctional Titania Nanosheets by Electrophoretic Deposition[J].Chem.Mater.,2005,17:206-211
    [164]Xiao H,Chen X,Ji L,Zhang X,Yang W,Direct Electrochemistry of Myoglobin in MnO_2Nanosheet Film[J].Chem.Lett.,2007,36:772-773
    [165]肖寒,吴金玲,陈旭,杨文胜,辣根过氧化物酶在MnO_2纳米片薄膜中的直接电化学与电催化行为[J].科学通报,2007,52:2255-2259
    [166]Zhang L,Zhang Q,Li J.Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry[J].Adv.Funct.Mater.,2007,17:1958-1965
    [167]Zhang L,Zhang Q,Lu X,Li J.Direct electrochemistry and electrocatalysis based on film of horseradish peroxidase intercalated into layered titanate nano-sheets[J].Biosens.Bioelectron.,2007,23:102-106
    [168]Koen B,Lee J O,Wiertz G M,Hendrik A H,Cees D.Enzyme-coated carbon nanotubes as single-molecule biosensors[J].Nano Lett.,2003,3(6):727-730
    [169]Wang J,Musameh M,Lin Y H.Solubilization of carbon nanotubes by Nation toward the preparation of amperometric biosensors[J].J.Am.Chem.Soc.,2003,125:2408-2409
    [170]Lin Y H,Lu F,Tu Y,Ren Z F.Glucose biosensors based on carbon nanotube nonoelectrode ensembles[J].Nano Lett.,2004,4:191-195
    [171]Liu Q,Lu X,Li J,Yao X,Li J.Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes[J],Biosens.Bioelectron.,2007,22:3203-3209
    [172]Jiang H,Ju H.Enzyme-quantum dots architecture for highly sensitive electrochemilumin-escence biosensing of oxidase substrates[J].Chem.Commun.,2007,404-406
    [173]Mu C,Zhao Q,Xu D,Zhuang Q,Shao Y.Silicon nanotube array/gold electrode for direct electrochemistry of cytochrome c [J]. J. Phys. Chem. B, 2007, 111: 1491-1495
    [174] Yang M, Qu F, Li Y, He Y, Shen G, Yu R. Direct electrochemistry of hemoglobin in gold nanowire array [J]. Biosens. Bioelectron., 2007,23: 414-420
    [175] Wu S, Ju H X, Liu Y. Conductive mesocellular silica-carbon nanocomposite foams for immobilization, direct electrochemistry, and biosensing of proteins [J]. Adv. Funct. Mater., 2007,17: 585-592
    [176] Lu X, Zhang Q, Zhang L, Li J. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid [J]. Electrochem. Commun., 2006, 8: 874-878
    [177] Du P, Liu S, Wu P, Cai C. Preparation and characterization of room temperature ionic liquid/single-walled carbon nanotube nanocomposites and their application to the direct electrochemistry of heme-containing proteins/enzymes [J]. Electrochim. Acta, 2007, 52: 6534-6547
    [178] Zhou D M, Sun J J, Chen H Y, Fang H Q. Electrochemical polymerization of toluidine blue and its application for the amperometric determination of β-D-glucose [J]. Electrochim. Acta, 1998,43: 1803-1809
    [179] Mell L D, Maloy J T. A model for the amperometric enzyme electrode obtained through digital simulation and applied to the immobilized glucose oxidase system [J]. Anal. Chem., 1975,47:299-307
    [180] Guilbault G G, Montalvo J G. Enzyme electrode for the substrate urea [J]. J. Am. Chem. Soc., 1970,92:2533-2538
    [181] Wang J, Liu J, Cepra G. Thermal stabilization of enzymes immobilized within carbon paste electrode [J]. Anal. Chem., 1997, 69: 3124-3127
    [182] Wang B Q, Li B, Deng Q, Dong S J. Amperometric glucose biosensor based on sol-gel organic-inorganic hybrid material [J]. Anal. Chem., 1998, 70: 3170-3174
    [183] Wang L, Omomo Y, Sakai N, Fukuda K, I Nakai, Ebina Y, Takada K, Watanabe M, Sasaki T. Fabrication and characterization of multilayer ultrathin films of exfoliated MnO_2 nanosheets and polycations [J]. Chem. Mater., 2003, 15: 2873-2878
    [184] Shen L, Hu N. Electrostatic adsorption of heme proteins alternated with polyamidoamine dendrimers for layer-by-layer assembly of electroactive films [J]. Biomacromole., 2005, 6: 1475-1483
