脑微透析/深部电极技术研究及其在脑缺血康复中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺血性脑中风是目前人类死亡和残疾的主要原因之一,该疾病的发生主要与短暂性或永久性缺血缺氧引起的胞外谷氨酸过度释放,进而产生兴奋性毒性有关。目前研究表明包括脑缺血,癫痫和帕金森病在内的多种神经系统疾病均与中枢神经系统内神经递质失衡密切相关。此外脑内神经递质的紊乱还造成了电活动生理基础的破坏,神经电信号在病理条件下表现出异常的活动特征和模式。因此本研究旨在结合脑微透析技术和深部脑电极技术,在不同生理和病理条件下,研究局部脑组织中神经电信号和生化信号的动态变化过程及其相互联系。
     本研究首先通过一系列的体内、体外实验,探讨了结构、温度、材料和透析时间等多个因素对于微透析探针性能的影响,自行设计和制作了脑微透析探针并进行了优化,深入研究和探讨了体内、体外多种微透析常用的回收率校正和标定方法,建立了脑微透析探针设计、制作和标定的系统平台。该脑微透析探针同国际现有产品的性能进行了比较,在稳定性、可靠性和准确性方面均满足在体实验要求。
     本研究应用自制的脑微透析探针,结合高效液相色谱技术,建立了在体动物的脑内氨基酸类神经递质、单胺类神经递质及其代谢产物的检测方法,实现了两类递质的同时检测,并利用自制“三通”收集器简化了单胺类递质的收集和保存方法。同时,建立了在体动物深部脑刺激器和深部脑记录的实验平台,结合基于自回归模型参数的功率谱估计,基于符号动力学参数和近似熵的复杂度分析方法,可用于局部脑损伤区神经电信号的检测和参数分析。
     应用以上神经生化和电信号检测技术,本研究通过建立急性局灶性脑缺血/再灌注大鼠模型,获取了缺血/再灌注病理条件下大脑缺血中心区(纹状体)和缺血敏感区(海马)内神经递质和电信号的动态变化过程,实验结果显示,包括谷氨酸在内多种神经递质在缺血过程中均显著上升,局部场电位信号幅度减弱,相对功率谱上Delta频段成分显著升高,复杂度下降。
     基于上述模型和方法,研究了药物干预下脑缺血大鼠脑内神经递质水平的动态变化,结果表明葛根素和天麻素可有效地抑制缺血损伤引起的兴奋性毒性,用药组谷氨酸的峰值比对照组下降了24~48%,而Glu/GABA的变化率仅为对照组44~49%。在分子水平上证明两种中药成分对于脑缺血急性损伤有一定的保护作用,显示了上述技术在中药药物研究和开发中的应用潜力。
     本研究还进一步研究了中风模型动物在接受功能性电刺激和运动康复时脑内氨基酸类神经递质的变化,结果表明电刺激和运动能上调脑内谷氨酸水平,并显著干预了脑内的牛磺酸和γ-氨基丁酸,同类结果国内外未见报道。从神经生化的角度提示运动康复和大脑可塑性有着一定的相关性,以及物理康复在中风后康复治疗环节中的积极作用。
     在神经生化和神经电生理检测技术研究的基础上,本研究整合脑微透析技术与深部脑记录/刺激技术,构建了脑微透析/深部电极复合装置,实现了脑微透析探针和深部电极在体、原位的双向(记录/刺激)功能,进行了相关的实验研究:(1)微透析结合深部脑记录技术,在动物缺血损伤病理条件下,实现了对神经生化参数和电生理参数的同步和原位记录;(2)反向微透析结合深部脑记录技术,在动物海马区记录了外源性谷氨酸引起深部场电位信号的变化,探讨了该方法在兴奋性毒性和药物研究中的作用;(3)微透析结合深部脑刺激技术,记录了动物颅内自刺激过程中,氨基酸类和单胺类神经递质水平的变化过程,探讨了相关神经递质的变化在程序性记忆中作用,为深部脑刺激机制和奖赏性学习机制研究提供了客观的数据和新的研究手段。
     以上的研究表明,脑微透析及深部电极技术及其复合装置同步、定量、神经生化结合神经电生理多参数的检测方法,在研究脑缺血等神经系统性疾病的发病机制、相关药物的作用机理,以及药物的疗效评价中具有重要的意义和潜在的应用价值。
Ischemic stroke is a leading cause of death and disability worldwide, and it is related to extreme release of glutamate resulting from a transient or permanent reduction in cerebral blood flow,which leading to excitotoxicity. The current researches show that a lot of neuronal diseases including cerebral ischemia,epilepsy and Parkinson's Disease are related to the imbalance of neurotransmitters.The neuroelectrical signals show different patterns or characters of activity duing to the destruction to physilogical basis results from neurotransmission disorder.So the main task of this research is to investigate the changes and relationship between neuroelectrical and neurochemical signals under different physilogical and pathological conditions by combinating the brain microdialysis and deep brain electrode techniques.
