聚乙二醇刷型聚合物在聚砜薄膜上的光化接枝及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚砜(Polysulfone,PSF)作为血浆分离(Plasmapheresis)的膜材料具有十分优良的生物相容性、化学稳定性和机械强度等性能,与其他合成材料相比已广泛受到临床医学界的欢迎。但是聚砜的疏水性使其在血浆分离过程中出现严重的膜污染问题——主要是蛋白质在聚砜膜上的不可逆吸附,可以使超滤膜的通过率下降30%以上,一旦蛋白质的构象发生变化还会诱发血液凝固和免疫系统活化等一系列有害结果。目前国内外防止蛋白质污染研究得最多的方法是利用物理或化学方法对膜表面进行亲水性改性。通过对表面的改性既可以保持材料本体结构固有的机械强度,又能使其具有必需的表面性能,达到功能性和生物相容性的统一。其中在材料表面周定聚乙二醇(Poly(ethylene glycol),PEG)的研究己广泛丌展,已有许多文献和专利发表。在90年代有人发现单层聚乙二醇刷抗蛋白质污染的能力远比一般多层涂层效果好。本论文以溶剂旋涂法所制成的聚砜薄膜作为改性材料,采用紫外辐照法,以对叠氮苯甲酸(4-Azidobenzoic acid,AzBA)为光活性分子,将PEG聚合物接枝到聚砜薄膜表面,为下一步在聚砜超滤膜上接枝PEG分子层打下基础。
     本论文以萘钾为催化剂,用聚乙二醇单甲醚(Methoxy poly(ethylene glycol),MPEG)和对甲苯磺酰氯在N_2保护下,合成了对甲苯磺酰基聚乙二醇(MPEG-OT_s)。再根据经典的Gabriel法,在邻苯二甲酰亚氨钾盐和水合肼的作用下,将MPEG-OT_s转化为MPEG-NH_2,最后产物用二氯甲烷/乙醚混合液重结晶三次,得到了高纯度结晶的MPEG-NH_2,同时通过核磁共振和高效液
As a membrane material used in plasmapheresis, polysulfone (PSF) has advantages in aspects of biocompatibility, chemo stability, mechanical strength, which make it popular in the field of biomedical materials. But the hydrophobic of PSF would cause serious fouling during the process of plasmapheresis, resulting in the irreversible adsorption of proteins on membranes, and reducing their permeability at least 30%. Once the conformation of the absorbed proteins changed, severe injuries would take place, such as blood coagulation and activation of immunosystem. In order to prevent the fouling of proteins, most efforts of current researches are focused on hydrophilic modification of membrane surfaces. Through the hydrophilic modification, researchers expect to obtain biocompatible surfaces and maintain the intrinsic bulk properties of the material. Among these researches, physisorption and covalent attachment of poly(ethylene glycol) on surface of various materials has long been studied widely and there're a lot of papers and patents being published in the past three decades. In 1990's, it was found that the capability of mono-layered PEG brush to resist protein fouling was much greater than that of multi-layered PEG. In this paper, spin coated PSF films were used as the material to be surface-modified by grafting brush-like PEG with 4-azidobenzoic acid photocoupler. Achievement of UV irradiation grafting of MPEG on polysulfone films may provide the foundation for further advancement in tethering brush-like PEG on ultrafiltration Psf membrane.By using potassium naphthalene as catalyst, MPEG-OTs was synthesized from MPEG and 4- tolylsulfonyl chloride. According to Gabriel's method, MPEG-NH2
    was synthesized from MPEG-OTs and potassium phthalimide, and purified by means of recrystallization in dichloromethane//ether mixture at least three times until crystal pure product obtained. And analyses of Aldrich's MPEGs used in this study show that these polymers contain only undetectable amounts of bifunctional PEG.On the other hand, the glass coverslips are spin-coated with a 3%(w:w) solution of polysulfone in 1,2-dichlorobenzene( 1 Os at 1000 rpm and consecutively for 50s at 3000 rpm). Then we measured the relative spectral energy distribution of self-designed 365nm UV-radiation apparatus, the radiation intensity distribution with light filter and temperature.4-azidobenzoic acid (AzBA) which was prepared by the addition of sodium azide to the acidic diazonium chloride from 4-aminobenzoic acid was purified in ethanol water solution (ethanol: H2O= 6(v): 4(v)), and got crystal pure. Furthermore, AzBA was grafted to the polysulfone films under the following conditions: in the darkroom, adjust the concentration of AzBA to 25.8g/l, with the amount was lml; keep Psf films wet during UV irradiation for lOmin. By the results of XPS and AFM analysis, AzBA has been grafted on polysulfone successfully. Then used l,3-(3-dimethylaminopropyl)ethylcarbodiimide(EDC) as photocoupler, MPEG-NH2 through its amino group reacted with the -COOH of AzBA forming amide bond and grafted on.From water contact angle and protein absorption measurements, there was a improvement of hydrophilicity of the PSF films grafted with MPEG . Efficiency of reacting of AzBA and MPEG-NH2 by X-ray photoelectron spectroscopy was 72%. With atomic force microscope (AFM), very low roughness of the grafting layer indicates the high density of MPEG . The presence of a PEO-brush was demonstrated using ellipsomtry.
