Lyocell竹纤维素纤维的制备及结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Lyocell纤维生产工艺是将纤维素直接溶解在N-甲基吗啉-N-氧化物(NMMO)的水溶液中,并通过特殊的干湿法纺丝制备再生纤维素纤维的绿色工艺。该工艺具有生产流程简单、先进环保、产品性能好等特点,可望逐渐取代污染严重的传统纤维素纤维生产工艺即粘胶工艺。
     迄今为止,Lyocell纤维的生产主要以木浆粕为原料,由于木材受到土地资源、生长周期等因素的影响,远远不能满足Lyocell纤维生产的需求。而我国是世界产竹大国,竹子分布十分广泛,成材迅速,2-3年即可实现连续砍伐使用,符合可持续发展的要求,再加之竹子的主要成分也是纤维素,若能用竹子作为原料生产Lyocell纤维素纤维,不仅提供了一种较为廉价的原料,还为竹子的利用开辟了一条新的途径。此外,以竹子为原料生产的竹纤维素纤维除具有普通纤维素纤维的优点外,还可能被赋予竹子本身所具有的凉爽、顺滑、清香、抑菌以及负离子效应等特性。
     目前国内外主要采用粘胶工艺制备再生竹纤维素纤维,而有关以竹纤维素浆粕为原料,采用Lyocell工艺纺制竹纤维素纤维,至今尚无文献报道,因此,本论文将对这一领域进行探索性的研究。
     本论文首先采用铜氨粘度法、凝胶渗透色谱法(GPC)法及FTIR法等手段对几种竹浆粕的聚合度、相对分子质量分布、α-纤维素含量及其主要化学组分进行了分析,并与木浆粕进行了对比。结果表明:竹浆粕与木浆粕主要成分都为纤维素,但竹浆粕中含有较多的木质素以及少量的木浆粕中没有的物质。造纸级竹浆粕与纤维级竹浆粕相比,其聚合度较大,相对分子质量分布较宽,半纤维素含量较高。对这二种竹浆粕在NMMO·H2O溶剂体系中的溶解研究进一步表明,纤维级竹浆粕的溶解性能较好,相比之下,造纸级竹浆粕溶解较困难,因此,这类竹浆粕不宜直接作为纺丝用原料。
     本论文还采用哈克控制应力流变仪对不同聚合度的竹纤维素/NMMO·H2O溶液的动态及稳态流变性能进行了研究。结果发现,动态流变方法可以预测竹纤维素的相对分子质量及其分布;随着竹纤维素平均聚合度的增大,竹纤维素/NMMO·H2O溶液的流动曲线上移,出现切力变稀的临界剪切速率向低值方向移动,溶液的非牛顿指数n下降,粘流活化能Eη、结构粘度指数Δη和零切粘度η0增加;经一定条件碱处理的竹纤维素/NMMO·H2O溶液的流变性能受竹纤维素原料的聚合度、α-纤维素含量(或半纤维素含量)及杂质含量等因素的影响。
     在上述研究基础上,本论文选择出了合适的纤维级竹纤维素浆粕,采用Lyocell工艺纺制出了Lyocell竹纤维素纤维,并探讨了纺丝工艺对Lyocell竹纤维素纤维结构与性能的影响,结果发现:随着纺丝原液浓度的适当增加,纤维的力学性能改善;喷头拉伸比的提高,有利于Lyocell竹纤维素纤维的结晶度及取向度增加,相应地纤维的初始模量和断裂强度增大,而纤度和断裂伸长率下降;在固定喷丝拉伸比的情况下,随着纺丝速度的升高,Lyocell竹纤维素纤维的晶区取向基本不变、非晶区取向及结晶度增加,强度和初始模量增大、断裂伸长减小,而纤度几乎没有变化;随着凝固浴温度的上升,所得Lyocell竹纤维素纤维的结晶度、晶区取向度和初始模量上升,而纤维非晶区取向度、总取向度和强度则略有下降。另外,气隙长度对所制得的Lyocell竹纤维素纤维的力学性能也有一定的影响,在本论文研究范围内,较合适的气隙长度为5cm。
     与此同时,为了降低Lyocell竹纤维素纤维的制造成本,本论文还采用60Coγ射线对聚合度较高的造纸级竹浆粕进行辐照处理,以期获得可纺性好的Lyocell工艺用竹纤维素浆粕,并对辐照处理前后的竹纤维素的平均聚合度、相对分子质量分布及超分子结构进行了表征。结果表明,辐照处理对竹纤维素中的α-纤维素含量和相对分子质量及其分布均有影响:当辐照吸收剂量较小时,高能射线主要作用于高相对分子质量的竹纤维素,因此,竹纤维素的聚合度随吸收剂量的增加而迅速降低,但α-纤维素含量并无明显变化;当吸收剂量达到15kGy以上后,聚合度的下降趋势变缓,而α-纤维素含量逐渐降低;辐照处理后,高相对分子质量的竹纤维素分子数明显减少,相对分子质量分布变窄;此外,WAXD及FTIR的分析结果显示,辐照前后的竹纤维素的结晶变体都属于纤维素Ⅰ,且结晶度及晶粒尺寸也均无明显变化,表明在本研究的辐照吸收剂量范围内,经辐照的竹纤维素的结晶结构未被破坏。根据聚合度与吸收剂量之间的关系进一步推导出其G(s)值为0.94μmol·J-1,表明竹纤维素是一种比较容易辐照降解的聚合物,采用辐照方法处理竹纤维素是经济可行的。这种方法不仅解决了造纸级竹浆溶解困难、纺丝液浓度低的问题,而且使竹纤维素的可纺性明显改善,所制得的Lyocell竹纤维素纤维性能满足服用纤维的要求。
     通过对Lyocell竹纤维素纤维服用性能与常规Lyocell纤维及粘胶法竹纤维素纤维的对比研究,发现Lyocell竹纤维与常规Lyocell纤维一样,具有光滑的表面及接近圆形的截面,易发生原纤化,其结晶度、强度和模量均远高于粘胶法竹纤维素纤维,湿态下力学性能损失也较小。另外,Lyocell竹纤维素纤维不仅吸湿性、染色性和抗原纤化能力均优于常规Lyocell纤维,还具有明显的负离子效应及天然抑菌性。采用KES织物风格仪对纤维面料的测试结果进一步显示,Lyocell竹纤维素纤维面料的滑爽度、柔软性、抗拉伸及抗压缩性能都比常规Lyocell纤维织物好,表明其具有较好的服用性能。
Lyocell process is a simple and environmental-friendly process for the production of regenerated cellulose fiber.It adopts N-methylmorpholine-N-oxide monohydrate (NMMO·H_2O),a non-toxic solvent,to directly dissolve cellulose and then uses a dry-jet wet spinning method to spin the fiber.In the process,no derivatization,such as alkalization and xanthation in the case of viscose fibers,is required.Furthermore, Lyocell fibers are distinguished by high crystallinity,high degree of orientation,and well-oriented amorphous regions,resulting in a very high dry and wet tensile strength, a high wet modulus and high loop tenacity.
