高分子修饰抗肿瘤药物的制备及细胞毒活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
药物疗法是目前肿瘤患者的主要治疗方法之一,但其种种缺陷,如有毒副作用等妨碍了其进一步的发展及应用。高分子材料的运用不仅可以改善或提高药物的性能,如稳定性、渗透性、溶解性及生物相容性等,还可以提供系统所需的特殊性能,如对温度或pH的敏感性,对酶的特意选择性等。
     对于抗肿瘤药物而言,高分子材料可作为载体,在病灶部位选择性的释放药物,提高药物的靶向性和生物利用率,有效地降低药物的毒副作用和用药剂量。
     本论文首先分别对具有抗肿瘤活性的蛋白质及多肽类等天然高分子化合物、萜类等天然小分子化合物,及其高分子衍生物的抗肿瘤活性的研究进展进行了综述。
     其次,甘草与当归是我国西部地区丰富的中草药资源,其中的活性成分18-β-甘草次酸(GA)与阿魏酸(FA)具有多种生理、药理活性。本论文用SRB法验证了18-β-甘草次酸与阿魏酸有抑制BEL-7721肿瘤细胞生长的作用,但是效果并不很好,而且,甘草次酸在过量的情况下会引起身体的不适,有一定的毒副作用。为了能够降低其毒性,并提高活性。我们以无毒且具有良好生物相容性聚合物聚乙二醇(PEG)和低聚水溶性壳聚糖(COS),首次合成了GA和FA的高分子衍生物,并对合成的高分子药物进行了一系列细胞毒活性研究。
     PEG和COS对甘草次酸的结构进行了化学改性后,采用元素分析法、红外光谱法、质谱方法对化合物的结构和组成进行了表征。采用SRB法研究了GA的PEG衍生物和COS衍生物的细胞毒活性,发现经PEG(20000)改性的甘草次酸没有细胞毒活性,甘草次酸的一系列PEG(600)衍生物具有良好的细胞毒活性,而且比原料具有更好的效果:GA的IC_(50)为19.57±1.68μg/mL,而PEG(600)-GA的IC_(50)为4.82±0.15μg/mL,B-PEG(600)-GA的LC_(50)为26.58±2.6μg/mL。此外,甘草次酸的COS衍生物也具有细胞毒活性,但活性有所降低,GA-COS(5:1)的IC_(50)为27.29±0.39μg/mL。
     阿魏酸的结构被PEG和COS改性后,采用元素分析法、红外光谱法、质谱方法对化合物的结构和组成进行了表征。同时,采用SRB法研究了FA的PEG衍生物和COS衍生物的细胞毒活性,发现阿魏酸PEG(600)衍生物和COS衍
A broad-spectrum antineoplastic agents has been found to be effective in combating different types of cancer. However, to achieve complete eradication of tumors, antineoplastic agents are administered systemically in high doses, and almost all drugs effective in killing cancer cells cause damage to other healthy tissues and organs. This is due to the non-specific uptake of these agents by healthy organs such as the kidney, liver, bone marrow, and heart. The adverse side-effects include severe immune suppression, myelosuppression, nephrotoxicity, and cardiotoxicity.Polymer-based antitumor drug loaded implants, pastes and microparticulates provide an opportunity to deliver high, localized doses of drug for a prolonged period directly into a tumor or at the site of tumor resection.In the part of review, it is focus on the macromolecule and small molecule compounds derived from natural products with antitumor activities, and the antitumor activities of polymer derivatives of some small molecule drugs.Liquorice and Angelica are traditional Chinese herbal medicines. Their active components are 180- glycyrrhetic acid (180-GA) and Ferulic acid (FA), which has been reported possessing strong bioactivities in physiology and phamarcology. In this paper, the cytotoxic activities of those drugs were evaluated in vitro by using SRB assay. It was found they have antitumor activities, but not so strong. And the toxicity of GA limited its use in medicine.Polyethylene glycol (PEG) is a polymer which was widely used as a covalent modifier of biological macromolecules and particles as well as a carrier for low molecular weight drugs.Chitooligosaccharide (COS) is the product of the chitosan degradation. It has many interesting biological properties, such as immunological activity, antibacterial activity etc.Because of their advansed physical and chemical properties and pharmapuetical function, PEG, COS and their derivatives have been variously applied in the
