磁刺激系统设计及脑电信号采集与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电刺激技术在临床应用的蓬勃发展,磁刺激技术也越来越受到研究者的关注和重视。近年来,在临床诊断及疾病治疗中,磁刺激技术不断被证实具有较高的应用价值和应用前景,因此一直受到各国研究人员的广泛关注。相对于电刺激技术,磁刺激技术具有无创伤、无痛、有效、易于重复操作及操作简单等明显优点。
     目前应用于临床的磁刺激系统基本分为两类:高频强磁场的磁刺激系统(如:经颅磁刺激transcranial magnetic stimulation, TMS)和超低频磁场磁刺激系统(extremely low frequency, ELF)。高频强磁场的磁场强度可以达到2.5特斯拉甚至更高,一般采用电容充放电产生交变电流,既而产生磁场。超低频磁场磁刺激系统的磁场强度一般在几十mT甚至更小。本文设计一款由AT89S52型单片机控制的超低频磁场刺激系统,单片机程序均由汇编语言开发。
     与现有的磁刺激系统不同,本文设计的磁刺激系统是一款由单片机控制,产生磁场的频率强度可调的磁刺激系统。系统硬件由AT89S52型单片机、数码管显示模块、D/A转换模块、功率放大模块、按键控制模块、电源电路模块和电极线圈组成。7位数码管实现了治疗时间、刺激强度/频率和功能状态的实时显示;按键控制模块实现了磁场频率、强度的调节。本设计采用Proteus单片机仿真软件对系统硬件和单片机程序进行了仿真,均达到了设计要求。应用Ansoft电磁场有限元仿真软件对三维线圈模型进行了磁场仿真,磁感应强度达到20mT左右。此外采用Protel 99SE绘制磁刺激系统电路原理图,并绘制系统的印刷板电路,完成了样机的焊接与调试。
     在白求恩国际和平医院的睡眠障碍研究中心,应用本系统对正常成年人和嗜睡病人进行了睡眠障碍患者的临床试验。采集刺激前后的脑电信号,并对脑电信号进行了功率谱分析和脑电地形图显示与分析。测试表明,磁刺激系统对嗜睡病人进行治疗,磁场刺激可以提高脑电信号的幅值,在清醒闭目状态下,进入轻度睡眠的时间有所增加,额部脑电信号幅度有所增加,眼动期缩短,表明磁刺激能够有效改善嗜睡病人的症状,提高睡眠质量。
With booming development of electrical stimulation technology in the clinical application, researchers pay more and more attentions at magnetic stimulation technology. The magnetic stimulation technology which used in clinical diagnosis and treatment of diseases proofed that it has a high application value and tempting prospects for the development, therefore, it has been hit by a wide attention of scholars. Relative to the electrical stimulation technology, the magnetic stimulation technology have the advantage at painless, easy to repeat operation, no wound, effective and easy to operate.
     At present, the magnetic stimulation system used in clinically research is basically divided into two classes: high-frequency magnetic field of magnetic stimulation system (such as, transcranial magnetic stimulation, TMS) and extremely low frequency magnetic stimulation system (ELF).The magnetic field strength of high-frequency magnetic field can reach 2.5 tesla's or higher, which generally use the capacitor recharge to produce alternating current, then produce a magnetic field. The magnetic field strength of extremely low frequency magnetic stimulation system is in commonly several millitesla’s or even smaller. A type of low frequency magnetic stimulation system based on the AT89S52 SCM is designed in the paper, and I develop the all microcontroller program by assembly language.
     Different from the existing magnetic stimulation system, the magnetic stimulation system designed in the paper is controlled by SCM, and the SCM sent out the pulse waveform for magnetic stimulation system. This system hardware consists of the AT89S52 SCM, digital pipe display module, D/A conversion module, power amplifier module, button control module, power supply module and electrode coil etc. The treatment time, stimulate strength/frequency and functional status are displayed by Seven digital tube. The frequency and amplitude are adjusted by button control module, and which realized the innovation of the magnetic field frequency stimulation system that can not be adjusted. The system hardware and microcontroller program are simulated by the Proteus single-chip microcomputer simulation software in the design, which reached the design requirements. The three-dimensional electromagnetic field coil model is simulated by ansoft fem simulation software, and the magnetic field strength reach to 20 millitesla’s. This article have used Protel 99SE software to map the magnetic stimulation system of the circuit principle diagram, and developed the printing plate circuit, completed the prototype of welding and debugging.
     In Bethune international peace hospital’s sleep disorders research center, we did research to compare the normal adults and sleepiness patients when they underwent stimulation, compare EEG before and after stimulation, and analysis the EEG by power spectrum. Tests show that the magnetic stimulation inhibits certain parts of the brain cortex, and sleepiness patient have stronger effect than normal adult.
