信号处理方法在疲劳驾驶和亚健康研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步与发展,由疲劳引发的各种问题层出不穷,严重影响了人们正常的学习、工作和生活。其中尤以疲劳驾驶和亚健康的危害性巨大,已经成为威胁人类生命安全的“杀手”之一。因此,科学、合理、客观地对疲劳驾驶和亚健康进行检测并为相关部门提供干预依据具有非常重要的现实意义。
     生理信号中蕴含了丰富的与人体生理活动、精神状态以及疾病诊断密切相关的信息。因此,可以通过分析生理信号来实现疲劳驾驶和亚健康的检测。人体的生理信号分析是信号处理技术的典型应用之一,它能够客观、有效地提取生理信号的内在特征与本质信息。本文在现有研究的基础上,从生理信号的角度出发,采用现代信号处理技术对疲劳驾驶和亚健康状态的检测进行研究,采集了12名受试者模拟驾驶的脑电信号以及30名受试者的脉搏信号分析探索能够反映疲劳驾驶与亚健康状态的有效特征。本文的主要工作如下:
     首先,分别采用希尔伯特-黄变换和小波变换对待分析的脑电信号和脉搏信号进行消噪处理,以此提高分析结果的准确性。通过对比消噪前后信号的波形图,发现希尔伯特-黄变换和小波变换可以有效的去除脑电信号和脉搏信号中夹杂的噪声干扰信号,从而为进一步的信号分析奠定基础。
     其次,分别使用相对功率谱、Wigner-Ville分布以及功率谱信息熵对驾驶员在不同驾驶时刻的脑电信号进行分析,发现不同驾驶时刻脑电信号各节律的相对功率谱和功率谱的信息熵值存在明显的差异,并且脑电信号的Wigner-Ville分布的时频谱在不同驾驶时刻下均不相同,从而表明相对功率潜、Wigner-Ville分布以及功率谱信息熵可用于疲劳驾驶的检测。
     最后,使用匹配追踪算法和Gabor变换分别对健康受试人和亚健康受试人的脉搏信号进行特征提取,并对其进行了分析与比较,再将选取的特征作为输入向量通过K-近邻分类器对健康和亚健康状态进行分类识别,取得了良好的分类效果,从而表明匹配追踪算法和Gabor变换可用于人体亚健康状态的检测。
     综上所述,相对功率谱、Wigner-Ville分布以及功率谱信息熵均可用于疲劳驾驶时脑电信号的特征分析,并能有效的对驾驶员的疲劳状态进行判定。匹配追踪算法和Gabor变换可用于提取人体亚健康状态的脉搏信号的特征,并能取得良好的分类效果,可作为亚健康检测的参考指标。由此可见,现代信号处理方法可以有效地提取表征疲劳驾驶与亚健康状态的特征,从而为疲劳驾驶的检测和亚健康的诊断开辟一条新的有效途径。
Along with the social progress and development, the problems caused by fatigue have emerged, affecting seriously the people's normal study, work and life. Especially the harmfulness of fatigue driving and sub-health are enormous, they have been one of the "killer" of people's life. Therefore, the scientific, rational, objectively detect fatigue driving and sub-health and provide interference basis for relevant department have very important practical significance.
     Physiological signal contains massive information which closely related human body's physiological activity, mental state and disease diagnosis. Therefore, detection of fatigue driving and sub-health can be achieved by analysis physiological signal. The analysis of the body's physiological signal is one of the typical applications of signal processing technology. It can effectively extract the intrinsic characteristics and essential information of the physiological signal. Based on the existed theories, this article uses the modern signal processing technology to study fatigue driving and sub-health from the point of view of physiological signal. And it specific collects the EEG signals from12subjects in the process of a driving simulation and the pulse signals from30subjects to detect fatigue driving and sub-health state, and then explore the effective characteristics of driver fatigue and sub-health state. The main work of this study is:
     Firstly, EEG signals and pulse signals are de-noised respectively through Hilbert-Huang transform and Wavelet transform, in order to improve the accuracy of the analysis. By comparison with signal waveform before de-noising and signal waveform after de-noising, found that Hilbert-Huang transform and Wavelet transform can effectively remove the interference signal which be mingled with the EEG signal and pulse signal, so as to lay a foundation for further signal analysis.