    pharmacyeutical field.To avoid the limitations of these small molecule compounds and to improve the antitumor activities, their derivatives have been synthesized. We used PEG and COS respectively to modify GA and FA. A series of polymer derivatives of GA and FA were synthesized.The PEG and COS derivatives of GA were characterized by element analysis, IR spectra and MS spectra. The SRB assay is now being used in our laboratory for further study of their cytotoxic activities.The GA derivatives modified by PEG(20000) have been found no activities, while the derivatives modified by PEG(600) inhibit the growth of liver tumor BEL-7721 cell and cause death of the cell. They showed stronger cytotoxic activities than GA. (IC_(50),ga =19.57±1.68 ug/mL, IC_(50, peg(600)-ga)= 4.82±0.15 μg/mL, LC_(50, b-peg(600)-ga)= 26.58±2.6 μg/mL). Furthermore, the derivatives modified by COS have less cytotoxic activities than GA(IC_(50,GA-COS(5:1))=27.29±0.399μg/mL).FA was modified by PEG and COS, and the derivatives were characterized by element analysis, IR spectra and MS spectra. By using the SRB assay, we found the FA derivatives show stronger cytotoxic activities than FA (IC—(50,fa)= 46.63±7.34μg/mL,IC—(50, PEG(600)-FA)=28.62±1.81μg/mL, IC—(50,B-PEG(600)-FA)=18.74±2.55μg/mL, IC_(50, FA-COS(5:1))= 38.79±0.85μg/mL).5-Fluorouracil (5-Fu) has been used in the therapy of different solid tumors, such as cancer of the gastrointestinal tract and breast cancer. But its use in clinic is limited by its short plasma half-life, high doses, gastrointestinal toxicity and myelotoxicity.The SRB assay indicated that the inhibition or killing activity of 5-Fu to the SGC-7901 cell, but the PEG (600) derivative of 5-Fu lost the antitumor activity.The data in the present study support some possible mechanism.
引文
[1] 万德森 主编,《社区肿瘤学》,科学出版社,北京,2000,pp.1
    [2] 王文福 主编,《肿瘤学》,人民军医出版社,北京,2000,pp.2-3
    [3] 廖子君,南克俊,韩军 主编,《现代肿瘤治疗药物学》,世界图书出版公司,西安,2002,pp.27-28
    [4] 潘启超,胥彬,《肿瘤药理学与化学治疗学》,河南医科大学出版社,郑州,2000,pp.1-6
    [5] 陈世伟,张利民,《肿瘤中西医综合治疗》,人民卫生出版社,北京,2001,pp.104
    [6] 王凯荣,本科毕业论文,西北师范大学,2004
    [7] 沈仁权,顾其敏,主编,《生物化学教程》,高等教育出版社,北京,1993,pp.16-107
    [8] 甘景镐,甘纯玑,胡炳环,《天然高分子化学》,高等教育出版社,北京,1993,pp.42-175
    [9] 范德东,蒋小平,闽台两省蛋白质和多肽类抗肿瘤植物资源考察,福建中医学院学报,2001,11(1):49-50
    [10] 张尔贤,俞丽君,海洋生物活性物质开发利用的现状与前景,台湾海峡,2000,19(3):388-395
    [11] 林凡,秦松,海洋生物抗肿瘤活性肽,海洋科学,2002,26(12):23-48
