双馈感应风力发电机组的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于化石能源的逐渐枯竭和环境污染的日益严重,开发以风能、太阳能为代表的各类可再生能源,已经成为人类社会实现长期可持续发展的必然选择。在众多可再生能源发电方式中,风力发电是发展最快、最成熟且最适合规模化开发的方式之一。在风力发电领域,目前应用最广泛的是基于双馈感应电机的变速恒频风力发电机组。本文对双馈感应电机在不同工况下的控制技术展开了深入的研究,且取得了具体的创新性成果。
     首先调研了国际和国内风力发电产业的发展现状和趋势,介绍了目前最主要的几种变速恒频风力发电机组的结构和特点,并对双馈感应风力发电机组的主要控制技术进行了详细的评述。
     介绍了双馈感应电机变速恒频运行的机理,给出了其在静止坐标系和同步旋转坐标系中的模型,并推导了电网电压不平衡工况下其在正、负序同步旋转坐标系中的正、负序模型,依此作为研究工作的理论基础;在实验室中搭建了双馈感应电机硬件实验平台,为研究工作提供实验基础。
     考虑到双馈感应电机是一个多变量强耦合系统,以寻求控制效果最佳且最易实现为原则,本文采用相对增益阵列(relative gain array, RGA)方法以选择最合适的输入输出控制关系,在控制算法方面采用滑模变结构控制以提高系统的鲁棒性。具体表现在如下几个方面:
     提出一种新颖的积分变结构单环直接电压控制方法,用于实现双馈感应电机的并网控制。该方法的创新性主要体现在以下两个方面:采用RGA方法分析双馈感应电机内部各变量之间的相关程度,建立了转子电压对定子电压的直接控制关系,从而消除了转子电流控制环;在控制器设计过程中充分考虑了参数不确定性和外部扰动的影响,从而提高了系统的鲁棒性。仿真和实验结果表明,所提出的控制方法有效实现了双馈感应电机的并网控制,并且对参数误差和外部扰动具有鲁棒性。
     率先提出电网电压不平衡工况下双馈感应电机的并网控制方法。将并网控制器分解为主控制器和协控制器,主控制器控制正序定子电压跟踪正序电网电压,协控制器控制负序定子电压跟踪负序电网电压。仿真和实验结果表明,所提出的控制方法可有效控制双馈感应电机的定子电压精确跟踪不平衡电网电压。
     将积分变结构控制与空间矢量调制结合,提出一种开关频率固定的积分变结构直接转矩控制方法。该方法的创新性主要体现在以下三个方面:通过转子电压直接控制双馈感应电机的电磁转矩和无功功率,无需转子电流控制环;在控制器设计过程中充分考虑参数误差的影响,从而提高了系统的鲁棒性;采用固定的开关频率,从而避免了传统直接转矩控制固有的电流畸变问题。仿真和实验结果表明,所提出的控制方法可有效调节双馈感应电机的转矩和无功功率,并且具有良好的参数鲁棒性和输出电能质量。
     提出电网电压不平衡工况下双馈感应电机的直接转矩控制方法,在独立调节电磁转矩和无功功率的同时,消除不平衡电网电压造成的转矩和功率波动。通过RGA方法建立正、负序转子电压对正、负序转矩和无功功率的直接控制关系,在此基础上分别设计正、负序控制器。与现有电网电压不平衡工况下的控制方法相比,本文提出的方法无需进行转子电流测量、正负序分解和坐标变换,简化了控制器结构。仿真和实验结果表明,所提出的控制方法有效地消除了不平衡电网电压造成的转矩和功率波动。
     本文的研究工作得到国家自然科学基金重点项目(60534040)和国家863计划项目(2007AA05Z244)的资助,提出的所有控制方法均通过硬件实验验证,为进一步的产业化奠定了基础,也为现代控制理论的工程化和推广应用提供了可借鉴的经验。
Because of the gradual depletion of fossil energy resources and the increasingly serious issue of environmental pollution, it has become the inevitable choice to develop renewable energy represented by wind energy and solar energy for the sustainable development of human society. Among many renewable power generation methods, wind power generation is one of the methods which are the most mature and suitable for large-scale development. In the field of wind power generation, the variable-speed-constant-frequency (VSCF) wind turbines based on the doubly-fed induction generator (DFIG) is the most popular kind. In this thesis, the researches about the control technology of the DFIG under different operating conditions are carried out, and some innovative fruits are achieved.