     Due to the restriction of wood resource in China,using wood as main raw material of Lyocell fiber could not meet demand for Lyocell fiber.However,bamboo resource is abundant in our country.If Lyocell fibers could be made from bamboo,it not only provides a cheap material for Lyocell fiber but also exploits a new application of bamboo.Moreover,compared to the fibers from cotton and wood,bamboo cellulose fiber made from bamboo has significantly different properties,such as good drapability,good dyeing property,soft,cool,comfortable feelings,and lustrous looking,etc.
     So far,regenerated bamboo cellulose fiber was prepared by viscose process at home and abroad.Lyocell Fibers made from bamboo cellulose has not been reported yet. Hence,exploratory researches on bamboo Lyocell fiber were done in this paper.
     Firstly,the bamboo pulps were analyzed and characterized by viscosimetry method, gel permeation chromatography(GPC) and Fourier transform infrared spectroscopy (FTIR) and the results were compared with wood pulp.It was found from the FTIR spectra that bamboo pulp was mainly consist of cellulose,same as wood pulp,but contained higher lignin than wood pulp and a little unknown substances which didn't exist in wood pulp,the paper grade bamboo pulp had higher DP,broader MWD and higher content of hemicellulose than that of fiber grade bamboo pulp.Furthermore,the study of bamboo pulp with different DP dissolved in NMMO·H_2O showed that the dissolving property of the paper grade bamboo pulp with high DP exhibited more inferior than that of the fiber grade bamboo pulp.Therefore,the paper grade bamboo pulp could not be directly used as raw material for producing Lyocell fiber.
     Bamboo cellulose/NMMO·H_2O solutions were prepared by dissolving bamboo celluloses with different DP in NMMO·H_2O and the rheological behaviors of these solutions were investigated with HAAKE RS150L rheometer.The results showed that bamboo cellulose spinning dopes were shear thinning fluids.With the increase of the average degree of polymerization of bamboo cellulose pulps,the flow curves moved upward,the critical shear rate and the non-Newtonian index(n) decreased,while the apparent viscosity,the viscous flow activation energy,the zero shear viscosity and the structural viscosity index increased.With the increase of temperature,the apparent viscosity decreased,the non-Newtonian index increased.Moreover,the rheological behaviors of the alkali treated bamboo cellulose/NMMO·H_2O solutions were affected by the average degree of polymerization of bamboo cellulose,the content of hemicellulose and impurity in the pulp.In addition,the comparison of the results from theological data and GPC showed that it was feasible to predict the MW and MWD of cellulose by using rheological method.
     On basis of aforementioned investigations,the fiber grade bamboo pulp was preferentially selected as raw material for preparing bamboo Lyoccell fiber,bamboo Lyocell fiber was preparing with this pulp by Lyocell process in our laboratory and the influence of spinning parameters on structure and property of bamboo cellulose fiber were systemically investigated.The results showed that the spin parameters had greatly effected on the structures and properties of bamboo Lyocell fiber.Firstly,the mechanical property of the fiber enhanced with the increase of the cellulose concentration in spinning dope.Secondly,the crystallinity and orientation of bamboo Lyocell fiber increased and accordingly the tensile strength and initial modulus increased with the increase of draw down ratio,whereas the linear density and elongation at break decreased with the increase of draw down ratio.When the draw ratio was kept constant,the higher the spinning speed,the higher the orientation in amorphous region and crystallinity,the higher the tensile strength and initial modulus will be,while the orientation in crystalline region and the linear density were not changed basically.In addition,the crystallinity,orientation in crystalline region and initial modulus increased and the orientation in amorphous region,total orientation and tensile strength slightly decreased with the increase of the temperature of coagulation bath.Moreover,the gap length also affects the mechnical properties of the fiber and the optimum gap length is 5 cm.