     We first discuss several factors which influence the performance of probe such as construct,temperature,materials and dialysis time by using a serials of in vivo/vitro experiments.With the opmized probe,the usual methods for calibration and validation are investigated and discussed.We also establish a system platform for probe design,manufacture and validation.The self-made probe meets the requirement for in vivo experiment after comparition with international commercial products.
     Combining the high performance liquid chromatography technique,we set up a highly sensitive method for simulatneous detect the amino acids neurotransmitters and monoamine neurotransmitters and their metabolites. The method for sampling and storing monoanime was simplified with the self-made sampler.We also establish an experimental platform for deep brain stimulation(DBS)and deep brain record(DBR).Combinated with spectral evaluation method based on autoregressive model parameters, complexity analysis methods based on symbofic dynamics and approximate entropy,the signals from the injuried brain regions can recorded and analyzied.
     Using above neurochemical and neuroelectrical techniques,we acquire the changes of neurtransmitter and electrical signals from striatum and hippocampus in the model rat of middle cerebral artery occlusion(MCAo). The results show that during the ischemic periods the concentration of a few neurotransmitters and percentage of Delta components significantly increased the amplitude of local field potential and complexity of signals decreases.
     Based on above models and methods,we study the dynamic profile of neurotransmitter intervened by drugs on MCAo rats.The results show that puerarin and gastradin effectively inhibit the excitotoxity induced by cerebral ischemia.The peak value of glutamate in drugs group lower 24~48%than that of control group,the ratoi of glutamate and GABA is abouthe 44~4%. It demostrates the protective effects of both traditional chinese medicine on acute brain injuries in molecular way and the huge potentials of these techniques in research and development in medicine.
     The changes of amino acids neurotransmitters of stroke model animal were studied in this work when they recept the physical tremedies,such as functional electrical stimulation(FES)and exercises.Both FES and exercises upregulate the level of Glu in brain and intervene taurine and GABA.The similar results have never been reported.It shows that the physical rehabilitation is related to the plasticity of brain and that it plays a key role in chronic post-stroke rehabilitation.
     On the base of above works,we combine the brain microdialysis and DBR together to create a microdialysis/electrode combined apparatus to realize the bi-direction function of microdialysis and deep brain dectrode in the same site.We use it in there animal experiments for primary exploration for its application(1)microdialysis and deep brain recordings-to simultaneously detect the neurochemical and neurodectrical signal from the same region during cerebral ischemia period;(2)retro-microdialysis and deep brain recordings-to measure the basic levd of glutamate and local intervention of extrinsic glutamate in hippocampus;(3)microdialysis and deep brain stimulation-to investigate the changes of amino acids and monoamine neurotransmitters invoked by stimulation in VTA and provide a new tools for researches in mechanism underlying rewards and DBS.
     All above results show that the brain microdialysis,deep brain electrodes and combinated apparutus with synchronous,quantitative and neurochemical-neurodectrical multi-parameters analysis methods can play a key role in investiagting the pathological mechanism underlying neural system diseases,evaluation the effects of drugs.
引文
1.Buzsaki G,Rhythms of the Brain.2006,Oxford University Press US.p.448
    2.Legatt AD,Arezzo J,Vaughan HG,Jr.,Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity:effects of volume-conducted potentials.J Neurosci Methods,1980.2(2):p.203-17.
    3.Murik SE,Shapkin AG,Simultaneous recording of eeg and direct current(DC)potential makes it possible to assess functional and metabolic state of nervous tissue.Int J Neurosci,2004.114(8):p.977-97.
    4.Maesawa S,Kaneoke Y,Kajita Y,et al.,Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats:neuroprotection of dopaminergic neurons.J Neurosurg,2004.100(4):p.679-87.
    5.Kovacs A,Mihaly A,Komaromi A,et al.,Seizure,neurotransmitter release,and gene expression are closely related in the striatum of 4-aminopyridine-treated rats.Epilepsy Res,2003.55(1-2):p.117-29.