     The international and domestic development status and trends of wind power generation industry are survey. The structure and characteristics of several kinds of VSCF wind turbines are introduced. Main control technologies about wind turbine based on DFIG are summarized.
     The VSCF operation principle of the DFIG is introduced.The model of the DFIG in the stationary and synchronous reference frame is described, and the model of the DFIG in the positive and negative sequence synchronous reference frames under unbalanced grid voltage is derived, which is the theoretical basis for the research. A hardware experimental platform is developed in the lab, which provides experimental basis for the research.
     Because the DFIG is a multi-variable strong coupling system, in order to achieve the best control effect, the relative gain array (RGA) methodology is introduced to choose the most suitable input-output control pairs, and sliding mode variable structure control is introduced to improve the robustness of system. It is specifically manifested in the following aspects:
     A novel single loop direct voltage control scheme using integral variable structure control is proposed to synchronize the DFIG to the grid. The RGA methodology is used to analysis the degrees of relevance among the variables of the DFIG and develop direct control relationship between rotor voltage and stator voltage, which eliminates the control loop of rotor current. The parametric uncertainty and external disturbances are adequately considered in the design procedure of the controller, which improves the robustness of the system. Both simulation and experimental results show that the proposed control scheme effectively achieves the grid synchronization control of DFIG,and it has satisfied robustness against parametric errors and external disturbances.
     A grid synchronization control scheme of DFIG under unbalanced grid voltage is firstly proposed. The grid synchronization controller is divided into main controller and auxiliary controller. The main controller is used to control the positive sequence stator voltage to follow the positive sequence grid voltage, while the auxiliary controller is used to control the negative sequence stator voltage to follow the negative sequence grid voltage. Both simulation and experimental results show that the proposed control scheme effectively controls the stator voltage of the DFIG to follow unbalanced grid voltage accurately.
     An integral variable structure direct torque control scheme of DFIG with constant switching frequency is proposed by combining integral variable structure control with space vector modulation. The torque and reactive power of DFIG are directly controlled by the rotor voltage, which eliminates the control loop of rotor current. The parametric errors are adequately considered in the design procedure of controller, which improves the robustness of the system. The constant switching frequency avoids the inherent current distortion problem in traditional direct torque control. Both simulation and experimental results show that the torque and reactive power of the DFIG can be effectively controlled by the proposed control scheme, and the parametric robustness and generated power quality are satisfied.
     A direct torque control scheme of DFIG under unbalanced grid voltage is proposed to independently control the torque and reactive power, and simultaneous eliminate torque and power pulsations caused by unbalanced grid voltage. The RGA methodology is used to develop the direct control relationships among the positive and negative sequence rotor voltage and the positive and negative sequence torque and reactive power, based on which positive and negative sequence controllers are designed, respectively. Comparing to existing control schemes under unbalanced grid voltage, the proposed control scheme eliminates the measurement, coordinate transformation and symmetrical component extraction of rotor current, which simplified the controller. Simulation and experimental results shows that the proposed scheme effectively eliminates torque and power pulsations caused by unbalanced grid voltage.
     This work was supported by the National Natural Science Foundation of China under Grant 60534040 and the National High Technology Research and Development of China under Project 863 Program 2007AA05Z244. All the proposed control schmes are validated on the hardware experimental platform, which establishes basic for further industrialization and provides experience for the engineering applications and extensions of modern control theory.