    [185] Lu X, Hu J, Yao X, Wang Z, Li J. Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin [J]. Biomacromole., 2006, 7: 975-980
    
    [186] Liu X, Xu Y, Ma X, Li G. A third-generation hydrogen peroxide biosensor fabricated with hemoglobin and Triton X-100 [J]. Sens. Actu. B, 2005, 106: 284-288
    [187] Yin F, Shin H K, Kwon Y S. A hydrogen peroxide biosensor based on Langmuir-Blodgett technique: Direct electron transfer of hemoglobin in octadecylamine layer [J]. Talanta, 2005,67:221-226
    [188] Huang R, Hu N. Direct electrochemistry and electrocatalysis with horseradish peroxidase in Eastman AQ films [J]. Bioelectrochem., 2001, 54: 75-81
    [189] Wu Y, Shen Q, Hu S. Direct electrochemistry and electrocatalysis of heme -proteins in regenerated silk fibroin film [J]. Anal. Chim. Acta, 2006, 558: 179-186
    [190] Wang S F, Chen T, Zhang Z L, Shen X C, Lu Z X, Pang D W, Wong K Y. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids [J]. Langmuir, 2005, 21: 9260-9266
    [191] Zhao G C, Yin Z Z, Zhang L, Wei X W. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H_2O_2 [J]. Electrochem. Commun., 2005, 7: 256-260
    [192] Wang J, Li M, Shi Z, Li N, Gu Z. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes [J]. Anal. Chem., 2002, 74: 1993-1997
    [193] Liu A, Wei M, Honma I, Zhou H. Direct electrochemistry of myoglobin in titanate nanotubes film [J]. Anal. Chem., 2005, 77: 8068-8074
    [194] Wang Q, Lu G, Yang B. Direct electrochemistry and electrocatalysis of hemoglobin immobilized on carbon paste electrode by silica sol-gel film [J]. Biosens. Bioelectron., 2004, 19: 1269-1275
    [195] Xiao Y, Ju H X, Chen H Y. Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode [J]. Anal. Biochem., 2000, 278: 22-28
    [196] Carrado K A, Macha S M, Tiede D M. Effects of surface functionalization and organo-tailoring of synthetic layer silicates on the immobilization of cytochrome c [J]. Chem. Mater., 2004, 16: 2559-2566
    [197] Kumar C V, Chaudhari A. Unusual thermal stabilities of some proteins and enzymes bound in the galleries of layered a-Zr(IV)phosphate/phosphonates [J]. Micropor. Mesopor. Mater., 2003, 57: 181-190
    [198] Chaudhari A, Thota J, Kumar C V. Binding and cleavage studies of two proteins intercalated at the galleries of a-zirconium phosphate [J]. Micropor. Mesopor. Mater., 2004,75:281-291
    [199] Kumar C V, Chaudhari A. Proteins immobilized at the galleries of layered a-zirconium phosphate:structure and activity studies[J].J.Am.Chem.Soc.,2000,122:830-837
    [200]Shumyantseva V V,Ivanov Y D,Bistolas N,Scheller F W,Archakov A I,Wollenberger U.Direct electron transfer of cytochrome P450 2B4 at electrodes modified with nonionic detergent and colloidal clay nanoparticles[J].Anal.Chem.,2004,76:6046-6052
    [201]Zhou Y,Li Z,Hu N,Zeng Y,Rusling J F.Layer-by-layer assembly of ultrathin films of hemoglobin and clay nanoparticles with electrochemical and catalytic activity[J].Langmuir,2002,18:8573-8579
    [202]Cam F,DerreA,Neri W,Babot O,Deleuze H,Backov R.Shaping zirconium phosphate α-Zr(HPO_4)_2·H_2O:from exfoliation to first α-ZrP 3D open-cell macrocellular foams[J].New J.Chem.,2005,29:1346-1350
    [203]Sasaki T,Watanabe M,Hashizume H,Yamada H,Nakazawa H.Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate,pairwise association of nanosheets and dynamic reassembling process initiated from it[J].J.Am.Chem.Soc.,1996,118:8329-8335
    [204]汤琳,曾光明,黄国利.辣根过氧化物酶生物传感器催化与抑制动力学研究[J].中国生物工程杂志,2004,24:70-75