    6.Dringenberg HC,Vanderwolf CH,Noseworthy PA,Superior colliculus stimulation enhances neocortical serotonin release and electrocorticographic activation in the urethane-anesthetized rat.Brain Res,2003.964(1):p.31-41.
    7.Bhattacharya BK,Feldberg W,Perfusion of cerebral ventricles:assay of pharmacologically active substances in the effluent from the cisterna and the aqueduct.Br J Pharmacol Chemother,1958.13(2):p.163-74.
    8.Bernd A,Ulrich WD,Teubel H,et al.,Refraction changes during elevation of intraocular pressure by suction cup,their reflection in the pattern visual evoked cortical potential and their compensation.Doc Ophthalmol,1993.83(2):p.151-62.
    9.Gaddum J,Push-pull cannulae.J Physiol.,1961:p.1.
    10.Conti JC,Strope E,Adams RN,et al.,Voltammetry in brain tissue:chronic recording of stimulated dopamine and 5-hydroxytryptamine release.Life Sci,1978.23(27-28):p.2705-15.
    11.Bourne JA,Intracerebral microdialysis:30 years as a tool for the neuroscientist.Clin Exp Pharmacol Physiol,2003.30(1-2):p.16-24.
    12.Ungerstedt U,Herrera-Marschitz M,Zetterstrom T,Dopamine neurotransmission and brain function.Prog Brain Res,1982.55:p.41-9.
    13.Lonnroth P,Jansson PA,Fredholm BB,et al.,Microdialysis of intercellular adenosine concentration in subcutaneous tissue in humans.Am J Physiol,1989.256(2 Pt 1):p.E250-5.
    14.Chaurasia CS,In vivo microdialysis sampling:theory and applications.Biomed Chromatogr,1999.13(5):p.317-32.
    15.Melani A,Pantoni L,Corsi C,et al.,Striatal outflow of adenosine,excitatory amino acids,gamma-aminobutyric acid,and taurine in awake freely moving rats after middle cerebral artery occlusion:correlations with neurological deficit and histopathological damage. Stroke, 1999. 30(11): p. 2448-54; discussion 2455.
    
    16. Bogaert L, Scheller D, Moonen J, et al., Neurochemical changes and laser Doppler flowmetry in the endothelin-1 rat model for focal cerebral ischemia. Brain Res, 2000. 887(2): p. 266-75.
    
    17. Yang CS, Tsai PJ, Chen WY, et al., Ionotropic glutamate receptors are involved in malondialdehyde production in anesthetized rat brain cortex: a microdialysis study. Redox Rep, 2003.8(1): p. 35-9.
    
    18. Zhang M, Li WB, Geng JX, et al., The upregulation of glial glutamate transporter-1 participates in the induction of brain ischemic tolerance in rats. J Cereb Blood Flow Metab, 2007.27(7): p. 1352-68.
    
    19. O'Neill MJ, Bogaert L, Hicks CA, et al., LY377770, a novel iGlu5 kainate receptor antagonist with neuroprotective effects in global and focal cerebral ischaemia. Neuropharmacology, 2000.39(9): p. 1575-88.
    
    20. Callaway JK, Knight MJ, Watkins DJ, et al., Delayed treatment with AM-36, a novel neuroprotective agent, reduces neuronal damage after endothelin-1-induced middle cerebral artery occlusion in conscious rats. Stroke, 1999.30(12): p. 2704-12; discussion 2712.
    
    21. Lu XC, Williams AJ, Tortella FC, Quantitative electroencephalography spectral analysis and topographic mapping in a rat model of middle cerebral artery occlusion. Neuropathol Appl Neurobiol, 2001.27(6): p. 481-95.
    
    22. Williams AJ, Lu XC, Hartings JA, et al., Neuroprotection assessment by topographic electroencephalographic analysis: effects of a sodium channel blocker to reduce polymorphic delta activity following ischaemic brain injury in rats. Fundam Clin Pharmacol, 2003.17(5): p. 581-93.
    
    23. Mariucci G, Stasi MA, Taurelli R, et al., EEG power spectra changes and forebrain ischemia in rats. Can J Neurol Sci, 2003.30(1): p. 54-60.
    
    24. Hartings JA, Tortella FC, Rolli ML, AC electrocorticographic correlates of peri-infarct depolarizations during transient focal ischemia and reperfusion. J Cereb Blood Flow Metab, 2006.26(5): p. 696-707.