引文
[1] Andrade JD, "Principles of protein adsorption", in: Surface and Interfacial Aspects of Biomedical Polymers, Volume 2, Protein Adsorption, Joseph D. Andrade(Eds), Plenum Press, New York and London, 1985.
    [2] Richard AF, "Wound repair: lessons for tissue engineering", in: Principles for Tissue Engineering, Lanza RP, Langer R, Chick WL(Eds), Academic Press, 1997, Chapter 46.
    [3] Murabayashi S, and Noze Y, Biocompatibility: bioengineering aspects, Artif Organs 1986; 16(2): 114-121.
    [4] Marshalt AD, Munro PA, and Tagard G, Effect of protein fouling in mirofiltration and ultrafiltration on permeats flux, protein retention and selectivity: a literature review, Desalination 1993; 91: 65-108.
    [5] Cook AD, Sazers RD, and Pitt WG, Bacterial adhesion to poly(HEMA)-based hydrogels, J Biomed Mater Res 1993; 27: 119-126.
    [6] Knoell T, Safarik J, Cormark J, Riley R, Lin SW, Ridway H, Biofouling potentials of micropocous polysulfone membranes containing a sulfonated polyetherethersulfone/polyethersulfone block copolymer: correlation of membrane surface properties with bacterial attachment, J Membr Sci 1999; 157: 117-138.
    [7] Bailey FE and Koleske JY, Poly(ethylene oxide), Academic Press, New York, 1976.
    [8] Kjellander R, Florin E, Water structure and changes in thermal stability of the system poly(ethylene oxide)—water, J Chem. Soc Faraday Trans 1981; 177, 2053-2077.
    [9] Lee JH, Lee HB and Andrade JD, Blood compatibility of polyethylene oxide surfaces, Progr Polym Sci 1995; 20: 1043-1079.
    [10] Coleman DL, Gregonis DE and Andrade JD, Blood-materials interactions: the minimum interfacial free energy and the optimum polar/apolar ratio hypotheses, J Biomed Mater Res 1982; 16: 381-398.
    [11] Hesselink FTh, Vrij A and Overbeek JThG, On the theory of the stabilization of dispersions by adsorbed macromolecules. Ⅱ. Interaction between two flat particles, J Phys Chem 1971; 75: 2094-2103.
    [12] Nagaoka S, Mori Y, Tachierchi H, Yokota K, Tanzawa H, and Nishumi S, in: Polymers as Biomaterials, Shalaby SW, Hoffman AS, Ratner BD and Horbett TA(Eds), pp361, Plenum Press, New York(1984).
    [13] Jeon SI, Lee JH, Andrade JD, and de Gennes PG, Protein-surface interaction in the presence of polyethylene oxide. Ⅰ. Simplified theory, J Colloid lnterf Sci 1991; 142: 149-158.
    [14] Sheth SR and Leckbrand D, Measurements of attractive forces between proteins and endgrafted poly(ethylene glycol) chains. Proc Natl Acad Sci 1997; 94: 8399-8404.—Applied Biological Sciences.
    [15] Harris M, Poly(ethylene glycol) chemistry: Biotechnical and Biomedical Applications, New York, Plenum Press, 1(1992).
    [16] Jing Li, Synthesis of polyethyleneglycols(PEGs): derivatives and applications in biomateriais, BME 430, May 2,2001.
    [17] Harris JM, Struck EC, Case MG, and Paley MS, Synthesis and characterization of poly(ethylene glycol) derivatives, J Polym Sci Polym Chem Ed 1984; 22: 341-352.
    [18] Buckman AF, Michael M, Functionalization of poly(ethylene glycol) and monomethoxypoly(ethylene glycol), Makromol Chem 1981; 182: 1397-1381.
    [19] Topchieva Ⅳ, Kuzaev Al, Zubov VP, Modification of polyethylene glycol, Eur Polym J 1988; 24(9): 899-904.
    [20] Polyethylene glycol and derivatives for biomedical applications, Catalog 2001, Shearwater Corporation.