     Generally speaking,paper grade bamboo pulp has high molecular weight,it is difficult to be dissolved in N-methylmorpholine-N-oxide monohydrate(NMMO·H_2O). In order to reduce its molecular weight,improve its dissolving property in NMMO·H_2O and obtain the cheap bamboo pulp with good spinnability for Lyocell process,the paper grade bamboo pulp was irradiated in air by ~(60)Coγ-ray,then the molecular weight(MW) and the molecular weight distribution(MWD) of the irradiated bamboo cellulose were measured by viscosimetry and gel permeation chromatography (GPC),and the crystalline structure was studied by Fourier transform infrared spectroscopy(FTIR) and wide angle X-ray diffraction(WAXD).The results showed that the average degree of polymerization((?)) of the irradiated bamboo cellulose decreased and its MWD became narrow continuously with the increase of absorbed dose,the most significant degradation of the bamboo cellulose took place in the range of the absorbed dose up to 15kGy.However,the results from WAXD and FTIR showed that the crystalline structure such as crystallinity and crystalline form did not change obviously,and this implies that the crystalline structures of the bamboo cellulose were not destroyed in our case.It could be deduced from the relationship between(?) and absorbed doses(D) that G(s) of the bamboo cellulose was 0.94μmol·J~(-1),which indicated that the bamboo cellulose was easily degraded by ~(60)Coγ-ray radiation. Therefore,it was possible economically to degrade the bamboo cellulose by irradiation. Furthermore,it was found from spinning experiment that the dissolving property and the spinnability of the irradiated bamboo cellulose was remarkably improved and that the fiber made from the bamboo cellulose could be applied in apparel industry.
     The comparison of the wear behavior of bamboo Lyocell fiber and the other regenerated cellulose fiber was carried out.The results showed that the bamboo Lyocell fiber had many similarities in structure and properties compared with the conventional Lyocell fiber,such as smooth surface,approximate circular cross section, and easy fibrillation,its crystallinity,tensile strength and initial modulus are higher than the bamboo viscose fiber,its ratio of wet tensile strength to dry tensile strength is higher than that of bamboo viscose fiber,and its hygroscopic,dyeing and anti-fibrillation property all are better than conventional Lyocell fiber.Furthermore, the bamboo Lyocell fiber also has excellent negative ion effect and nature antibacterial property.The handle of the fabrics weaved with bamboo lyocell fiber and wood lyocell fiber respectively were evaluated by KES system,the results showed that the former had better wear performance,such as fluffy,slippery,tender and has a good sense of seeing as well as good hanging ability.
引文
1.Watanabe I..Development of"Sohtake"[J].Sen-i Gakkaishi,2004,60(1):7-9.
    2.巩继贤,李辉芹.竹纤维-一种纺织新材料[J].纺织导报,2003,(3):59-61.
    3.裘愉发.第五届上海国际纺博会丝绸产品印象[J].丝绸,2003,(5):44-46.
    4.程隆隶,徐小丽,劳继红.竹纤维的结构形态及性能分析[J].纺织导报,2003,(5):101-103.
    5.http://www.chinesebamboo.net/utilization/paper%20making/paper%20making.htm
    6.李庆春.竹纤维的性能及其开发技术关键[J].四川纺织科技,2003,(5):57-58.
    7.El Bassam N.Energy plant species:their use and impact on environment and development[M].London:James and James,1998,321.
    8.曹玉海.竹纤维及其制造方法[P]:ZL01107139.7,2005-1-1-19.
    9.Lee S.H.,Ohkita T..Bamboo fiber(BF)-filled poly(butylenes succinate)bio-composite-effect of BF-e-MA on the properties and crystallization kinetics[J].Holzforschung,2004,58:537-43.
    10.Lee S.H.,Wang S.Q..Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent[J].Composites:Part A,2006,37:80-91.
    11.Jain S.,Kumar R.,Jindal U.C..Mechanical behaviour of bamboo and bamboo composite[J].J Mater Sci,1992,27:4598-604.
    12.Jain S.,Kumar R.,Jindal U.C..Development and fracture mechanism of the bamboo/polyester resin composite[J].J Mater Sci Lett,1993,12:558-60.
    13.Rajulu A.V.,Baksh S.A.,Reddy G.R.,Chary K.N..Chemical resistance and tensile properties of short bamboo fiber reinforced epoxy composites[J].J Reinforced Plast Compos,1998,17(17):1507-11.
    14.Chen X.,Guo Q.,Mi Y..Bamboo fiber-reinforced polypropylene composites:a study of the mechanical properties[J].J Appl Polym Sci,1998,69:1891-9.
    15.Okubo K.,Fujii T.,Yamamoto Y..Development of bamboo-based polymer composites and their mechanical properties[J].Composites:Part A,2004,35:377-383.
    16.王泽飞.竹纤维增强复合材料[P]:CN85107095,1986-9-10.
    17.韩玉平,樊忠一.竹纤维复合材料的生产方法[P]:CNl263811,2000-8-23.
    18.Lee S.H.,Ohkita T.,Kitagawa K.Eco-composite from poly(lactic acid) and bamboo fiber[J].Holzforschung,2004,58:529-36.
    19.煤炭科学研究总院杭州环境保护研究所.竹纤维复合锚杆[P]:CN2106890,1992-6-10.
    20.喻云水.一种新型竹纤维塑料复合板[P]:CN2592378,2003-12-17.
    21.清水秀辉.竹纤维合板的制造方法及其竹纤维合板[P]:ZL96103583.8,2001-9-12.
    22.Scurlocka J.M.O.,Daytonb D.C.,Hamesb B.Bamboo:an overlooked biomass resource?[J].Biomass and Bioenergy,2000,19:229-244.
    23.瞿彩莲,杨锁廷.竹资源在纺织领域的应用[J].中国纤检,2006,(1):38-39.
    24.张素俭,于伟东.竹纤维及其产品的研究与开发现状[J].棉纺织技术,2005,33(11):645-648.