引文
[1]刘歆,祝建,钟季康.生物细胞在极低频电磁场中的效应.重庆大学学报,2004,27(1):112-115
    [2]曹学成,宁镭.极低频磁场生物效应的生物物理机制研究.山东农业大学学报(自然科学版),2007,38(3):403-406
    [3]夏灵,肖国臻,吕维雪.生物电磁学的研究动态.生物物理学报,1997,13(3):519-525
    [4]姚玉周.特定电磁波照射对骨折愈合的影响.右江医学,2003,31(5): 453-45
    [5]邹方东,徐柳.瞬态电磁脉冲对细胞增殖的影响.四川大学学报:自然科学版,2000,37 (5):748-752
    [6]孔亮.磁场刺激仪的设计及开关电源的研究.[华中科技大学工学硕士论文] .2007:15-20
    [7] PedRo C. MiRAndA, MARk HAllett, et Al.BAsseR THe ElectRic Field Induced in tHe BRAin by MAgnetic StimulAtion: A 3-D Finite-Element AnAlysis of tHe Effect of Tissue HeteRogeneity And AnisotRopy[J] .IEEE TRAnsActions on BiomedicAl EngineeRing, 2003, 50(9):1074-1085
    [8] VeRnon WeH-HAu Lin, IAn N HsiAo, VijAy DHAkA.MAgnetic Coil Design ConsideRAtions foR FunctionAl MAgnetic StimulAtion.IEEE TRAnsActions on BiomedicAl EngineeRing, 2000, 47(5): 600-610
    [9]陈勇,徐桂芝,杨硕,等.经颅磁刺激线圈设计及分析.华北电力大学学报,2005,32:98-101
    [10]张靖武,周灵彬.单片机系统的PROTEUS设计与仿真.北京:电子工业出版社,2008:2-3
    [11]杨丽,乔晓艳,董有尔.磁场生物效应的研究现状与展望.中国医学物理学杂志,2009,26(1):1022-1024
    [12]郑彤.基于MSP430低功耗脉冲电磁生物治疗仪的研究.[天津大学工学硕士论文] .2005:2-3
    [13]安好,刘志朋,李松,等.降低功耗的高频磁刺激仪电路参数优化设计与仿真.生物医学工程研究,2009,28(1):16-20
    [14]赵博,张洪亮,等.Ansoft 12在工频电磁场中的应用.北京:中国水利水电出版社,2010:47-50
    [15]李颖洁,邱意弘,朱贻盛.脑电信号分析方法及其应用.北京:科学出版社,2009:3-10
    [16] Thakor N V, Tong S. Advances in quantitative electroencephalogram analysis methods. Annu Rev Biomed Eng, 2004, 6:453-495
    [17]邓玉林,李勤.生物医学工程学.北京:科学出版社,2007:191-194
    [18]陈世群,刘中霖,邢诒刚,等.脑梗塞患者脑电相对功率谱与日常生活能力的相关性.中山医科大学学报(Acad J SUMS), 2002,23(5):83-84
    [19]李国栋.2002~2003年生物磁学新进展综述.生物磁学,2003(4):1-3
    [20]胡骥.一种磁刺激系统的开发.[华中科技大学工学硕士学位] .2005:11-12
    [21]耿跃华,徐桂芝,杨硕,等.磁刺激神门穴脑电信号的非线性动力学分析.中国组织工程研究与临床康复,2009,13(4):675-679
    [22] Gregor Thut, John R. Ives, Frank Kampmann, et al. A new device and protocol for combining TMS and online recordings of EEG and evoked potentials. Journal of Neuroscience Methods, 141(2005): 207-217
    [23] Andrea Antal, PhD, Klára Boros, et al. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulation, 2008(1):97-105
    [24] Adenauer G. Casali, Silvia Casarotto, Mario Rosanova, et al. General indices to characterize the electrical response of the cerebral cortex to TMS. NeuroImage, 2009:1-10
    [25] Mark S. Mennemeier, PhD, Willianm J. Triggs, et al. Sham transcranial magnetic stimulation using electrical stimulation of the scalp. Brain Stimulation, 2009(2): 168-173
    [26] C. Bonato, C. Miniussi, P.M. Rossini. Transcranial magnetic stimulation and cortical evoked potentials: A TMS/EEG co-registration study. Clinical Neurophysiology, 117(2006): 1699-1707
    [27]吴佳英.帕金森病患者睡眠障碍发病机制的研究.上海交通大学学报(医学版),2009,29(8):1001-1004
    [28]卢旺盛,田增民.经颅磁刺激在神经系统疾病中的应用.海军总医院学报,2008,21(4):226-229
    [29]狄维娜,苏秀苹,李尚武.利用Maxwell软件对双E型交流接触器的动态特性分析.低压电器通用低压电器篇,2007(13):8-10
    [30]蔡卫明,韦云隆,严中洪,等.基于嵌入式系统的医学信号采集系统的开发.电子工程师,2008,34(4):75-77
    [31]许晶,郭海龙,董海,等.基于DSP的微弱信号检测采集系统设计.计算机与通讯技术,2009,23(4):84-85
    [32]王宏,王旭,李宏毅.经颅磁刺激诱发脑电位的小波分析.中国生物医学工程学报,2007,26(4):513-516
    [33]王彦永,顾平,郭记红,等.帕金森经颅磁刺激治疗前后睡眠结构的对比分析.中国实用内科杂志,2009,29(2):132-134
    [34]李莉萍,张夏婷,王玉平.帕金森患者的睡眠障碍.临床神经电生理学杂志,2007,16(2):87-93
    [35] Epstein CM, Evatt ML, Funk A, et al. An open study of repetitive transcranial magnetic stimulation in treatment-resistant depression with Parkinson’s disease. Clin Neurophysiol, 2007, 118(10): 2189-2194