     Secondly, relative power spectrum, Wigner-Ville distribution and power spectrum information entropy are respectively used to analyze the EEG signals at different driving times, finding that EEG rhythms' relative power spectrum and spectrum information entropy values have existed obvious differences at different driving times, and the Wigner-Ville distributions of EEG are also not the same at different times, which demonstrates the relative power spectrum, Wigner-Ville distribution and power spectrum information entropy can be used for detecting fatigue driving.
     Finally, Matching pursuit algorithm and Gabor transform are adopted to extract pulse signals' features of the health and sub-health, and have carried on the analysis and comparison, then the health and sub-health state are classified by K-nearest neighbors classifier based on the selected feature as the input vector, and achieves good classification effect, which indicates that the Matching pursuit algorithm and Gabor transform can be used for detecting sub-health state.
     In sum, the relative power spectrum, Wigner-Ville distribution and power spectrum information entropy can be used to analyze EEG feature in the process of driving, with a result whether a driver is at fatigue state. The Matching pursuit algorithm and Gabor transform can be used to extract the pulse signal features of sub-health and can obtain good classification effect, thus they might be considered as reference index of sub-health detection. Thus, it can be seen that signal processing methods can effectively extract the characterization of fatigue driving and sub-health state, and open up a practical way for the driver fatigue detection and diagnosis of sub-health.
引文
[1]疲劳驾驶与交通事故[EB/OL].[2006-10-23].http://www.jnjj.com/jnjjwebnew/InfoPublish/NewsShow.aspx?newsid=487&webna me=sdjjzd
    [2]李都厚,刘群,袁伟等.疲劳驾驶与交通事故关系[J].交通运输工程学报,2010,10(2):104-109.
    [3]侯文文.基于生理电信号的精神疲劳分级研究[D].上海:华东理工大学控制科学与工程,2010.
    [4]王惠惠.基于心电脉搏信息融合的亚健康状态识别[D].河北:燕山大学电气工程学院,2011.
    [5]全国7成人亚健康[EB/OL].[2006-11-21].http://news.sohu.com/20061121/n246533016.shtml.
    [6]75%人群处于亚健康状态如何消除亚健康?[EB/OL].[2008-07-16].http://scitech.people.com.cn/GB/7516555.html.
    [7]苏涛,何家辉,吕林夏.实时信号处理系统设计[M].西安:西安电子科技大学出版社,2005
    [8]Shannon C E. Communication in the presence of noise[J]. Proc. the IRE,1949, 37(1):10-21.
    [9]Cooley J W, Tukey J W. An algorithm for the machine computation of complex Fourier series[J]. Mathematics of Computation,1965,19(4):297-301.
    [10]Gabor D. Theory of communication[J]. Journal of the Institute of Electrical Engineers,1946,93(26):429-457.
    [11]Ville J. Theories et application la notion de signal analytique[J]. Cables et Transmissions,1948,2A (1):61-74.
    [12]Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory-Part I: Complex signal and scattering in multilayered media[J]. Geophysics,1982,47(2):203-221.
    [13]N.E. Huang, Z. Shen, S. R. Long, et al. The Empirical Mode Decomposition and the Hilbert spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proc. R. Soc. Lond. A,1998,454:903-995.
    [14]任福田等.交通工程心理学[M].北京:北京工业大学出版社,1993:204-205.
    [15]颜松,魏建勤,吴永红.汽车驾驶员瞌睡状态脑电波特征提取的研究[J].中国生物医学工程学报,2005,24(1):110-113.