    [12] 唐传核,曹劲松,彭志英,乳铁蛋白最新研究进展—活性多肽以及生理功能(Ⅱ),中国乳品工业,2000,28(5):44-47
    [13] 欧阳献,一种新型抗肿瘤蛋白的氨基酸组成分析,江西农业大学学报,2004,26(4):616-618
    [14] 于荣敏,严春艳,曲红艳,姚新生,近年来海洋生物活性多肽的研究概况与展望,海洋通报,2004,23(3):87-93
    [15] 纪建国,叶蕴华,邢其毅,植物多肽类化合物研究进展,天然产物研究与开发,1998,10(3):80-86
    [16] 汪秋安,曾陇梅,生理活性海洋环肽类研究近况,天然产物研究与开发,1996,8(4):73-79
    [17] 冯国宣,动物中天然抗肿瘤产物研究,湖北民族学院学报(自然科学版),2002,20(2):45-48
    [18] 吴志军,熊慧萍,徐祖洪,李智恩,海洋环肽研究进展,海洋科学,2000,24(6):24-28
    [19] 王明福,佟艳丰,薛万琦,蝇类资源及其利用前景展望,资源科学,2004,26(5):153-159
    [20] David Winder, Walter H. Gunzburg, Volker Erfle, Brian Salmons, Expression of Antimicrobial Peptides Has an Antitumour Effect in Human Cells, Biochemical and biophysical research communications, 1998, 242: 608-612
    [21] 强承魁,杨兆芬,赵万勇,昆虫抗菌肽的分子结构、作用机理及其在抗肿瘤细胞方面的应用,中国动物保健,2004,(1):33-35
    [22] 赵东红,戴祝英,周开亚,昆虫抗菌肽的功能、作用机理与分子生物学研 究最新进展,生物工程进展,1999,19(5):14-18
    [23] 宫霞,乐国伟,施用晖,昆虫抗菌肽的生理活性及其转基因应用前景,昆虫知识,2004,41(2):110-115
    [24] A.J.弗斯 著,曾仲奎,肖智雄 译,《生物学中的脂质和多糖》,四川大学出版社,1986,pp.23
    [25] 刘卫军,顾振纶,周文轩,郭次仪,植物多糖抗肿瘤活性研究进展,中国野生植物资源,1997,(1):1-4
    [26] 芮海云,吴国荣,陆长梅,多糖类生物活性的研究在医药领域的应用,淮阴师范学院学报,2002,1(3):77-80
    [27] 刘春兰,周宜君,刘海青,李转秀,植物多糖的生物活性及其应用前景,中央民族大学学报(自然科学版),2004,13(2):159-162
    [28] 梁忠岩,倪秀珍,中草药多糖的应用研究,长春师范学院学报,2001,20(1):38-40
    [29] 陈朝银,食物多糖的研究与开发,食品与机械,1994,(6):15-16
    [30] Jianhong Yang, Yumin Du, Ronghua Huang, Liping Sun, Hui Liu, Xiaohai Gao, John F. Kennedy, Chemical modification and antitumour activity of Chinese lacquer polysaccharide from lac tree Rhus vemicifera, Carbohydrate Polymers, 2005, 59: 101-107
    [31] 刘长岚,李成彬,崔文新,壳聚糖在医药领域的应用,山东科学,2003,16(3):68-71
    [32] 杜昱光,张铭俊,张虎,白雪芳,海洋寡糖工程药物-壳寡糖制备分离新工艺及其抗肿瘤活性研究,中国微生态学杂志,2001,13(1):5-7
    [33] 孙慎侠,付昌斌,范钦信,壳聚糖的生物活性及其在中医药领域中的应用,贵阳中医学院学报,2003,25(1):39-41
    [34] 王绪敏,刘万顺,贺君,陈西广,刘成圣,刘心同,壳聚糖及其衍生物在动物细胞培养中应用研究进展,中国海洋药物,2000,(5):37-45
    [35] 魏培莲,微生物胞外多糖研究进展,浙江科技学院学报,2002,14(2):8-12
    [36] 宋绍富,崔吉,罗一菁,雷光伦,张忠智,微生物多糖研究进展,油田化学,2004,21(1):91-96
    [37] Gli'cia M. T. Calazans, Rosa'lia C. Lima, Francisca P. de Franc, a, Carlos Edison Lopes, Molecular weight and antitumour activity of Zymomonas mobilis levans, International Journal of Biological Macromolecules, 2000, 27: 245-247
    [38] 阎莉萍,洪葵,海洋微生物合成的抗肿瘤活性物质,国外医药抗生素分册,2003,24(5):213-217
    [39] 冯国宣,抗肿瘤植物资源与天然产物研究,湖北民族学院学报(自然科学版),2001,19(3):26-32
    [40] 管军军,张春霞,多糖的研究,广东饲料,2003,12(3):32-34
    [41] 王晓娟,魏传晚,徐淑永,吕梅香,曾和平,生物活性多糖结构与功效关系的研究进展,广州化工,2004,32(1):6-10
    [42] 芮海云,多糖类生物活性研究简介,生物学教学,2002,27(11):33-34
    [43] 孙册,莫汉庆,《糖蛋白与蛋白聚糖结构、功能和代谢》,科学出版社,北京,1998,pp.28
    [44] Constanze Brocke, Horst Kunz, Synthesis of Tumor-Associated glycopeptide Antigens. Bioorg & Med Chem, 2002, 10: 3085-3112
    [45] Yogeshwer Shukla, A. S. Verma, N. K. Mehrotra, P. K. Ray, Antitumour activity of protein A in a mouse skin model of two-stage carcinogenesis, Cancer Letter, 1996, 103: 41-47