    [36] Maeda F, Keenan JP, Tormos JM, et al. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability. Exp Brain Res, 2000, 133(4):425-430
    [37] Marcelb M, Fabio F, Esser SK, et al. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci USA, 2007, 104(20): 8496-8501
    [38]陈海英.AR模型功率谱估计常用算法的性能比较.漳州师范学院学报(自然科学版),2009(1):48-51
    [39]闫庆华,程兆刚,段云龙.AR模型功率谱估计及Matlab实现.计算机与数字工程,2010,38(4):154-156
    [40]王福杰,潘宏侠.MATLAB中几种功率谱估计函数的比较分析与选择.计算机科学与技术,2009,27(6):28-31
    [41]杨蔚原.Welch功率谱估计方法的参数选择.环境技术,2009(5):23-27
    [42]张峰,石现峰,张学智.Welch功率谱估计算法仿真及分析.西安工业大学学报,2009,29(4):353-356
    [43]黄英,向平,鲜于玉琴,等.工频电磁场对居住人群脑电图变化的影响.公共卫生与预防医学,2010,21(4):97-98
    [44]钱颖.功率谱估计在心电信号处理方面的应用.科技信息,2009(11):17-18
    [45]伊鑫,曲爱华.基于Welch算法的经典功率谱估计的Matlab分析.现代电子技术,2010(3):7-9
    [46]尹治平,张义安,陈卫东,等.基于分数阶功率谱的LFM信号检测.系统工程与电子技术,2009,31(1):45-48
    [47]张崇,郑崇勋,欧阳轶,等.基于脑电功率谱特征的脑力疲劳分析.航天医学与医学工程,2008,21(1)
    [48]陈兴时,刘名顺.脑电地形图在精神病学研究中的应用.现代电生理学杂志,2010,17(3):188-192
    [49]张锋,李光,王淑媛,等.脑电图、脑电地形图、CT及磁共振对中枢神经系统感染的诊断价值.航空航天医药,2010,21(4):477-479
    [50] Men-Tzung Lo, Ping-Huang Tsai, Pei-Feng Lin, et al. The nonlinear and nonstationary properties in EEG signals: probing the complex fluctuations by hilbeat-huang transform. Advances in Adaptive Data Analysis, 2009, 1(3):461-482
    [51] Sheng-Bou Yen, Hsiao-Yu Lee, Shyh-Yueh Cheng. Electroencephalographic assessment of human reliability on visual response task. Biomedical Engineering: Applications, Basis and Communications, 2010, 22(1): 61-70
    [52] Berdakh Abibullaev. Hee Don Seo. Min Soo Kim. Epileptic spike detection using continuous wavelet transforms and artificial neural networks. International Journal of Wavelets Multiresolution and Information Processing, 2010, 8(1):33-48
    [53] M. J. Rosa, J. Daunizesu, K. J. Friston. EEG-fMRI integration: a critical review of biophysicalmodeling and data analysis approaches. Journal of Integrative Neuroscience, 2010, 9(4): 453-476
    [54] Montri Phothisonothai. Mashiro Nakagawa, A classification method of different motor imagery tasks based on fractal features for brain-machine interface. Journal of Integrative Neuroscience, 2009, 8(1): 95-122
    [55] Martijn Arns, Jay Gunkelman, Marinus Breteler, et al. EEG phenotypes predict treatment outcome to stimulants in children with ADHD. Journal of Integrative Neuroscience, 2008, 7(3):421-438
    [56] Mauro Ursino, Melissa Zavaglia. Modeling analysis of the relationship between EEG rhythms and connectivity among different neural populations. Journal of Integrative Neuroscience, 2007, 6(4): 597-623
    [57] Sacha J. Van Albada, Christopher J. Rennie, Peter A. Robinson. Variability of model-free and model-based quantitative measures of EEG. Journal of Integrative Neuroscience, 2007, 6(2): 279-307
    [58] Daniel F. Hermens, Nicholas J. Cooper, C. Richard Clark, et al. An integrative approach to determine the best behavioral and biological markers of methylphenidate. Journal of Integrative Neuroscience, 2007, 6(1): 105-140
    [59] Donald L. Rowe, Nicholas J. Cooper, Belinda J. Liddell. Brain structure and function correlates of general and social cognition. Journal of Integrative Neuroscience, 2007, 6(1):35-74
    [60]刘名顺.脑电地形图及其临床应用.现代电生理学杂志,2008,15(3):173-182
    [61]钟庆英,侯湘.脉冲磁场治疗急慢性腰痛50例.生物磁学,2003,3 (1): 30-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700