    25.刘瑞刚.纤维素纤维的新品种Lyocell.国外纺织技术[J],1997,(9):25-27.
    26.芦长椿.粘胶纤维现状的思考及建议[J].化纤与纺织技术,2004,(2):31-34.
    27.Adorjan I.,Sj(o|¨)berg J.,Rosenau T.,et al.Kinetic and chemical studies on the isomerization of monosaccharides in N-mehtylmorpholine-N-oxide(NMMO)under Lyocell conditions[J].Carbohydrate Research,2004,339(11):1899-1906.
    28.McCorsley C.C..Shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent and a process for making the article[P]:US4416698,1983.11.22.
    29.Loubinoux D.,Chaunis S..An experimental approach to spinning new cellulose fibers with N-methylmorpholine-oxide as a solvent[J].Text Res J,1987,57:61-65.
    30.Chanzy H.,Paillet M.,Hagege R..Spinning of cellulose from N-methylmorpholine N-oxide in the presence of additives[J].Polymer,1990,31:400-405.
    31.Lenz J.,Schurz J.,Wrentschur E.Properties and structure of solven-spun and viscose-type fibres in the swollen state[J].Colloid Polym.Sci.,1993,27:460-468.
    32.Lenz J.,Schurz J.,Eichinger D..Properties and structure of solven-spun and viscose-type fibres in the swollen state[J].Lenzinger Berichte,1994,74(9):19-25.
    33.Feilmairl W..Lenzing公司的Lyocell工艺[J].国际纺织导报,1997,(2):36-38.
    34.张胜一,许红恩.二十一世纪的纤维“宠儿”-Lyocell纤维[J].合成技术及应用,2002,14(4):30-32.
    35.杨之礼等编.纤维素与粘胶纤维(上册)[M].纺织工业出版社(北京),1981:17-21.
    36.Sealey J.E.,Persinger W.H.,Luo M.K.,et al.Process for making Lyocell fibers from pulp having low average degree of polymerization values[P]:US 6491788,2002.12.10.
    37.Luo M.K.,Roscelli V.A.,Camarena S.,et al.Lyocell fibers having high hemicellulose content[P]:US 6692827,2004.2.17
    38.Sealey J.E.,Persinger W.H.,Luo M.K.,et al.Alkaline pulp having low average degree of polymerization values and method of producing the same[P]:US6331354,2001.12.18.
    39.Luo M.K.,Roscelli V.A.,Sealey J.E.,et al.Lyocell fibers from kraft pulps[R].Paper to the 5th International Symposium,2002.4.5.
    40.童明伟.高半纤维素浆粕纺制Lyocell纤维及其结构与性能[D].东华大学硕士论文,2006.
    41.上海化纤浆粕总厂.竹浆粕变性生产工艺[P]:CN1385287,2002-12-18.
    42.唐爱民,梁文芷.纤维素预处理技术的发展[J].林产化学与工业,1999,19(4):81-88.
    43.Zeronian S.H..Acetylation of cotton treated with sodium hydroxide[J].J Appl Polym Sci,1970,14(2):365-372.
    44.Buschle E.,Diller G.,Zeronian S.H..Enhancing the reactivity and strength of cotton fibers[J].J Appl Polym Sci,1992,45(6):967-979.
    45.Forcher B.,Marzetti A.,Cattaneo M..Effects of structural features of cotton cellulose on enzymatic hydrolysis[J].J Appl Polym Sci,1981,26(6):1989-1999.
    46.Shukla S.R.,Gopala Rao G.V.,Athalye A.R..Ultraviolet-radiation-induced graft copolymerization of styrene and acrylonitrile onto cotton cellulose[J].J Appl Polym Sci,1992,45(8):1341-1354.
    47.王黎明.纤维素纤维降温溶胀特性的研究[J].人造纤维,1992,(5):1-6.
    48.Pavlov P.,Makaztghieva V.,Lozanov E..[J].Cellul Chem Technol,1992,26(2):151-160.
    49.Iller E.,Stupinska H.,Starostka P..Properties of cellulose derivatives produced from radiation-Modified cellulose pulps[J].Radiation Physics and Chemistry,2007,76:1189-1194.
    50.华坚.纤维素与尿素的酯化反应研究:Ⅱ-纤维素与尿素反应规律[J].人造纤维,1990,(4):1-6.
    51.高洁,汤烈贵编.纤维素科学[M].北京:科学出版社,1996:47-48.
    52.苏茂尧,由利丽.液氨预处理对纤维素可及度和反应性的影响[J].纤维素科学与技术,1997,5(3):7-12.
    53.(苏)麦利尼科夫6H等编.纺织材料染色工艺现状和发展前景[M].何联华译. 北京:纺织工业出版社,1986.
    54.Franklin W.H..[J].J Appl.Polym.Sci.,Appl.Polym.Symposium,1983,37:577-592
    55.华坚.纤维素与尿素的酯化反应研究:Ⅱ-纤维素与尿素反应规律[J].人造纤维,1990,(4):1-6.
    56.Philtipp B..Lignocellulosics-science,technology development and use,eds[M].KENNEDYJ F,PHILIPPS GO,WILLIAMS P A.Ellis Horwood Limited,1992:467-477.
    57.许正宏,孙微,史劲松等.制浆生物技术的研究与工业应用[J].林产化学与工业,1998,18(3):89-94.
    58.Aeronian S.H..[J].J.Appl.Polym.Sci.,Appl.Polym.Symp.,1991,47:445.
    59.苏茂尧,林仕.[J].人造纤维,1987,(2):5.
    60.Isogai A.,Unabe F.,Usuda M..[J].Sen-i Gakkaishi,1992,48:487-492.