    [21] Cobby LE, Guive PE, Light activated polymers for flexible surface modification, Proceeding of the Medical & Manufacturing Conference, June 3,1992, New York.
    [22] Patrick LE, Guive PE, Method of improve the biocompatibility of solid surface, U. S. Patent, 4,973,493(1990).
    [23] Oster G and Shibata O, J Polym Sci 1957; 26:233.
    [24] J.F.高分子科学实验方法—物理原理与应用(中文版),科学出版社,1987年,99页。
    [25] Thorn V, Ulbricht M, Jonsson G, Photochemical grafting of poly(ethylene glycol)s yielding low-protein-adsorbing ultrafiltration membranes, Acta Polytechn Scandinarica Chem Ser 1997; 247: 35-50.
    [26] Yang WT, Ranby B, The role of far UV radiation in photografting process, Polymer Bulletin 1996; 37: 89-96.
    [27] Monroe BM, and Weed GC, Photoinitiators for free-radical-initiated photoimaging systems, Chem Rev 1993; 93: 435-448.
    [28] Bayley H, "Photogenerated reactive intermediates and their properties", in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol 12, Photogenerated Reagents in Biochemistry and Molecular Biology, Work TS and Burden(Eds), Elsevier, Amsterdam, 1983; Chap 2.
    [29] Tseng YC, Park K, Synthesis of photoreactive poly(ethylene glycol) and its application to the prevention of surface-induced platelet activation, J Biomed Mater Res 1992; 26: 373-391.
    [30] Pivracci J, Wood DW, Crivello JV, Belfort G, UV-assisted graft poly-merization of Nvinyl-2-pyrrolidione onto poly(ether sulfone) ultrafiltration membranes: comparison of dip versus immersion modification techniques, Chem Mater 2000; 12: 2123-2133.
    [31] Amos RA, and Guive PE, Surface modification of polymers by photochemical immobilization—A general method, The 17th Annual Meeting of the society for Biomaterials, May 1-5, 1991, Scottsdale, Arizona, USA.
    [32] Nystrom M, Fouling of unmodified and modified polysulfone ultrafiltration membranes by ovalbumin, J Membr Sci 1989; 44: 183-192.
    [33] Nystrom M, Laatikairen M, Turku K, Jarvinen P, Resistance to fouling accomplished by modification of ultrafiltration membranes, Progr Colloidal Polym Sci 1990; 82: 321.
    [34] Nystrom M and Jarvinen P, Modification of polysulfone ultrafiltration membranes with UV radiation and hydrophilicity increasing agents, J Membr Sci 1991; 60: 275-296.
    [35] Lundstrom Ⅰ, Protein conformation at surfaces, in: Glantz PO, Leach SA and Evricson T(Eds), Oral Interfacial Reactions of Bone, Soft Tissue and Saliva, IRL Press, Oxford 1985; pp: 9-23.
    [36] Norde WA, Adsorption of proteins from solution at the solid-liquid interface, Adv Colloid Interface Sci 1986; 25: 267.
    [37] Yamagishi H, Crivello JV, Belfort G, Development of novel photochemical technique for modifying poly(arylfone) ultrafiltration membranes, J Membr Sci 1995; 105: 237-247.
    [38] Crivello JV, Belfort G and Yamagishi H, Low fouling ultrafiitration and microfiltration aryl sulfone, U. S. Patent Application, Filing Date 23 Nov.1992, Serial No. 07/980 477.
    [39] Crivelio JV, Yamagishi H, Belfort G, Low fouling ultrafiltration and microfiitration aryl polysulfone, U. S. Patent number 5, 468, 390(1995).
    [40] Yamagishi H, Crevello JV, Belfort G, Evaluation of photochemically modified poly(arylsulfone) UF membranes, J Membr Sci 1995; 105: 249-259.
    [41] Pieracci J, Kaeselev B, Belfort G, Photochemical modification of 10kDa polyethersulfone ultrafiltration membranes for reduction of biofouling, J Membr Sci 1999; 156: 223-240.
    [42] Kaeselev B, Pieracci J, Belfort G, Photoinduced grafting of ultrafiitration membranes: Comparison of poly(ethersulfone) and poly(sulfone), J Membr Sci 2001; 194: 245-261.
    [43] Kidduff JE, Matharaj S, Sensibaugh J, Pieracci JP, Belfort G, Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter, Desalination 2000; 132: 133-142.
    [44] Pieracci J, Crivello JV, Belfort G, Increasing permeability of UV-modified poly(ethersulfone) ultrafiltration membranes, J Membr Sci 2002; 202: 1-16.