    
    25. Vezzani A, Ungerstedt U, French ED, et al., In vivo brain dialysis of amino acids and simultaneous EEG measurements following intrahippocampal quinolinic acid injection: evidence for a dissociation between neurochemical changes and seizures. J Neurochem, 1985.45(2): p. 335-44.
    
    26. During MJ, Fried I, Leone P, et al., Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem, 1994. 62(6): p. 2356-61.
    
    27. During MJ, Ryder KM, Spencer DD, Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature, 1995.376(6536): p. 174-7.
    
    28. During MJ, Spencer DD, Adenosine: a potential mediator of seizure arrest and postictal refractoriness.Ann Neurol,1992.32(5):p.618-24.
    29.During MJ,Spencer DD,Extracellular hippocampaI glutamate and spontaneous seizure in the conscious human brain.Lancet,1993.341(8861):p.1607-10.
    30.Ludvig N,Mishra PK,Yan QS,et al.,The combined EEG-intracerebral microdialysis technique:a new tool for neuropharmacological studies on freely behaving animals.J Neurosci Methods,1992.43(2-3):p.129-37.
    31.Ludvig N,Mishra PK,Yan QS,et al.,The paradoxical effect of NMDA receptor stimulation on electrical activity of the sensorimotor cortex in freely behaving rats:analysis by combined EEG-intracerebral microdialysis.Synapse,1992.12(2):p.87-98.
    32.Ludvig N,Potter PE,Fox SE,Simultaneous single-cell recording and microdialysis within the same brain site in freely behaving rats:a novel neurobiological method J Neurosci Methods,1994.55(1):p.31-40.
    33.Ludvig N,George MA,Tang HM,et al.,Evidence for the ability of hippocampal neurons to develop acute tolerance to ethanol in behaving rats.Brain Res,2001.900(2):p.252-60.
    34.Ludvig N,Nguyen MC,Botero JM,et al.,Delivering drugs,via microdialysis,into the environment of extracellularly recorded hippocampal neurons in behaving primates.Brain Res Brain Res Protoc,2000.5(1):p.75-84.
    35.Obrenovitch TP,Urenjak J,Zilkha E,Intracerebral microdialysis combined with recording of extracellular field potential:a novel method for investigation of depolarizing drugs in vivo.Br J Pharmacol,1994.113(4):p.1295-302.
    36.Obrenovitch TP,Origins of glutamate release in ischaemia.Acta Neurochir Suppl,1996.66:p.50-5.
    37.Obrenovitch TP,Urenjak J,Zilkha E,Effects of increased extracellular glutamate levels on the local field potential in the brain of anaesthetized rats.Br J Pharmacol,1997.122(2):p.372-8.
    38.Obrenovitch TP,Urenjak J,Zilkha E,et al.,Excitotoxicity in neurological disorders--the glutamate paradox.Int J Dev Neurosci,2000.18(2-3):p.281-7.
    39.Bourne JA,Fosbraey P,Novel method of monitoring electroencephalography at the site of microdialysis during chemically evoked seizures in a freely moving animal.J Neurosci Methods,2000.99(1-2):p.85-90.
    40.Penalva RG,Lancel M,Flachskamm C,et al.,Effect of sleep and sleep deprivation on serotonergic neurotransmission in the hippocampus:a combined in vivo microdialysis/EEG study in rats.Eur J Neurosci,2003.17(9):p.1896-906.
    41.Miocinovic S,Parent M,Butson CR,et al.,Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol, 2006. 96(3): p. 1569-80.
    42. Mayberg HS, Lozano AM, Voon V, et al., Deep brain stimulation for treatment-resistant depression. Neuron, 2005.45(5): p. 651-60.
    43. Lonnroth P, Jansson PA, Smith U, A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol, 1987. 253(2Pt 1):p. E228-31.
    44. Bungay PM, Morrison PF, Dedrick RL, Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci, 1990.46(2): p. 105-19.
    45. Jolly D, Vezina P, In vivo microdialysis in the rat: low cost and low labor construction of a small diameter, removable, concentric-style microdialysis probe system. J Neurosci Methods, 1996.68(2): p. 259-67.
    46. Torto N, Mikeladze E, Gorton L, Maximising microdialysis sampling by optimising the internal probe geometry. Analytical communications, 1999. 36(55): p. 4.
    47. Wisniewski N, Torto N, Optimisation of microdialysis sampling recovery by varying inner cannula geometry. Analyst, 2002.127(8): p. 1129-34.