    61.Awadel-Karim S.,LeclereB.D.,Grondey H.,et al.Changes in H-bonding of cellulose during solvent purification treatment[J].Holzforschung,1998,52(1):67-70.
    62.Tassinari T.,Macy C.,Spano L.,et al.Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymatic hydrolysis[J].Biotechnol.Bioeng.,1980,22(8):1689-1705.
    63.Koshijima T.,Yuka F.,Muraki E.,et al.[J].J.Appl.Polym.Sci.,Appl.Polym.Symposium,1983,37:671-683.
    64.Hon David N.S.,Srinivasan K.S.V..Mechanochemical process in cotton cellulose fiber[J].J.Appl.Polym.Sci.,1983,28(1):1-10.
    65.Hacking A.J..Electron treatment of cellulose for viscose fiber[J].Chemical Fiber International,1995,45(6):454-459.
    66.Fischer K.,Rennert S.,Wilke M.,et al.Acta Polym,1990,41(5):279-284.
    67.Stavtsow Ing A.K..[J].Chemical Fiber International,1996,46(2):92-94.
    68.高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996:144-146
    69.Abramovitch,Iyanar.Organosolv pulping using a microwave oven[J].Holzforschung,1994,48(4):349-354.
    70.熊健,等.[J].功能材料,1998,(10):555.
    71.熊健.华南理工大学博士论文[D].广州:华南理工大学,1998.
    72.Tang A.M.,Zhang H.W.,Chen G..Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose[J].Ultrasonics Sonochemistry,2005,12:467-472.
    73.Nakai Y.,Yoshimizu H.,Tsujita Y..Enhanced gas permeability of cellulose acetate membranes under microwave irradiation[J].Journal of Membrane Science,2005,256:72-77.
    74.Mason W.H..Apparatus for and process of explosion fibration of lignocellulose material[P]:US1655618,1928.1.10.
    75.Mamers H.,Yuritta J.P.,Menz D.J..Explosion pulping of bagasse and wheat straw[J].Tappi,1981,64(7):93-96.
    76.詹怀宇,Kokta B V.杨木爆破法制浆的研究[J].中国造纸,1988,7(3):29-35.
    77.毕松林,刘桂南.黑云杉爆破法制高得率纸浆的研究[J].中国造纸,1990,9(2):28-32.
    78.Kokta B.V.,Ahmed A..Explosion pulping of eucalyptus:a comparison with CTMP and CMP[J].Wood Science and Technology,1993,(27):271-279.
    79.Kokta B.V..Process for preparing pulp for paper making[P]:US4798651,1989.1.17
    80.Kokta B.V..[P].Can Patent,542 643(1987).
    81.Kamid.e K.,Okajima K.,Matsui T.,et al.Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C- NMR[J].Polymer J,1984,16(12):857-866.
    82.Yamashiki T.,Matsui T.,Saitoh M.,et al.Characterisation of cellulose treated by the steam explosion method. Part 1: Influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure[J]. Brit. Polym. J., 1990, 22(1):73-83.
    83. Yamashiki T., Matsui T., Saitoh M., et al. Characterisation of cellulose treated by the steam explosion method. Part 2: Effect of treatment conditions on changes in morphology, degree of polymerisation, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion [J]. Brit. Polym. J., 1990, 22(2): 121-128.
    84. Yamashiki T., Matsui T., Saitoh M., et al. Characterization of cellulose treated by the steam explosion method. Part 3: Effect of crystal forms (cellulose I, II and III) of original cellulose on changes in morphology, degree of polymerization, solubility and supermolecular structure by steam explosion[J]. Brit. Polym. J., 1990, 22(3):201-212.
    85. Focher B., Marzetti A., Marsano E., et al. Regenerated and graft copolymer fibers from steam-exploded wheat straw: Characterization and properties [J]. Journal of Applied Polymer science, 1998, 67(6):961-974.
    86. Gusakov A.V., Sinitsyn A.P., Klyosov A.A.. Factors affecting the enzymatic hydrolysis of cellulose in batch and continuous reactors: Computer simulation and experiment[J]. Biotechn. Bioeng., 1987, 29(7):906-910.
    87. Lennox-Kerr P. Promoting a Concep t[J]. African textiles, 1994, (9):35-36.
    88. Bamboo Fiber Production System[J]. New Technology Japan, 1998,(8):27.
    89. Abhijit P. Deshpande, M. Bhaskar Rao, C. Lakshmana Rao. Extraction of Bamboo and Their Use as Reinforcement in polymeric Composites[J]. Journal of Applied Polymer science, 2000, 76(1):83-92.
    90. Okubo K., Fujii T., Yamamoto Y.. Development of bamboo-based polymer composites and their mechanical properties[J]. Composites Part A, 2004, 35: 379-383.
    91.ASK株式会社,三信整热工业株式会社.竹纤维的生产方法[P]:CN1083760,1994-3-16.
    92.株式会社安岛.竹纤维和炭化竹纤维的方法[P]:CN1420228,2003-5-28.
    93.Fuji T.,Okubo K..Eco-Composites Using Bamboo[J].SEN'I GAKKAISHI,2003,59(3):12-16.
    94.曹玉海.竹纤维及其制造方法[P]:CN1302718,2001-10-7.
    95.赵子群.竹纤维及其制造方法[P]:CN1375578,2002-10-23.
    96.杨三.物理法提取竹纤维的工艺[P]:CN1406725,2003-4-2.
    97.杨三.竹纤维加工工艺[P]:CN1407171,2003-4-2.