    [205]洪伟杰,张朝晖,芦国营.辣根过氧化物酶的结构与作用机制[J].生命的化学,2005,25:33-36
    [206]Laviron E.General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J].J.Electroanal.Chem.,1979,101:19-28
    [207]Suna Y X,Zhang J T,Huang S W,Wang S F.Hydrogen peroxide biosensor based on the bioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film[J].Sens.and Actu.B,2007,124:494-500
    [208]Yan R,Zhao F,Li J,Xiao F,Fan S,Zeng B.Direct electrochemistry of horseradish peroxidase in gelatin-hydrophobic ionic liquid gel films[J].Electrochim.Acta,2007,52:7425-7431
    [209]Tripathi V S,Kandimalla V B,Ju H.Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite[J].Biosens.Bioelectron.,2006,21:1529-1535
    [210]Di J,Shen C,Peng S,Tu Y,Li S.A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol-gel network on gold modified electrode[J].Anal.Chim.Acta,2005,553:196-200
    [211]Sasaki T.Fabrication of nanostructured functional materials using exfoliated nanosheets as a building block[J].J.Ceram.Soc.Jpn.,2007,115:9-16
    [212]Wang L,Sakai N,Ebina Y,Takada K,Sasaki T.Inorganic multilayer films of manganese -tetracyanoquinodimethane composite [J]. Anal. Chem., 2002, 74: 5913-5918
    [225] Xu J J, Yu Z H, Chen H Y. Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion [J]. Anal. Chim. Acta, 2002,463: 239-247
    [226] Rishpon J, Gottesfeld S, Campbell C, Davey J, Zawodzinski T A. Amperometric glucose sensors based on glucose oxidase immobilized in Nafion [J]. Electroanalysis, 1994, 6: 17-21
    [227] Karyakin A A, Karyakin E E, Gorton L. Improvement of electrochemical biosensors using enzyme immobilization from water-organic mixtures with a high content of organic solvent [J]. Anal. Chem., 1996, 68: 4335-4341
    [228] Deng Q, Li B, Dong S. Self-gelatinizable copolymer immobilized glucose biosensor based on Prussian Blue modified graphite electrode [J]. Analyst, 1998, 123: 1995-1999
    [229] Konash A, Magner E. Characterization of an organic phase peroxide biosensor based on horseradish peroxidase immobilized in Eastman AQ [J]. Biosens. Bioelectron., 2006, 22: 116-123
    [230] Tian F M, Zhu G. Y. Bienzymatic amperometric biosensor for glucose based on polypyrrole/ ceramic carbon as electrode material [J]. Anal. Chim. Acta, 2002, 451: 251-258
    [231] Li B, Niu L, Kou W, Deng Q, Cheng G, Dong S. Synthesis of a self- gelatinizable grafting copolymer of poly (vinyl alcohol) for construction of an amperometric peroxidase electrode [J]. Anal. Biochem., 1998, 256: 130-132
    [232] Topoglidis E, Astuti Y, Duriaux F, Gratzel M, DurranJ R T. Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes [J]. Langmuir, 2003, 19: 6894-6900
    [233] Fantuzzi A, Fairhead M, Gilardi G. Direct electrochemistry of immobilized human cytochrome P450 2E1 [J]. J. Am. Chem. Soc., 2004, 126: 5040-5041
    [234] Zhao G C, Zhang L, Wei X W, Yang Z S. Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis [J]. Electrochem. Commun., 2003, 5: 825-829
    [235] Gu H Y, Yu A M, Chen H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode [J]. J. Electroanal. Chem., 2001, 516: 119-126
    [236] Liu Y, Yuan R, Chai Y, Tang D, Dai J, Zhong X. Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode [J]. Sensor. Actual. B: Chem., 2006, 115: 109-115
    [237] Luo X, Killard A J, Morrin A, Smyth M R. In situ electropolymerised silica-polyaniline core-shell structures: Electrode modification and enzyme biosensor enhancement [J]. Electrochim. Acta, 2007, 52: 1865-1870
    [238] Liu Z H, Ooi K, Kanoh H, Tang W P, Tomida T. Swelling and delamination behaviors of birnessite-type manganese oxide by intercalation of tetraalkylammonium ions [J]. Langmuir, 2000, 16: 4154-4164