    [16]Kar S, Bhagat M, Routray A. EEG signal analysis for the assessment and quantification of driver's fatigue[J]. Transportation Research,2010.13:297-306.
    [17]Simon M, Schmidt EA, Kincses WE, et al. EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions [J]. Clinical Neurophysiology,2011,122:1168-1178.
    [18]Patel M, Lal S.K.L., Kavanagh D, et al. Applying neural network analysis on heart rate variability data to assess driver fatigue [J].Expert Systems with Applications, 2011,38:7235-7242.
    [19]Venkatesh B, Adalarasu K. EMG-based analysis of change in muscle activity during simulated driving [J]. Journal of Bodywork and Movement Therapies,2007, 11:151-158.
    [20]吴绍斌,高利,王刘安.基于脑电信号的驾驶疲劳检测研究[J].北京理工大学学报,2009,29(12):1072-1075.
    [21]李增勇,焦昆,陈铭.汽车驾驶员驾驶过程中的心率变异性功率谱分析[J].2003,22(6):574-576.
    [22]梁红英,吴闻文,王生.应用肌电中值频率对高原汽车驾驶员腰背肌疲劳的监测研究[J].中华劳动卫生职业病杂志,2002,20(6):461-463.
    [23]彭军强,吴平东,殷罡.驾驶疲劳的脑电特性探索[J].北京理工大学学报,2007,27(7):585-589.
    [24]Saroj K.L.Lal, Ashley Craig. A Critical Review of the Psychophysiology of Driver Fatigue. Biological Psyehology.2001, (55):173-94.
    [25]王育学.21世纪健康新概念[M].南昌:江西科学技术出版社,2002:3-14,18-19.
    [26]Homes GP, Kaplan JE, Gnatz NM, et al. Chronic fatigue syndrome:a working case definition. Ann Intern Med,1988,108:387-389.
    [27]Fukuda. The chronic fatigue syndrome:A comprehensive approach to its definition and study. Annals of Internal Medicine,1994,121:953-959.
    [28]Dowson LJ, Guest PJ, Stockley RA. The relationship of chronic sputum expectorateon to Physiologic, radiologic, and health status characteristics in alpha(1)-antitrypsin deficiency (PIZ).Chest 2002,122(4):1247-1255.
    [29]Jones PW, Quirk FH, Baveystock CM, et al. A self-complete measure of health status for chronic airflow limitation. The St.George's Respiratory Questionnaire[J]. Am Rev Respir Dis,1992,145(6):1321-1327.
    [30]Morfeld M, Bullinger M, Nantke J, et al. The version 2.0 of the SF-36 Health Survey:results of a population-rep resentative study[J]. Soz Praventivmed,2005, 50(5):292-300.
    [31]Volpato S, Zuliani G, Guralnik JM, et al. The inverse association between age and cholesterol level among older patients:the role of poor health status. Geronotology. 2001,47(1):36-45.
    [32]闫力,刘兴由,姜杰等.应用Delphi法评价女性亚健康状况的研究[J].中国妇幼保健,2011.26(13):1941-1942.
    [33]王翠芳,傅兰英.高校教师亚健康现状及相关因素[J].现代预防医学,2010,37(1()):1902-1904.
    [34]钱锦康.多媒体显微诊断仪对人体亚健康状态检测[J].航天医学与医学工程2000,3(6):444-448.
    [35]白净,张水红,孟兆辉等.人体亚健康状态的计算机评测方法及检测装置[P].中国:02103836.8,2003.10.15.
    [36]杨润学,王伟中.体控电疗仪[P].中国:200620071554.1,2006.5.22.
    [37]张爱华,杨凤霞,王润东.基于脉象信号的亚健康状态的识别[J].兰州理工大学学报,2006,32(6):82-84.
    [38]王琦,张爱华.心电脉搏信息融合在亚健康状态识别中的应用[J].生物医学工程学杂志,2009,26(6):1181-1185.
    [39]蔡建新,张唯真.生物医学电子学[M].北京大学出版社,1997,12.