    98.河北吉藁化纤有限责任公司.利用竹材生产粘胶纤维浆粕的工艺[P]:CN1308160,2001-8-15.
    99.河北吉藁化纤有限责任公司.竹材粘胶纤维及其生产工艺[P]:CN1381620,2002-11-27.
    100.上海月季化学纤维有限公司.竹纤维制造方法[P]:CN1465760,2004-1-7.
    1.杨之礼 等编.纤维素与粘胶纤维[M].北京:纺织工业出版社.1981:13-16.
    2.隆言泉 主编.制浆造纸工艺学[M].北京:轻工业出版社.1980:66-67.
    3.粘胶纤维用浆粕甲种纤维素含量的测定[S].FZ/T 50010.4-1998.
    4.孔行权;纤维素铜氨粘度的测定[S].中华人民共和国纺织工业部部颁标准,FJ517-82,1985.
    5.Silva Arene A.,and Laver Murry L.Molecular weight characterization of wood pulp cellulose:Dissolution and size exclusion chromatographic analysis[J].TAPPI J.,1997,8(6):173-180.
    6.Jerosch H.Lavedrine B.Cherton J.-C.Study of the stability of cellulose-holocellulose solutions in N,N-dimethylacetamide lithium chloride by size exclusion chromatography[J].J.Chromatography A,2001,(927):31-38.
    7.张慧慧.碳纤维用Lyocell原丝力学性能改进的研究[D]东华大学博士论文,2004.
    8.赵华山等编.高分子物理学[M],北京:纺织工业出版社,1987:409-414.
    9.杜卫平.竹浆纤维的基本形态结构分析[J].上海纺织科技,2006,34(6):10-11.
    10.薛奇.高分子结构研究中的光谱方法[M].北京高等教育出版社,1995:47-58.
    11.徐春燕,王宏勋,张晓昱等.白腐菌选择性降解竹基质中木质纤维素的研究[J].微生物学杂志,2006,26(2):14-18.
    12.杜甫佑,张晓昱,王宏勋等.白腐菌降解木质纤维素顺序规律的研究[J].纤维素科学与技术,2005,13(1):17-25.
    13.蒲俊文,宋君龙,谢益民.三倍体毛白杨木质素结构特性研究[J].北京林业大学学报,2002,24(5/6):212-214.
    14.童明伟.高半纤维素浆粕纺制Lyocell纤维及其结构与性能[D].东华大学硕士论文,2006.
    15.杨淑蕙 主编.植物纤维化学[M],北京:中国轻工业出版社.2001:165-166.
    16.杨之礼 等编.纤维素与粘胶纤维[M],北京:纺织工业出版社.1981:141.
    17.R(o丨¨)der T.,Morgenstern B.,Schelosky N..Solutions of cellulose in N,Ndimethylacetamide /lithium chloride studied by light scattering methods[J].Polymer,2001,42:6765-6773.
    18.Cuculo J.A.,Hudson S.M.,Wilson A.V..Direct solvents for cellulose[J].International Fiber Journal,1993,8(3):50-57.
    19.Dawsey T.R.,McCormick C.L..The lithium chloride/dimethylacetamide solvent for cellulose:a literature review[J].J.Macromol.Sci.Rev.Macromol.Chem.Phys.,1990,C30(384):405-440.
    20.Ekmanis J.L..Gel permeation chromatographic analysis of cellulose[C].Proceedings of the Conference on GPC Analysis of Cellulose.Paper 251.Pittsburgh,Atlanta City,NJ,1986
    21.Bikova T.,Treimanis A..Problems of the MWD analysis of cellulose by SEC using DMAc/LiCl:a review[J].Carbohydr.Polym.,2002,48:23-28.
    22.Evans J.M.Gel permeation chromatography:a guide to data interpretation[J].Polymer Engineering and Science,1973,13(6):401-408.
    23.彭顺金.高强Lyocell纤维及其用于碳纤维原丝的研究[M].东华大学博士论文,2003.
    24.刘仁庆 编著.纤维素化学基础[M],北京:科学出版社.1985:86-90.
    1.杨之礼,蒋听培,王庆瑞等.纤维素与粘胶纤维(上册)[M].北京:纺织工业出版社,1981,6.
    2.顾广新,沈弋弋,胡学超等.纤维素/NMMO·H_2O纺丝液组成的表征[J].合成纤维.2001,30(1):32-34.
    3.刘瑞刚,沈弋弋,胡学超.纤维素/NMMO·H2O溶液的流变性能[J].中国纺织大学学报.2000,26(5):1-7.
    4.Jean-Francois Blachot,Nathalie Brunet,Patrick Navard,Jean-Yves Cavaille.Rheological behavior of cellulose/monohydrate of n-methylmorpholine n-oxide solutions Part 1:Liquidstate[J].Rheol Acta,1998,37:107-114.
    5.Gu Guangxin,Hu Xuechao,Shao Huili,Shen Yiyi.Study on Molecular Weight Distribution of Cellulose by Using Rheological Methods[J].SEN'I GAKKAISHI,2001,57(2):34-38.
    6.Collier B.J.,Dever M.,Petrovan S.,Collier J.R.,Li Z.,and Wei X..Rheology of Lyocell Solutions from Different Cellulose Sources[J].Journal of Polymers and the Environment,2000,8(3):151-154.
    7.王进.聚合物加工复杂流动的实验和数值模拟[D].中国科学院化学研究所硕士学位论文.1998年7月.
    8.顾广新,胡赛珠,邵惠丽等.纤维素溶液的动态流变性质[J].东华大学学报(自然科学版).2001,27(4):12-16.