    48. Hsiao JK, Ball BA, Morrison PF, et al., Effects of different semipermeable membranes on in vitro and in vivo performance of microdialysis probes. J Neurochem, 1990. 54(4): p. 1449-52.
    49. Lindefors N, Amberg G, Ungerstedt U, Intracerebral microdialysis: I. Experimental studies of diffusion kinetics. J Pharmacol Methods, 1989. 22(3): p. 141-56.
    50. Horn TF, Engelmann M, In vivo microdialysis for nonapeptides in rat brain-a practical guide. Methods, 2001.23(1): p. 41-53.
    51. Westerink BH, Hofsteede HM, Damsma G, et al., The significance of extracellular calcium for the release of dopamine, acetylcholine and amino acids in conscious rats, evaluated by brain microdialysis. Naunyn Schmiedebergs Arch Pharmacol, 1988.337(4): p. 373-8.
    52. Osborne PG, O'Connor WT, Ungerstedt U, Effect of varying the ionic concentration of a microdialysis perfusate on basal striatal dopamine levels in awake rats. J Neurochem, 1991. 56(2): p. 452-6.
    53. Ronne-Engstrom E, Carlson H, Liu Y, et al., Influence of perfusate glucose concentration on dialysate lactate, pyruvate, aspartate, and glutamate levels under basal and hypoxic conditions: a microdialysis study in rat brain. J Neurochem, 1995. 65(1): p. 257-62.
    54. Chen NH, Lai YJ, Pan WH, Effects of different perfusion medium on the extracellular basal concentration of dopamine in striatum and medial prefrontal cortex: a zero-net flux microdialysis study. Neurosci Lett, 1997. 225(3): p. 197-200.
    55.张英丰,周莉玲,汪小根,et al.,青藤碱微透析体外回收率的油定及影响因素的研究.中药材,2005.28(12):p.4.
    56.Huang Y,Zhang Z,Zhartg D,et al.,A flow injection chemiluminescence system for the determination of isoniazid.Fresenius J Anal Chem,2000.368(4):p.429-31.
    57.Sasongko L,Williams KM,Ramzan I,et al.,Assessment of in vitro and in vivo recovery of gallamine using microdialysis.J Pharmacol Toxicol Methods,2000.44(3):p.519-25.
    58.Yang H,Wang Q,Elmquist WF,Fluconazole distribution to the brain:a crossover study in freely-moving rats using in vivo microdialysis.Pharm Res,1996.13(10):p.1570-5.
    59.Martnez MMS,Gutierrez HB,Colino GC,In vitro study of experimental factors affecting the microdialysis results Analytica Chimica Acta,2002.459(1):p.143-50.
    60.Yang H,Wang Q,Elmquist WF,The design and validation of a novel intravenous microdialysis probe:application to fluconazole pharmacokinetics in the freely-moving rat model.Pharm Res,1997.14(10):p.1455-60.
    61.Elmquist WF,Sawchuk RJ,Application of microdialysis in pharmacokinetic studies.Pharm Res,1997.14(3):p.267-88.
    62.Torto N,Laurell T,Gorton L,et al.,Recent trends in the application of microdialysis in bioprocesses.Analytica Chimica Acta,1998.374(2-3):p.111-135.
    63.Zhao Y,Liang X,Lunte CE,Comparison of recovery and delivery in vitro for calibration of microdialysis probes.Analytica Chimica Acta,1995.316(3):p.403-410.
    64.Davies MI,Cooper JD,Desmond SS,et al.,Analytical considerations for microdialysis sampling.Adv Drug Deliv Rev,2000.45(2-3):p.169-88.
    65.高燕红,龙朝阳,鲁琳,应用柱前衍生法和柱后衍生法测定氨基酸方法的比较.中国医学检验杂志,2004.5(2):p.3.
    66.Poinsot V,Lacroix M,Maury D,et al.,Recent advances in amino acid analysis by capillary electrophoresis.Electrophoresis,2006.27(1):p.176-94.
    67.Semba J,Kito S,Toru M,Characterisation of extracellular amino acids in striatum of freely moving rats by in vivo microdialysis.J Neural Transm Gen Sect,1995.100(1):p.39-52.
    68.Lindroth P,Mopper K,High Performance Liquid Chromatographic Determination of Subpicomole Amounts of Amino Acids by Precolumn Fluorescence Derivatization with o-Phthaldialdehyde.Analytical Chemistry,1979.51(11):p.8.