    [239] Sasaki T, Watanabe M. Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate [J]. J. Am. Chem. Soc., 1998, 120: 4682-4689
    [240] Singh M, Ogden M I, Parkinson G M, Buckley C E, Connolly J. Delamination and reassembly of surfactant-containing Li/Al layered double hydroxides [J]. J. Mater. Chem., 2004, 14:871-874
    [241] Croce F, Appetecchi G B, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithiumbatteries [J]. Nature, 1998, 394: 456-458
    [242] Huynh W U, Peng X, Alivisatos A P. CdSe Nanocrystal Rods/Poly (3- hexylthiophene) Composite Photovoltaic Devices [J]. Adv. Mater., 1999, 11: 923-927
    [243] Xua Q, Mao C, Liu N N, Zhu J J, Sheng J. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite [J]. Biosens. Bioelectron., 2006, 22: 768-773
    [244] Sakai N, Ebina Y, Takada K, Sasaki T. Electrochromic films composed of MnO_2 nanosheets with controlled optical density and high coloration efficiency [J]. J Electrochem. Soc., 2005, 152: E384-E389
    [245] Dong S, Guo Y. Organic phase enzyme electrode operated in water-free solvents [J]. Anal. Chem., 66: 1994,3895-3899
    [246] Torii H, Tasumi M. Theoretical analyses of the amide I infrared bands of globular proteins. Infrared Spectroscopy of Biomolecules [M]. edited by Mantsch H H, and Chapman D, John Wiley, sons, New York, Eds. 1996 pp 1-17
    [247] Krikstopaitis K, Kulys J, Tetiance L. Bioelectrocatalytical glucose oxidation with phenoxazine modified glucose oxidase [J]. Electrochem.Commun., 2004, 6: 331-336
    [248] Kulys J, Buch-Rasmussen T, Bechgaard K, Marcinkeviciene J, Christensen J B, Hansen H E. Kinetics of glucose oxidase catalyzed electron transfer mediated by sulfur and selenium compounds [J]. FEBS Lett., 329: 1993, 205-209
    [249] Sampath S, Lev O. Inert metal-modified, composite ceramic-carbon, amperometric biosensors: renewable, controlled reactive layer [J]. Anal. Chem., 1996, 68: 2015-2021
    [250] Sung W J, Bae Y H. A glucose oxidase electrode based on electropolymerized conducting polymer with polyanion-enzyme conjugated dopant [J]. Anal. Chem., 2000, 72: 2177-2181
    [251] Muguruma H, Hiratsuka A, Karube I. Thin-film glucose biosensor based on plasma-polymerized film: simple design for mass production [J]. Anal. Chem., 2000, 72: 2671-2675
    [252] Kamin R A, Willson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Anal. Chem., 1980, 52: 1198-1205
    [253] Vidal J C, Garcia E, Castillo J R. Electropolymerization of pyrrole and immobilization of glucose oxidase in a flow system: influence of the operating conditions on analytical performance [J]. Biosens. Bioelectron., 13: 1998, 371-382
    [254] Rahmelow K, Hubner W, Ackermann T. Infrared Absorbances of Protein Side Chains [J]. Anal. Biochem., 1998, 257: 1-11
    [255] Cai W Y, Xu Q, Zhao X N, Zhu J J, Chen H Y. Porous gold- nanoparticle -CaCO_3 hybrid material: preparation, characterization, and application for horseradish peroxidase assembly and direct electrochemistry [J]. Chem. Mater., 2006, 18: 279-284
    [256] Nassar A E F, Zhang Z, Hu N, Rusling J F, Kumosinski T F. Proton-coupled electron transfer from electrodes to myoglobin in ordered biomembrane-like films [J]. J. Phys. Chem. B, 101: 1997, 2224-2231
    [257] Chen X, Ruan C, Kong J, Deng J. Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode [J]. Anal. Chim. Acta, 2000,412: 89-98
    [258] Zhao Y D, Zhang W D, Chen H, Luo Q M, Li S F Y. Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode [J]. Sensor. Actuat. B: Chem. 2002, 87: 168-172