    9.董纪震,罗鸿烈,王庆瑞等.合成纤维生产工艺学(第二版)(上)[M].北京:纺织工业出版社,1993,93-160.
    10.H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯著,吴大诚,古大治等译校.流变学导引[M].北京:中国石化出版社,1992,1-194.
    11.徐义林《粘胶纤维手册》[M]纺织工业出版社,1981年3月第1版,P111-116.
    12.上海化纤浆粕总厂.竹浆粕变性生产工艺[P]:ZL02112175.3,2004-8-11.
    1.Coulsey H.A.,Smith S.B..The formation and structure of a new cellulosic fiber[J].Lenzinger Berichte,1996,75:51-61.
    2.Fink H.P.,Weigel P.,Purz H.J.,Ganster J..Structure formation of regenerated cellulose materials from NMMO-solutions[J].Prog.Polym.Sci.,2001,26:1473-1524.
    3.刘瑞刚.纤维素/NMMO/H_2O溶液的制备、溶液性能的研究和Lyocell纤维的试制[D].东华大学硕士学位论文,1998,23-25.
    4.Gindl W.,Reifferscheid M.,Martinschitz K.J.,et al.Reorientation of crystalline and noncrystalline regions in regenerated cellulose fibers and films tested in uniaxial tension[J].J.Polym.Sci:Part B:Ploym.Phys.,2008,46:297-304.
    5.Northolt M.G.,Boerstoel H.,Maatman H.,et al.The structure and properties of cellulose fibers spun from an anisotropic phosphoric acid solution[J].Polymer,2001,42:8249-8264.
    6.Mortimer S.A.,Peguy A.A.,Ball R.C..The formation of structure in the spinning and coagulation of lyocell fibers[J].Cell.Chem.technol.,1996,30:117-132.
    7.Mortimer S.A.,Peguy A.A.,Ball R.C..Influence of the physical process parameters on the structure formation of lyocell fibers[J].Cell.Chem.technol.,1996,30:251-266.
    8.Mortimer S.A.,Peguy A.A..Methods for reducing the tendency of lyocell fibers to fibrillate[J].J Appl.Polym.Sci..,1996,60:305-316.
    9.Mortimer S.A.,Peguy A.A..The influence of air-gap conditions on the structure formation of lyocell fibers[J].J Appl.Polym.Sci..,1996,60:1747-1756.
    10.Firgo H.,Eibl M.,Kalt W.,Meister G..Kritische Fragen zur Zukunft der NMMO-Technologie[J].Lenzinger Berichte,1994,74(9):81-89.
    11.Feilmair W.Lenzinger lyocell-technologie[J].Lenzinger Berichte,1997,76:92-94
    12.Michels C.,Maron R.,Tager E..Besonderheiten des im TITK entwickelten Aminoxidprozesses[J].Lenzinger Berichte,1994,74(9):57-60.
    13.Maron R.,Michels C.,Tager E..Investigations for preparation of cellulose solutions in NMMO and the following forming[J].Lenzinger Berichte,1994,74(9):27-29.
    14.Weigel E,Fink H.P.,Walenta E..Structure formation of cellulose man-made fibres from amine oxide solution[J].Cell.Chem.technol.,1997,31:321-333.
    15.孟志芬.东华大学硕士研究生毕业论文,1998.
    16.周翠荣,杨萍.我国粘胶市场现状与发展前景[J].江苏纺织,2004,第8期,P16-18.
    17.Fink H.P.,Weigel P.,Purz H.J.,Bohn A..Structural aspects of new cellulose fibres and films from NMMO-solution[J].Recent Res.Dev Polym Sci,1998,2:387-403.
    18.Weigel P.,Fink H.P.,Purz H.J.,Ganster J..Influence of structure formation on the fibrillation of lyocell fibres[C].The 5~(th) Asian Textile Conference,Kyoto,Japan,1999,p599-602.
    19.Eichinger D.,Jurkovic R.,Astegger S.,Firgo H.[P].US Patent 5216144.
    20.Wei M.Y.,Yang G.S.,Tian Y.X.,et al.The Study on Formation Process of Crystalline Structure of Never Dried[C].The 2nd international cellulose conference forum,Tokyo,Japan,2007,p40.
    1.上海化纤浆粕总厂.竹浆粕变性生产工艺[P]:中国,02112575.3,2004-08-11
    2.上海月季化学纤维有限公司.竹纤维制造方法[P]:中国,CN1465760
    3.张慧茹,童明伟,邵惠丽等.以高半纤维素浆粕为原料的Lyocell产品得率及可纺性[J].合成纤维,2005,(4):8-11.
    4.童明伟,张慧茹,邵惠丽等.高半纤维素浆粕纺制Lyocell纤维的结构与性能[J].合成纤维,2005,(8):1-4.
    5.杨淑蕙主编.植物纤维化学[M].北京:中国轻工业出版社,2001:194-201.
    6.唐爱民,梁文芷.纤维素预处理技术的发展[J].林产化学与工业,1999,19(4):84.
    7.Segal L,Greely J J,Mattin A E,et al.An empeirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J].Text Res J,1965,(8):786.
    8.J.C.小阿瑟编.陈德峻等译.纤维素化学与工艺学[M].北京:轻工业出版社,1983.
    9.Phillips G O,Arthur J C,J r.Photochemistry and radiation chemistry of cellulose.In:Nevell T P and Zeronian S H ed.Cellulose chemistry and its applications.Chichester:Eills Horwood Limited,1985.
    10.Dole M.The Radiation Chemistry of Macromolecules[M].NY:Academic Press,1972.
    11.翟茂林,伊敏,哈鸿飞编著.高分子材料辐射加工技术及进展[M].北京:化学工业出版社,2004:26-49.