    69.Reynolds NC,Jr.,Lin W,Cameron CM,et al.,Extracellular perfusion of rat brain nuclei using microdialysis:a method for studying differential neurotransmitter release in response to neurotoxins.Brain Res Brain Res Protoc,1999.4(2):p.124-31.
    70.Lu YJ,Zhou J,Zhang SM,et al.,Inhibitory effects of jujuboside A on EEG and hippocampal glutamate in hyperactive rat.J Zhejiang Univ Sci B,2005.6(4):p.265-71.
    71.Sarre S,Thorre K,Smolders I,et al.,Microbore liquid chromatography analysis of monoamine transmitters.Methods Mol Biol,1997.72:p.185-96.
    72.Sarre S,Yuan H,Jonkers N,et al.,In vivo characterization of somatodendritic dopamine release in the substantia nigra of 6-hydroxydopamine-lesioned rats.J Neurochem,2004.90(1):p.29-39.
    73.Garner RP,Terracio L,Borg TK,et al.,Intracranial self-stimulation motivates weight-lifting exercise in rats.J Appl Physiol,1991.71(4):p.1627-31.
    74.Stefurak T,Mikulis D,Mayberg H,et al.,Deep brain stimulation for Parkinson's disease dissociates mood and motor circuits:a functional MRI case study.Mov Disord,2003.18(12):p.1508-16.
    75.Xu JH,Wu XB,Using complexity measure to characterize information transmission of human brain cortex.Sci China B,1994.37(12):p.1455-62.
    76.D'Alessandro G,Politi A,Hierarchical approach to complexity with applications to dynamical systems.Phys Rev Lett,1990.64(14):p.1609-1612.
    77.Xu JH,Liu Z,R.L,The measure of sequence complexity for EEG studies.Chaos,Solitons & Fractals,1994.4(1):p.9.
    78.Pincus SM,Approximate entropy as a measure of system complexity.Proc Natl Acad Sci U S A,1991.88(6):p.2297-301.
    79.Pincus S,Approximate entropy(ApEn)as a complexity measure.Chaos,1995.5(1):p.110-117.
    80.Gath I,Feuerstein C,Pham DT,et al.,On the tracking of rapid dynamic changes in seizure EEG IEEE Trans Biomed Eng,1992.39(9):p.952-8.
    81.Bederson JB,Pitts LH,Tsuji M,et al.,Rat middle cerebral artery occlusion:evaluation of the model and development of a neurologic examination.Stroke,1986.17(3):p.472-6.
    82.Belayev L,Alonso OF,Busto R,et al.,Middle cerebral artery occlusion in the rat by intraluminal suture.Neurological and pathological evaluation of an improved model.Stroke,1996.27(9):p.1616-22;discussion 1623.
    83.Koizumi J,Yoshida Y,Nakazawa T,Experimental studies of ischemic brain edema:A new experimental model of cerebral embolism in rats in which recirculation can be induced in the ischemic area.Stroke,1986.16(8):p.8.
    84.Longa EZ,Weinstein PR,Carlson S,et al.,Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke,1989.20(1):p.84-91.
    85.Dittmar M,Spruss T,Schuierer G,et al.,External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats.Stroke,2003.34(9):p.2252-7.
    86.Kuge Y,Minematsu K,Yamagachi T,Nylon Monofilament for Intralaminal Middle Cerebral Oclusion in Rats.Stroke,1995.26(9):p.3.
    87.Watson BD,Evaluation of the concomitance of lipid peroxidation in experimental models of cerebral ischemia and stroke.Prog Brain Res,1993.96:p.69-95.
    88.杨渊,郭瑞友,光化学诱导老年大鼠局灶性脑梗死模型的研究.中国老年学杂志,2001.1(35):p.4.
    89.Garcia JH,Liu KF,Yoshida Y,et al.,Brain microvessels:factors altering their patency after the occlusion of a middle cerebral artery(Wistar rat).Am J Pathol,1994.145(3):p.728-40.
    90.Schallert T,Woodlee MT,Brain-dependent movements and cerebral-spinal connections:key targets of cellular and behavioral enrichment in CNS injury models.J Rehabil Res Dev,2003.40(4 Suppl 1):p.9-17.
    91.Bederson JB,Pitts LH,Germano SM,et al.,Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats.Stroke,1986.17(6):p.5.
    92.Nagata K,Tagawa K,Hiroi S,et al.,Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction.Electroencephalogr Clin Neurophysiol,1989.72(1):p.16-30.