    [40]沈凤麟.生物医学随机信号处理[M].合肥:中国科学技术大学出版社,1999,416-456.
    [41]姚泰.生理学[M].北京:人民卫生出版社,2000.
    [42]张莉,何传红,何为.典型相关分析去除脑电信号中眼电伪迹的研究[J].计算机工程与应用,2009,45(31):218-220.
    [43]周卫东,贾磊,李英远.独立分量分析的研究和脑电中心电干扰的消除[J].中国生物医学工程学报,2002,21(3):226-230.
    [44]高军峰,郑崇勋,王沛.脑电信号中肌电伪差的实时去除方法研究[J].西安交通大学学报,2010,44(4):114-118.
    [45]李安之,卢桂章,陈世畯等.一类模式识别方法及其在EEG分析中的应用[J].控制理论与应用,1985,2(3):19-27.
    [46]孙春龄.睡眠的成份及其生理机能[J].生物学教学,1993,12.
    [47]李勇,徐震MATLAB辅助现代工程数字信号处理[M].西安:西安电子科技大学出版社,2002.
    [48]Pradhan N, Dutt Narayane. Data Compression by Linear Prediction for Storage and Transmission of EEG Signal[J]. International Journal of Biomedical Computing, 1994,7(35):207-217.
    [49]黄思娟,吴效明.基于能量特征的脑电信号特征提取与分类[J].传感技术学报,2010,23(6):782-785.
    [50]Andrew C, Pfurt scheller G. Event-related coherence as a tool for studying dynamic interaction of brain region[J]. Electroencephalography and clinical Neurophysiology,1996,98:144-148.
    [51]Bressler SL, CoppolaR, Nakamura R. Episodic multiregional cortical coherence at multiple frequencies during visual task performance [J]. Nature,1993,366:153-156.
    [52]Weiss S, Rappelsberger P. EEG coherence within the 13-18 Hz band as a correlate of a dis-tinct lexical organization of concrete and abstract nouns in humans [J]. Neuroscience Letters,1996,209(1):17-20.
    [53]艾玲梅,黄力宇.黄桂等.利用双谱分析的癫痫脑电特征研究[J].西安交通大学学报,2004,8(]0):1097-1100.
    [54]Zhang Jiwu, Zheng Chongxun, Jiang Dazong, et al. Bispectrum analysis of focal ischemic cerebral EEG signal[A].20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong,1998.
    [55]Hyvarinen A. Ramkumar P, Parkkonen L, et al. Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis[J]. Neurolmage,2010,49:257-271.
    [56]Fan Xiao, Sun Yanfeng, Yin Baocai, et al. Gabor-based dynamic representation for human fatigue monitoring in facial image sequences [J]. Pattern Recognition Letters,2010,31:234-243.
    [57]马育锋,龚沈光,姜润翔等.基于小波变换的目标信号检测方法[J].数据采集与处理,2009,24(6):789-791.
    [58]Hansson-Sandsten M. Multitaper Wigner and Choi-Williams distributions with predetermined Doppler-lag bandwidth and sidelobe suppression[J].Signal Processing,2011,91:1457-1465.
    [59]何平,司文荣,李娜等.Cohen类时频分布比较及其在局部放电信号处理中的应用[J].2010,46(12):68-73.
    [60]王辉,黄成军,姚林朋等.利用重排分布理论的GIS局放信号时频分析[J].高电压技术,2010,36(9):2236-2241.
    [61]P. Rapp, I. Zimmerman, A. Albano, et al. Dynamics of Spontaneous Neural Activity in the Simian Motor Cortex:the Dimension of Chaotic Neurons[J]. Physics Letters A,1985,110:335-338.
    [62]I. Dvorak, J. Siska, J. Wachermann, et al. Evidence for Interpretation of the EEG as a Deterministic Chaotic Process with a Low Dimension[J]. Activ. Nerv. Sup,1986, 28:228-231.