    [45] Pieracci J, Criveilo JV, Belfort G, UV-assisted graft polymerization membranes for affinity separation, Desalination 2002; 149: 297-302.
    [46] Tanigushi M, Belfort G, Low protein fouling synthetic membranes by UV-assisted surface modification: varying monomer type, J Membr Sci 2004; 231: 147-157.
    [47] Ulbricht M, Matucscherwski H, Oechel A, Hieke HG, Photo-induced graft polymerization surface modification for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membranes, J Membr Sci 1996; 115: 31-47.
    [48] Ulbricht M, Riedel M, Marx U, Novel photochemical surface functionalization of polysulfone ultrafiltration membranes for covalent immobilization of biomolecules, J Membr Sci 1996; 120: 239-259.
    [49] Ulbricht M, Richau K, Kamusewitz H, Chemically and morphologically defined ultrafiltration membrane surface prepared by heterogenous photo-initiated graft polymerization, Colloids and Surface A: Physicochem and Eng, Aspects 1998; 138: 353-366.
    [50] Bayley H, "Photogenerated reactive intermediates and their properties", in: Laboratory Techniques in Biochemistry and Molecular Biology: Vol 12. Photogenerated Reagents in Biochemistry and Molecular Biology, Work TS and Burdon RH(Eds), Elsevier, Amsterdam 1983; Chap 2.
    [51] Thorn JK, Ulbricht M, Kops J, Johsson G, Synthesis of photoreactive α-azidobenzoyl-ε-methoxypoly(ethylene glycol)s and their end-on photografting onto polysulfone ultrafiltration membranes for reduction of biofouling, J Membr Sci 1999; 156: 223-240.
    [52] Thorn V, Altankov G, Grath Th, Jankova K, Jonsson G, Ulbricht M, Optimizing cell-surface interactions by photo-grafting of poly(ethylene glycol), Langmuir 2000; 26: 2756-2765.
    [53] Kochler JA, Ulbricht M, Belfort G, Intermolecular force between a protein and a hydrophilic modified polysulfone film with relevance to filtration, Langmuir 2000; 16: 10419-10427.
    [54] Altankov G, Thom V, Grath Th, Jankova K, Jonsson G, Ulbricht M, Modulating the biocompatibility of polymer surfaces with ethylene glycol: effect of fibronection, J Biomed Mater Res 2000; 52: 219-230.
    [55] Park YS, Won JG, Kang YS, Preparation of poly(ethylene glycol) brushes on polysulfone membranes for olefin/paraffin separation, Langmuir 2000; 16: 9662-9665.
    [56] Yamachita T, Tanitaka H, Kuto T, Horie K and Mita I, Degradation of sulfur-containing aromatic polymers: photodegration of polyether surface and polysulfone, Polym Degrad Stabil 1993; 39: 47-54.
    [57] M ilner ST, Polymer brushes, Science 1991; 251: 906-914.
    [58] de Gennes PG, ①Scaling Concepts in Polymer Physics, Cornell Univ, Press, lthaca, NY, 1979; ②Macromolecules 1980; 13: 1069; ③Macromolecules 1981; 14: 1637; ④Macromolecules 1982; 15: 492; ⑤Ann Chim 1987; 77: 389.
    [59] Passart W, "Adhesion of polymers", in: Metals as Biomaterials, Helsen J and Breme J(Eds), Wiley&Sons Ltd 1998, pp: 212.
    [60] Aksimentier A, and Holyst R, Single-chain statistics in polymer systems, Progr Polym Sci 1999; 24: 1045-1093.
    [61] MePerson T, Kidane A, Szleifer I, and Park K, Prevention of protein adsorption by tethered poly(ethylene oxide) layers: experiments and single-chain mean-field analysis, Langmuir 1998; 14: 176-186.
    [62] Ulbricht M, Riedel M, Ultrafiltration membrane surfaces with grafted polymer'tentacles': preparation, characterization and application for covalent protein binding, Biomaterials 1998; 19: 1229-1237.
    [63] Holmberg K, Tiberg F, Malmsten M, Brink C, Grafting with hydrophilic polymer chains to prepare protein-resistant surfaces, Colloids and surfaces A: Physicochemical and Engineering Aspects 1997; 123-124: 297-306.
    [64] Thorn V, Jankova K, Ulbricht M, Kops J and Jonsson G, Synthesis of photoreactive α-4-azidobenzoyl-ε-methoxy-poly(ethylene glycol)s and their end-on photo-grafting onto polysulfone ultrafiltration membranes, Macromol Chem Phys 1998; 199: 2723-2729.