    [46] 黄建设,龙丽娟,张偲,海洋天然产物及其生理活性的研究进展,海洋通报,2001,20(4):83-91
    [47] 邓松之,海洋天然产物的研究与开发,天然产物研究与开发,1997,9(1):56-64
    [48] 黄致喜,王慧辰,《萜类香料化学》,中国轻工业出版社,北京,1999,pp.1
    [49] 汤敏燕,汪洪武,孙凌峰,具有抗肿瘤活性的天然萜类化合物,林产化学与工业,1997,17(2):73-79
    [50] 赵爱华,魏均娴,倍半萜类化合物生理活性研究进展,天然产物研究与开发,1995,7(4):65-70
    [51] 吴彤,海洋生物中萜类及甾醇化合物研究近况,中国医药工业杂志,2001,32(7):327-334
    [52] 申利群,莫洪波,尹笃林,几种单环单萜化合物的生物活性及其应用,林产化工通讯,2004,38(2):30-35
    [53] G.R.沃勒,E.K.诺瓦茨基,朱太平,佟绍华,马忠武 译,《生物碱的生物 学及其中植物中的代谢作用》,科学出版社,北京,1984,8:pp.7
    [54] 胡之璧,周秀佳,郭济贤,吴承卫,黄炼栋,吴耀平,章国瑛,三尖杉培养细胞中抗肿瘤活性成分的研究,植物学报,1995,37(6):417-424
    [55] 李立源,张冬艳,白凤武,喜树碱及其衍生物的研究进展,大连民族学院学报,2001,3(2):17-22
    [56] Anna Kruczynski, Bridget T. Hill, Vinflunine, the latest Vinca alkaloid in clinical development: A review of its preclinical anticancer properties, Critical Reviews in Oncology/Hematology, 2001, 40: 159-173
    [57] 马伟杰,肖定军,邓松之,海绵生理活性物质研究新进展,天然产物研究与开发,2003,15(6):567-571
    [58] 王超杰,苏镜娱,海鞘中抗肿瘤活性物质的研究概况,有机化学,1997,17(6):481-487
    [59] 王丽玲,焦必林,曾凡坤,保健功能因子—生物类黄酮,粮食与油脂,2004,(9):18-20
    [60] 梁富荣,黄伟雄,广东省保健品黄酮类产品现状分析,中国卫生检验杂志,2001,11(2):192-193
    [61] 刘苹苹,李云政,张青山,大豆异黄酮的研究进展,辽宁化工,2004,33(1):27-28
    [62] 李小满,大豆异黄酮分子结构、生物活性及其市场现状,中国食品添加剂,2002,(2):66-71
    [63] 王兆梅,李琳,郭祀远,郑必胜,黎海彬,大豆异黄酮结构及其活性分析,天然产物研究与开发,2002,14(3):70-74
    [64] Kwang Sik Suh, Gwanpyo Koh, Cheol Young Park, Jeong Taek Woo, Sung Woon Kia, Jin Woo Kim, In Kook Park, Young Seol Kim, Soybean isoflavones inhibit tumor necrosis factor-a-induced apoptosis and the production of interleuk-in-6 and prostaglandin E2 in osteoblastic cells, Phytochemistry, 2003, 63: 209-215
    [65] 贾旭东,茶类黄酮类功能及其应用,国外医学卫生学分册,2001,28,(6):369-371
    [66] 高中洪,黄开勋,徐辉碧,黄芩中黄酮类生物活性的研究进展,中国药学杂志,1998,33(12):705-707
    [67] 刘绣华,陈伯森,汪汉卿,皂甙分离和结构鉴定研究进展,化学研究,1997,8(3):28-27
    [68] 陈长战,张嘉岷,弋冰,三萜皂甙结构鉴定的常用方法,化学研究与应用,1999,11(2):119-125
    [69] 李广,李浩波,刘璐,赵发苗,黄建文,皂甙的生理活性及其应用研究进展,中国农学通报,2003,19(6):3-6
    [70] 陈霞,赵贵兴,张延坤,大豆皂甙的生理功能及制备应用,大豆通报,2002,(2):23
    [71] 孙学斌,大豆皂甙及其抗肿瘤作用,木本植物研究,2000,20(3):328-331
    [72] 王立刚,刘功权,佘顺秀,大豆皂甙,大豆通报,2004,(3):34-36
    [73] 王利华,霍贵成,ω-3不饱和脂肪酸的生物学作用,东北农业大学学报,2001,32(1):100-104
    [74] 陈必链,施巧琴,吴松刚,海藻中多不饱和脂肪酸的研究与开发,今日科技,1996,(11):5
    [75] 唐传核,彭志英,新型功能性脂肪酸—共轭亚油酸,粮油食品,2001,(2):47-49
    [76] 汪小兰,《有机化学》,高等教育出版社,北京,1993,pp.196
    [77] 胡学烟,孙冀平,王兴国,汪勇,植物甾醇的发展前景,西部粮油科技,2001,26(5):34-36
    [78] 唐传核,植物甾醇及其生理功能研究概况,西部粮油科技,2001,26(2):34-38
    [79] 韩军花,植物甾醇的性质、功能及应用,国外医学卫生学分册,2001,28(5):285-291
    [80] H. Tapiero, D. M. Townsend, K. D. Tew, Phytosterols in the prevention of human pathologies, Biomedicine & Pharmacatherapy, 2003, 57: 321-325
    [81] 崔建国,曾陇梅,苏镜娱,彭文烈,徐安龙,多羟基甾醇的合成及其结构与抗肿瘤细胞活性关系研究,高等学校化学学报,2000,21(9):1399-1404