    [259] Bond A M. Modern Polarographic Methods in Analytical Chemistry, Marcel Dekker, New York, 1980
    [260] Luo X L, Xu J J, Zhang Q, Yang G J, Chen H Y. Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly [J]. Biosens. Bioelectron., 2005, 21: 190-196
    [261] Casero E, de Quesada A M G, Jin J, Quintana M C, Pariente F, Abruna H D, Vazquez L, Lorenzo E. Comprehensive study of bioanalytical platforms: xanthine oxidase [J]. Anal. Chem., 2006, 78: 530-537
    [262] Jiang L, Liu C, Li H, Luo X, Wu Y, Cai X. Performance of an amperometric biosensor for the determination of hemoglobin [J]. J. Nanosci. Nanotech., 2005, 5: 1301-1304
    [263] Xu J Z, Zhu J J, Wu Q, Hu Z, Chen H Y. An amperometric biosensor based on the coimmobilization of horseradish peroxidase and methylene blue on a carbon nanotubes modified electrode [J]. Electroanalysis, 2003, 15: 219-224
    [264] Garjonyte R, Malinauskas A. Investigation of baker's yeast Saccharomyces cerevisiae- and mediator-based carbon paste electrodes as amperometric biosensors for lactic acid [J]. Sens. Actuators B, 2003, 96: 509-515
    [265] Liu C, Hu J, Hu J, Tanga H. Electrocatalytic oxidation of dopamine at a nanocuprous oxide-methylene blue composite glassy carbon electrode [J]. Electroanalysis, 2006, 18: 478-484
    [266] Ruan C, Yang F, Xu J, Lei C, Deng J. Immobilization of methylene blue using α-zirconium phosphate and its application within a reagentless amperometric hydrogen peroxide biosensor [J]. Electroanalysis, 1997, 9: 1180-1184
    [267] Lazarin A M, Airoldi C. Intercalation of methylene blue into barium phosphate—synthesis and electrochemical investigation [J]. Anal. Chim. Acta, 2004, 523: 89-95
    [268] Arvand M, Sohrabnezhad S, Mousavi M F, Shamsipur M, Zanjanchi M A. Electrochemical study of methylene blue incorporated into mordenite type zeolite and its application for amperometric determination of ascorbic acid in real samples [J]. Anal. Chim. Acta, 2003,491: 193-201
    [269] Xu J Z, Zhang Y, Lia G X, Zhu J J. An electrochemical biosensor constructed by nanosized silver particles doped sol-gel film [J]. Mater. Sci. Engineer. C, 2004, 24: 833-836
    [270] Santos A S, Duran N, Kubota L T. Biosensor for H_2O_2 response based on horseradish peroxidase: effect of different mediators adsorbed on silica gel modified with niobium oxide [J]. Electroanalysis, 2005, 17: 1103-1111
    [271] Gu T, Hasabe Y. Peroxidase and methylene blue-incorporated double stranded DNA- polyamine complex membrane for electrochemical sensing of hydrogen peroxide [J]. Anal. Chim. Acta, 2004, 525: 191-198
    [272] Feng Q, Kanoh H, Ooi K. Manganese oxide porous crystals [J]. J. Mater. Chem., 1999, 9: 319-333
    [273] Bacha S, Pereira-Ramos J P, Willmann P. A sodium layered manganese oxides as 3V cathode materials for secondary lithium batteries [J]. Electrochim. Acta, 2006, 52: 504-510
    [274] Giraldo O, Brock S L, Willis W S, Marquez M, Suib S L. Manganese Oxide Thin films with fast ion-exchange properties [J]. J. Am. Chem. Soc, 2000, 122: 9330-9331
    [275] Nakayama M, Komatsu H, Ozuka S, Araki Y, Ogura K. Immobilization of methylene blue between electrodepsoited manganese oxide multilayers [J]. Chem. Lett., 2005, 34: 1420-1421
    [276] Yang X, Makita Y, Liu Z H, Sakane K, Ooi K. Structural characterization of self-assembled MnO_2 nanosheets from birnessite manganese oxide single crystals [J]. Chem. Mater., 2004, 16: 5581-5588

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700