    12.赵文伟,于黎,钟晓光等.壳聚糖辐射效益的研究[J].功能高分子学报,1994,7(1):42-46.
    13.Flory P J.Principles of Polymer Chemistry[M].Cornell University Press.Ithaca,NY,1953:313.
    14.杨之礼,王庆瑞等.纤维素与粘胶纤维(上册)[M].北京:纺织工业出版社,1981:91-95.
    15.刘瑞刚,胡学超,章潭莉.棉纤维素在NMMO中溶解前后结晶结构的变化[J].中国纺织大学学报,1998,24(4):8.
    16.Nelson M L,O'conner R T.Relation of certain infard bands to cellulose crystal lattice type[J].J Appl Polym Sci,1964,8(3):1131.
    17.常德华,宫宁瑞等.辐射对棉纤维素结晶度的影响[J].北京理工大学学报,1997,17(5):581.
    18.Albrecht W.,Reintjes M.,and Wulfhorst B.Lyocell fibers(An alternative regenerated cellulose fibers).Man-made Fiber Year Book,Sept.1997,41-46.
    19.Phillips G O and Young N J.Chem Soc,A,1966,383.
    20.http://www.efunda.com/math/gamma/findgamma.cfm
    21.Sultanov K and Turaev AS.Mechanism of the radiolytic transformation of cellulose[J].Chemistry of Natural Compounds,1996,32(5):728-733.
    22.杨之礼 等编.纤维素与粘胶纤维[M],北京:纺织工业出版社.1981:141
    1.王越平,高绪珊,邢声远等.几种天然纤维素纤维的结构研究[J].棉纺织技术,2006,34(2):72-76.
    2.王越平,高绪珊.天然竹纤维与竹浆粘胶纤维的结构性能比较[J].中国麻业,2006,28(2):97-100.
    3.储咏梅,王国和.竹纤维及丝、棉织物性能测试比较与分析[J].丝绸,2006,(2):42-45.
    4.郭俊敏,邵惠丽,胡学超等.用湿摩擦值法评价Lyocell纤维原纤化程度[J].上海纺织科技,2002,30(1):51-52.
    5.Marini I.,Brauneis F..Lenzing-Lyocell-die wichtigsten Unterschiede zu den anderen cellulosischen Fasern[J].Textilveredlung,1996,31:182-187.
    6.Mieck K.P.,Nicolai M..Contribution to the judgement of fibrillability of cellulose fibers[J].Chem.Fiber.Intern.,1995,45:44.
    7.万玉芹,吴丽莉,俞建勇.竹纤维吸湿性能研究[J].纺织学报,2004,23(3):14-15.
    8.Testing for antibacterial activity and efficacy on textile products[S].JIS L 1902
    9.活性染料吸色率和固色率的测定方法[S].中华人民共和国国家标准,GB 2391-80.
    10.段菊兰,邵惠丽,章潭莉.凝固浴温度对Lyocell纤维结构及性能的影响[J]. 纺织学报,2001,22(1):13-14.
    11.张华,施楣梧,朱鸣英.纤维素纤维湿态强度的概念及影响因素研究[J].纺织学报,2002,24(4):29-31.
    12.孙宝芳.再生竹纤维的结构与性能[D].青岛大学硕士论文,2004.
    13.Lenz J.,Schurz J.,Wrentschur E..J Appl Polym Sci[J].1988,35(8):1987-2000.
    14.Mieck K.E,Nicolai M..Chem Fiber Intern[J].1995,45(1):44-46.
    15.Inbar O.,Rotstein A.,Dlin R.,Dotan R.,Sulman F.G..The effects of negative air ions on various physiological functions during work in a hot environment[J].Int.J.Biometeor.,1982,26(2):153-163.
    16.Morton L.L,Kershner J.R.Differential negative air ion effects on learning disabled and normal-achieving children[J].Int.J.Biometeor.1990,34:35-41.
    17.高恩显.现代疗养学[M].北京:人民军医出版社,1988:113.
    18.蒋家望,普英,田桦.昆明疗养地疗养因子分析及对机体的影响[J].中国疗养医学,1999,8(2):1-3.
    19.姚穆,周锦芳,黄淑珍等编.纺织材料学[M].北京:中国纺织出版社,1997:329-333.
    20.刘仁庆编著,纤维素化学基础[M].北京:科学出版社,1985:27-28.
    21.姜怀,邬福麟,梁洁等编.纺织材料学[M].北京:中国纺织出版社,2003:159-160.
    22.李敏谊,陈琳,伍焜贤.没食子酸(异)丙酯合成方法改进及性能研究[J].化学世界,2001,(6):313.
    23.Boyd I..Beveridge EG[J].Microbios,1981,30(120):73-78.
    24.李德江,付和清.固体超强酸SO_4~(2-)/TiO_2催化合成没食子酸丙酯.精细石油化工,2004(1):28
    25.王府梅 编著.服装面料的性能设计[M].上海:中国纺织大学出版社,2000:8.
    26.Peiree F.T..The handle of cloth ag a measurable quantity[J].Journal of the Textile Institute.,1930,21:T377.
    27.川端季雄.风格的标准化及分析[M],第2版.日本大阪,日本纤维机械学会,1980:1-15.
    28.Ibbett R.N.,Phillips D.A.S.,Kaenthong S..Evaluation of a dye isotherm method for characterization of the wet-state structure and properties of Lyocell fiber,Dyes and Pigments,2006,71(3):168.
    29.Taylor J.M.,Lyocell using innovative dyeing / finishing processes,Chemical Fibers International,2004,54(6):372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700