    93.Tolonen U,Sulg IA,Comparison of quantitative EEG parameters from four different analysis techniques in evaluation of relationships between EEG and CBF in brain infarction.Electroencephalogr Clin Neurophysiol,1981.51(2):p.177-85.
    94.Green J,Bialy Y,Sora E,et al.,High-Resolution EEG in Poststroke Hemiparesis Can ldentify Ipsilateral Generators During Motor Tasks.Am Heart Assoc,1999.
    95.Cohen RA,Hasegawa Y,Fisher M,Effects of a novel NMDA receptor antagonist on experimental stroke quantitatively assessed by spectral EEG and infarct volume.Neurol Res,1994.16(6):p.443-8.
    96.Burghaus L,Hilker R,Dohmen C,et al.,Early electroencephalography in acute ischemic stroke:prediction of a malignant course? Clin Neurol Neurosurg,2007.109(1):p.45-9.
    97.Huang L,Zhao J,Singare S,et al.,Discrimination of cerebral ischemic states using bispectrum analysis of EEG and artificial neural network.Med Eng Phys,2007.29(1):p.1-7.
    98.Molnar M,Csuhaj R,Horvath S,et al.,[Changes in EEG-complexily after subcortical ischemic brain damage].Ideggyogy Sz,2006.59(5-6):p.185-92.
    99.张继武,马思云,局灶性缺血脑损伤EEG信号的时频分析.北京生物医学工程 1999.18(3):p.6.
    100.Buzsaki G,Freund TF,Bayardo F,et al.,Ischemia-induced changes in the electrical activity of the hippocampus.Exp Brain Res,1989.78(2):p.268-78.
    101.Claassen J,Hirsch LJ,Kreiter KT,et al.,Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage.Clin Neurophysiol,2004.115(12):p.2699-710.
    102.徐进,郑崇勋,和卫垦,基于脑电近似熵分析的麻醉深度监测研究.航天医学与医学工程,2004.17(3):p.5.
    103.吴浩江,孔金生;,郑崇勋;,et al.,局灶性脑缺血损伤无创检测中EEG近似熵研究.生物物理学报,2002.18(3):p.5.
    104.吴浩江,孔金生,局灶性脑缺血损伤无创检测中EEG近似熵研究.生物物理学报,2002.18(3):p.370-374.
    105.王志萍,曾因明,王俊科,et al.,导氟醚对大鼠局灶性脑缺血再灌注损伤脑电功率谱的影响.2003.23(2):p.4.
    106.刘军,匡培根,吴卫平,et al.,脑缺血再灌注细胞外液兴奋性氨基酸与一氧化氮的变化及丹参的影响.中华老年心脑血管病杂志,2003.5(2).
    107.张春颖,杜贵友,巍王,et al.,天麻钩藤方对自由活动大鼠脑缺血海马细胞外液递质氨基酸的影响。.中国中药杂志.29(11):p.1060.
    108.王世军,姬广臣,史仁华,et al.,葛根素,川芎嗪,丹参注射液对大脑中动脉阻断大鼠脑微循环血流量的影响。.中成药,2000.22(6):p.5.
    109.殷玉水,张蕊,高尔。,葛根素对家兔脑缺血再灌注损伤保护作用的电镜观察.中华临床新医学,20022.2(8):p.2.
    110.姜守军,白卫星,陈文霞,天眩清注射液治疗椎-基底动脉供血不足性眩晕的临床研究.中草药,2002(33):p.2.
    111.岑得意,陈志武,宋必卫,川芎嗪对大鼠脑梗塞的保护作用.中国药理学通报,,1999.15:p.3.
    112.王万铁,陈寿权,徐正介,川芎嗪注射液抗脑缺血-再灌流埙伤作用机制的实验研究.中华急诊医学杂志,2001.10:p.3.
    113.吕文伟,刘芬,刘斌,蒺藜果总皂苷对实验性脑缺血作用的研究.中国老年学杂志,2003.23:p.2.
    114.谭来勋,陈秀芳,天麻素治疗椎基底动脉供血不足的疗效 中华临床医药, 2002.3:p.2.
    115.刘军山,檀战山,崔立波,天麻素注射液治疗颈性眩晕的临床观察.中国中西医结合急救杂志,2002.9:p.2.
    116.Ada L,Dean CM,Hall JM,et al.,A treadmill and overwound walking program improves waling in persons residing in the community after stroke:a placebo-controlled,randomized trial.Arch Phys Med Rehabil,2003.84(10):p.1486-91.