    [82] Anatoly N. Lukyanov, Vladimir P. Torchilin, Mieelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs, Advanced Drug Delivery Reviews, 2004, 56: 1273-1289
    [83] Kamal H. Bouhadir, Eben Alsberg, David J. Mooney, Hydrogels for combination delivery of antineoplastic agents, Biomaterials, 2001, 22: 2625-2633
    [84] 郭艳玲,冯玉梅,作为抗肿瘤药物载体的高分子研究进展,天津科技大学学报,2004,19(3):11-15
    [85] Lawrence K. Fung, W. Mark Saltzman, Polymeric implants for cancer chemotherapy, Advanced Drug Delivery Reviews, 1997, 26: 209-230
    [86] John K. Jackson, Xichen Zhang, Stevyn Llewellen, William L. Hunter, Helen M. Burt, The characterization of novel polymeric paste formulations for intratumoral delivery, International Journal of Pharmaceutics, 2004, 270: 185-198
    [87] Masayuki Yokoyama, Ayumi Satoh, Yasuhisa Sakurai, Teruo Okano, Yasuhiro Matsumura, Tadao Kakizoe, Kazunori Kataoka, Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size, Journal of Controlled Release, 1998, 55: 219-229
    [88] Thomas Merdan, Jindrich Kopecek, Thomas Kissel, Prospects for cationic polymers in gene and oligonucleotide therapy against cancer, Advanced Drug Delivery Reviews, 2002, 54: 715-758
    [89] Seong Il Kang, Kun Na, You Han Bae, Physicochemical characteristics and doxorubicin-release behaviors of pH/temperature-sensitive polymeric nanoparticles, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 231: 103—112
    [90] Chun Li, Poly(L-glutamic acid)-anticancer drug conjugates, Advanced Drug Delivery Reviews, 2002, 54: 695-713
    [91] K. Ulbrich, T. Etrych, P. Chytil, M. Pechar, M. Jelinkova, B. Rihova, Polymeric anticancer drugs with pH-controlled activation, International Journal of Pharmaceutics, 2004, 277: 63-72
    [92] P. Pouckova', M. Zadinova', D. Hlouskova', J. Strohalm, D. Plocova', M. Spunda, T. Oleja'r, M. Zitko, J. Matousek, K. Ulbrich, J. Soucek, Polymer-conjugated bovine pancreatic and seminal ribonucleases inhibit growth of human tumors in nude mice, Journal of Controlled Release, 2004, 95: 83-92
    [93] Hirofumi Takeuchi, Hiroyuki Kojima, Toshitada Toyoda, Hiromitsu Yamamoto, Tomoaki Hino, Yoshiaki Kawashima, Prolonged circulation time of doxorubicin -loaded liposomes coated with a modified polyvinyl alcohol after intravenous injection in rats, European Journal of Pharmaceutics and Biopharmaceutics, 1999, 48: 123-129
    [94] Karel Ulbrich, Vladimi'r Subr, Polymeric anticancer drugs with pH-controlled activation, Advanced Drug Delivery Reviews, 2004, 56: 1023-1050
    [95] 贾淑琴,高分子材料在医药制剂中的应用,工程塑料应用,2000,28(6):27-28
    [96] 徐光炜,《肿瘤症概说》,人民卫生出版社,北京,2002,pp.1-2
    [97] 吴金民,赵昌峻.主编,《实用肿瘤治疗手册》,浙江科学技术出版社,2000,pp.52-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700