    [65] 熊成东,王亚辉,袁明龙等,聚乙二醇衍生物的合成研究进展,高分子通报2000;1:39-45.
    [66] Mutter M, Soluble polymers in organic synthesis: Ⅰ. Preparation of polymer reagents using polyethylene glycol with terminal amino groups as polymeric component, Tetra Lett 1978; 31: 2839-2842.
    [67] Swamikannu AX and Litt MH, Preparation and characterization of p-toluene sulfonyl ester and amino derivatives of tri-and poly(ethylene glycol), J Polym Sci Polym Chem Ed 1984; 22: 1623-1632.
    [68] Harris JM, Hundley NH, Shannon TG et al, Poly(ethylene glycols) as soluble, recoverable, phase-transfer catalysts, J Org Chem 1982, 47: 4789-4791.
    [69] De Vos RJ and Goethals EJ, Convenient synthesis of α-tosyl-ε-tosyloxypoly(oxyethylene), Makroml Chem (Rapid Commun.) 1985; 6: 53-56.
    [70] Dust JM, Fang Zh and Harris JM, Proton NMR characterization of poly(ethylene glycols) and derivatives, Macromolecules 1990, 23: 3742-3746.
    [71] Allmer K, Hilborn J, Larsson PH, Surface modification of polymers. Ⅴ. Biomaterial applications, J Polym Sci 1990; 28: 173-183.
    [72] E.C.霍宁著,南京大学化学系有机化学教研室译,有机合成,北京:科学出版社,1981
    [73] 康锡惠,刘梅清,光化学原理与应用,第一版:天津大学出版社,1995;104-111.
    [74] UV-A双通道紫外辐照计使用说明书,北京师范大学光电仪器厂.
    [75] 薛君敖,李在清,光辐射测量原理和方法,第一版.北京:计量出版社,1981:6-19.
    [76] 白春礼,扫描力显微术,北京:科学出版社,2000.
    [77] 孙璐,聚乙二醇单甲醚的氨化与聚乙二醇刷型聚合物在聚砜膜上的接枝,四川大学硕士论文,2003.
    [78] 陈馨,氨基聚乙二醇的合成与聚乙二醇刷型聚合物在聚砜多孔膜上的接枝,四川大学硕士论文,2004。
    [79] Chapman TM and Marra KG, Determination of low critical surface tensions of novel fluorinated poly(amide urethane) block copolymers. 2. Fluorinated soft-block backbone and slide chains, Macromolecules 1995; 28: 2081-2085.
    [80] 陈复生主编,精密分析仪器及应用,成都:四川科学技术出版社,1990:264-292.
    [81] Roosjen A, Kaper H J, Van der Mei HC, Norde W and Busscher H J, Inhibition of adhesion of yeasts and bacteria by poly(ethylene oxide)-brushes on glass in a parallel plate flow chamber, Microbiology 2003; 149: 3239-3246.
    [82] Jeon SI, Lee JH, Andrade JD and Gennes PG, Protein-surface interactions in the presence of polyethylene oxide, J Colloid Sci 1991; 142: 149-165.
    [83] Hermansson M, The DLVO theory in microbial adhesion, Colloids Surf B, 1999; 14: 105-119.
    [84] Beamson G and Briggs D, High resolution XPS of organic polymers, The scienta ESCA300 database, 1992.
    [85] Ito E, Konno K, Nob J, Kanai K, Ouchi Y, Seki K and Hara M, Chain length dependence of adsorption structure of COOH-terminated alkanethiol SAMs on Au(111), Applied Surface Science 2005; 244: 584-587.
    [86] Chen X, Cui Zc, Chen Zm, Zhang K, Lu G, Zhang G and Yang B, The synthesis and characterizations of monodisperse cross-linked polymer microspheres with carboxyl on the surface, Polymer 2002; 43: 4147-4152.
    [87] Piehler J, Brecht A, Valiokas R, Liedberg B and Gauglitz G, A high-density poly(ethylene glycol) polymer brush for immobilization on glass-type surfaces, Biosensors & Bioelectronics 2000; 15: 473-481.
    [88] Raviv U, Frey J, Sak R, Laurat P, Tadmor R and Klein J, Properties and interactions of physigrafted end-functionalized poly(ethylene glycol) layers, Langmuir 2002; 18: 7482-7495.
    [89] Yang Zh, Galloway JA and Yu H, Protein interactions with poly(ethylene glycol) selfassembled monolayers on glass substrates: diffusion and adsorption, Langmuir 1999; 15: 8405-8411.
    [90] Guo Xh, Synthesis and study of the colloidal polyelectrolyte brushes prepared by photoemulsion polymerization, Dissertation, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700