    [63]江朝晖,冯焕清,刘大路等.睡眠脑电的关联维数和近似熵分析[J].生物医学工程学杂志,2005,22(4):649-653.
    [64]孙玉.基于脑电非线性动力学分析的中医针刺疗法和经皮穴位电刺激疗法研究[D].浙江:浙江大学,2007.
    [65]柏树令.系统解剖学[M].北京:人民卫生出版社,2004:213-240.
    [66]罗志昌,张松,杨益民.脉搏波的工程分析与临床应用[M].北京:科学出版社,2006:21-31.
    [67]葛臣,刘光远,龙正吉.情感识别中脉搏信号的特征提取与分析[J].西南师范大学学报,2010,35(3):243-246.
    [68]钱伟立,徐兰义,陈富裕等.高斯函数分解法提取脉搏波特征[J].中国生物医学工程学学报,1994,13(1):1-7.
    [69]魏宇良.基于小波分析和支持向量机理论的脉象信号处理方法研究[D].广州:华南理工大学,2010.
    [70]钱铁群,吕萍,闵一建.运动前后脉搏声谱检测的应用分析[J].中国运动医学杂志,2002,21(3):311-313.
    [71]王炳和,相敬林.脉搏声信号检测系统实验设计及功率谱特征[J].中华物理医学杂志,1998,20(3):158-161.
    [72]王炳和,董彦武.两种脉搏信号的声学检测与谱特征分析[J].陕西师大学报(自然科学版),1992,20(2):32-34.
    [73]周霞,蔡坤宝.中医脉象信号的短时傅里叶分析.重庆大学学报[J].2003,26(10):47-51.
    [74]李福凤,王忆勤,孙仁等.14例冠心病患者冠脉支架介入治疗前后脉图变化观察[J].中医杂志,2008,49(8):734-737.
    [75]Wang Huiyan, Zhang Peiyong. Investigation on the automatic parameters extraction of pulse signals based on wavelet transform [J]. Journal of Zhejiang University Science A,2007,8(8):1283-1289.
    [76]Chmelka L, Kozumplik J. Wavelet-based wiener filter for electrocardiogram signal denoising [J]. Computers in Cardiology,2006,32:771-774,
    [77]余丙星,蔡坤宝.小波变换在吸毒者脉象信号分析中的应用[J].重庆大学学报(自然科学版),2006,29(12):48-51.
    [78]白金星,赵子婴,王艳苹.基于小波变换过零点表征的脉搏信号分析[J].航天医学与医学工程,2006,19(3):204-207.
    [79]黄祥钧,邢武,李锋.基于句法模式识别的脉搏波特征信息研究[J].中国医疗器械杂志,2005,29(5):325-327.
    [80]耿振用,袁如玉,闫哲慧.肱踝脉搏波传导速度对冠状动脉病变的预测价值[J].现代预防医学,2011,38(23):5002-5003.
    [81]胡静,邓辉胜.脉搏波传导速度在假性高血压诊断中的应用[J].中国动脉硬化杂志,2011,19(7):601-605.
    [82]吴群.基于心电信号的驾驶疲劳检测方法研究[D].浙江:浙江大学计算机科学与技术学院,2008.
    [83]季红光,王海明,陈尧忠等.一种疲劳自评问卷的信度和效度初探.海军医学杂志,1999,200):30-32.
    [84]董红生,邱天爽,张爱华.基于HHT边际谱熵和能量谱熵的心率变异信号的分析方法[J].中国生物医学工程学报,2010,29(3):336-344.
    [85]南姣芬,艾玲梅,申军.HHT方法在驾驶疲劳脑电分析中的应用[J].生物医学工程学杂志,2011,28(4):653-657.
    [86]何俊峰,刘文清,张玉钧.基于希尔伯特-黄变换的激光云高仪后向散射信号去噪方法[J].光学学报,2011,31(2):1-10.