    117.Risedal A,Zeng J,Johansson B,B,,Early training may exacerbate brain damage after focal brain ischemia in the rat.Journal of Cerebral Blood Flow & Metabolism,1999.19:p.7.
    118.Popovic MR,Curt A,Keller T,et al.,Functional electrical stimulation for grasping and walking:indications and limitations.Spinal Cord,2001.39(8):p.403-12.
    119.Kido Thompson A,Stein RB,Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles.Exp Brain Res,2004.159(4):p.491-500.
    120.Marin R,Williams A,Hale S,et al.,The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat.Physiol Behav,2003.80(2-3):p.167-75.
    121.Benveniste H,The excitotoxin hypothesis in relation to cerebral ischemia.Cerebrovasc Brain Metab Rev,1991.3(3):p.213-45.
    122.Bland ST,Gonzale RA,Schallert T,Movement-related glutamate levels in rat hippocampus,striatum,and sensorimotor cortex.Neurosci Lett,1999.277(2):p.119-22.
    123.Jiang X,Tian F,Mearow K,et al.,The excitoprotective effect of N-methyl-D-aspartate receptors is mediated by a brain-derived neurotrophic factor autocrine loop in cultured hippocampal neurons.J Neuroehem,2005.94(3):p.713-22.
    124.Yang YR,Wang RY,Wang PS,Early and late treadmill training after focal brain ischemia in rats.Neurosci Lett,2003.339(2):p.91-4.
    125.Griesbach GS,Gomez-Pinilla F,Hovda DA,The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise.Brain Res,2004.1016(2):p.154-62.
    126.Shuaib A,The role of taurine in cerebral ischemia:studies in transient forebrain ischemia and embolic focal ischemia in rodents.Adv Exp Med Biol,2003.526:p.421-31.
    127.Benabid AL,Pollak P,Seigneuret E,et al.,Chronic ⅥM thalamic stimulation in Parkinson's disease,essential tremor and extra-pyramidal dyskinesias.Acta Neurochir Suppl(Wien),1993.58:p.39-44.
    128.Benabid AL,Deuschl G,Lang AE,et al.,Deep brain stimulation for Parkinson's disease. Mov Disord, 2006.21 Suppl 14: p. S168-70.
    129. Wallace BA, Ashkan K, Benabid AL, Deep brain stimulation for the treatment of chronic, intractable pain. Neurosurg Clin N Am, 2004. 15(3): p. 343-57, vii.
    130. Stein L, Belluzzi JD, Cellular investigations of behavioral reinforcement. Neurosci Biobehav Rev, 1989.13(2-3): p. 69-80.
    131. Benabid AL, Deep brain stimulation for Parkinson's disease. Curr Opin Neurobiol, 2003.13(6): p. 696-706.
    132. Carelli RM, Deadwyler SA, Cellular mechanisms underlying reinforcement-related processing in the nucleus accumbens: electrophysiological studies in behaving animals. Pharmacol Biochem Behav, 1997.57(3): p. 495-504.
    133. You ZB, Tzschentke TM, Brodin E, et al., Electrical stimulation of the prefrontal cortex increases cholecystokinin, glutamate, and dopamine release in the nucleus accumbens: an in vivo microdialysis study in freely moving rats. J Neurosci, 1998.18(16): p. 6492-500.
    134. Wasserman EM, Gomita Y, Gallistel CR, Pimozide blocks reinforcement but not priming from MFB stimulation in the rat. Pharmacol Biochem Behav, 1982.17(4): p. 783-7.
    135. Gallistel CR, Boytim M, Gomita Y, et al., Does pimozide block the reinforcing effect of brain stimulation? Pharmacol Biochem Behav, 1982. 17(4): p. 769-81.
    136. Kulagina NV, Shankar L, Michael AC, Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors. Anal Chem, 1999. 71(22): p. 5093-100.
    137. Miele M, Berners M, Boutelle MG, et al., The determination of the extracellular concentration of brain glutamate using quantitative microdialysis. Brain Res, 1996. 707(1): p. 131-3.
    138. Yu X, Sun L, Luo X, et al., Investigation of the neuronal death mode induced by glutamate treatment in serum-, antioxidant-free primary cultured cortical neurons. Brain Res Dev Brain Res, 2003.145(2): p. 263-8.
    139. Kennedy RT, Thompson JE, Vickroy TW, In vivo monitoring of amino acids by direct sampling of brain extracellular fluid at ultralow flow rates and capillary electrophoresis. J Neurosci Methods, 2002.114(1): p. 39-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700