    [87]和卫星,许莉.数学形态学和HHT在轴承故障诊断中的应用[J].轴承,2011,11:50-53.
    [88]吴昊,张洵安.基于HHT方法的非平稳人工地震动模拟[J].地震工程与工程震动,2011,31(6):30-37.
    [89]张建龙,张小涛.限售股解禁、市场微观结构与波动率冲击——基于希尔伯特-黄转换法的实证分析[J].山西财经大学学报,2009,31(7):91-97.
    [90]Maiza Bekara, Mirkovander Ban. Random and coherent noise attenuation by empirical mode decomposition[J]. Geophysics,2009,74(5):89-98.
    [91]杨光亮,朱元清,于海英.基于HHT的地震信号自动去噪算法[J].大地测量与地球动力学,2010,30(3):39-42.
    [92]倪月敏,杨乃衡.Hilbert-Huang变换在语音去噪中的应用[J].计算机仿真,28(4):408-412
    [93]贾爱宾,王敏,刘法胜等.脑电信号的小波变换去噪算法-基于中值的尺度相关阈值法[J].生物医学工程学杂志,2009,26(6):1227-1229.
    [94]倪月敏,杨乃衡Hilbert- Huang变换在语音去噪中的应用[J].计算机仿真,2011,28(4):408-412.
    [95]王京港,程明霄,林锦国等.小波模极大值在拉曼光谱信号去噪中的应用[J]. 化工自动化及仪表,2010,37(8):37-41.
    [96]欧阳森,宋政湘,王建华等.基于信号相关性和小波方法的电能质量去噪算法[J].电工技术学报,2003,18(3):111-116.
    [97]胡昌华,李国华,刘涛等.基于MATLAB 6.X的系统分析与设计——小波分析.西安电子科技大学出版社,2004:292-303.
    [98]张香焕.基于脉搏信号的亚健康评估方法的研究[D].广州:华南理工大学生物医学工程,2011.
    [99]D.L. Donoho. Denoising by Soft-Thresholding. IEEE Trans.Inform. Theory,1995, 41(3):613-627
    [100]李越雷,张天骐,黄铫等.利用粒子群算法实现PPS信号的稀疏分解[J].计算机仿真,2010,27(2):200-203.
    [101]吴浩江,张辉,郑崇勋等.功率谱熵在局灶性缺血性脑损伤无创检测中的应用[J].生物医学工程学杂志,2003,20(2):229-232.
    [102]张佃中.血压波功率谱熵与年龄的关系[J].中国医学物理学杂志,2005,22(4):606-607.
    [103]Savit R, LI D, Zhou AW, et al. Understanding dynamic changes in temporal lobe epilepsy. J Clin Neurophysiol,2001,8(3):246-258.
    [104]张佃中,谭小红,刘昭前.不同频段功率谱熵及其在心电分析中的应用[J].湖南大学学报,2007,34(2):75-79.
    [105]谢涛嵘,裴剑,贾彩丽等.数字滤波和小波变换提取脑电节律的比较[J].生物医学工程学杂志,2009,26(4):743-747.
    [106]Fisch B J. Spehlmann's EEG primer [M].2nd ed. Amsterdam:Elsevier Science Ltd,1991.
    [107]Mallat S G, Zhang Z. Matching pursuit with time-frequency dictionaries[J]. IEEE Transaction on Signal Processing,1993,41(12):3397-3415.
    [108]陈发宇,杨长春.对依据频率的匹配追踪快速算法的改进[J].石油物探,2009,48(1):80-83.
    [109]舒维杰,袁志刚,尹忠科.利用人工鱼群算法实现基于MP的信号稀疏分解[J].计算机应用研究,2009,26(1):66-67,73.
    [110]王煜,王正欧,白石.用于文本分类的改进KNN算法[J].中文信息学报,2007,21(3):76-81.
    [111]刘海峰,张学仁,姚泽清等.基于类别选择的改进KNN文本分类[J].计算机科学,2009,36(11):213-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700