引文
[1]吴捷,杨俊华.绿色能源与生态环境控制[J].控制理论与应用,2004,21(6):864-869
    [2]Erich H.Wind Turbines:Fundamentals, Technologies, Application, Economics[M]. 2nd-ed. Germany:Springer,2006
    [3]吴捷.分散式风力-太阳能发电系统的混合控制研究[R].广州:国家自然科学基金委员会,2009
    [4]王承煦,张源.风力发电[M].北京:中国电力出版社,2003
    [5]Wu J.Control technology in distributed generation system based on renewable energy[R].Hong Kong:The Hong Kong Polytechnic University,2009
    [6]杨俊华.无刷双馈风力发电系统及其控制研究[D].广州:华南理工大学,2006
    [7]Charles D.GS.World Wind Energy Report 2008[R].Jeju island, South Korea:World Wind Energy Association,2009
    [8]叶杭冶.风力发电机组的控制技术[M].第2版.北京:机械工业出版社,2006
    [9]Tang Y.F.,Xu L.Y. A flexible active and reactive power control strategy for a variable speed constant frequency generating system[J]. IEEE Transactions on Power Electronics,1995,10(4):472-478
    [10]Ramtharan G,Ekanayake J.B.,Jenkins N. Frequency support from doubly fed induction generator wind turbines[J].IET Renewable Power Generation,2007,1(1): 3-9
    [11]Hughes F.M.,Anaya-Lara O.,Jenkins N.,et al.Control of DFIG-based wind generation for power network support[J].IEEE Transactions on Power Systems,2005, 20(4):1958-1966
    [12]Holdsworth L.,Wu X.G,Ekanayake J.B.,et al.Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances[J].IEE Proceedings on Generation, Transmission and Distribution,2003,150(3):343-352
    [13]Polinder H.,Pijl F.F.A.v.d.,Vilder G-J.d.,et al. Comparison of direct-drive and geared generator concepts for wind turbines[J].IEEE Transactions on Energy Conversion, 2006,21(3):725-733
    [14]Li H.,Chen Z. Overview of different wind generator systems and their comparisons[J]. IET Renewable Power Generation,2008,2(2):123-138
    [15]Chinchilla M,Arnaltes S.,Burgos J.C.Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J].IEEE Transactions on Energy Conversion,2006,21(1):130-135
    [16]Haque M.E.,Negnevitsky M.,Muttaqi K.M. A Novel Control Strategy for a Variable-Speed Wind Turbine With a Permanent-Magnet Synchronous Generator[J]. IEEE Transactions on Industry Applications,2010,46(1):331-339
    [17]Tan K.,Islam S.Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors[J].IEEE Transactions on Energy Conversion,2004,19(2):392-399
    [18]Dai J.Y., Xu D.D., Wu B. A Novel Control Scheme for Current-Source-Converter-Based PMSG Wind Energy Conversion Systems[J].IEEE Transactions on Power Electronics,2009,24(4):963-972
    [19]Soderlund L.,Eriksson J.T.,Salonen J.,et al.A permanent-magnet generator for wind power applications [J].IEEE Transactions on Magnetics,1996,32(4):2389-2392
    [20]Ekanayake J.B.,Holdsworth L.,Wu X.G,et al. Dynamic modeling of doubly fed induction generator wind turbines[J].IEEE Transactions on Power Systems,2003, 18(2):803-809
    [21]Datta R.,Ranganathan V.T. Variable-speed wind power generation using doubly fed wound rotor induction machine-a comparison with alternative schemes [J].IEEE Transactions on Energy Conversion,2002,17(3):414-421
    [22]Hansen A.D.,Srerisen P.,Lov F.,et al. Control of variable speed wind turbines with doubly-fed induction generators[J].Wind Engineering,2004,28(4):411-432
    [23]Xu L.Y.,Cheng W. Torque and reactive power control of a doubly fed induction machine by position sensorless scheme[J].IEEE Transactions on Industry Applications,1995,31(3):636-642
    [24]Petersson A.,Harnefors L., Thiringer T. Evaluation of current control methods for wind turbines using doubly-fed induction machines[J].IEEE Transactions on Power Electronics,2005,20(1):227-235
    [25]McMahon R.A.,Roberts P.C.,Wang X.,et al. Performance of BDFM as generator and motor[J].IEE Proceedings on Electric Power Applications,2006,153(2):289-299
    [26]Poza J.,Oyarbide E.,Sarasola I.,et al.Vector control design and experimental evaluation for the brushless doubly fed machine [J].IET Electric Power Applications, 2009,3(4):247-256
    [27]Bhowmik S.,Spee R.,Enslin J.H.R. Performance optimization for doubly fed wind power generation systems[J].IEEE Transactions on Industry Applications,1999,35(4): 949-958
    [28]Protsenko K.,Xu D.W. Modeling and Control of Brushless Doubly-Fed Induction Generators in Wind Energy Applications[J].IEEE Transactions on Power Electronics, 2008,23(3):1191-1197
    [29]Brassfield W.R.,Spee R.,Habetler T.G. Direct torque control for brushless doubly-fed machines [J].IEEE Transactions on Industry Applications,1996,32(5):1098-1104
    [30]黄守道,王耀南,王毅,et al.无刷双馈电机有功和无功功率控制研究[J].中国电机工程学报,2005,25(4):87-93
    [31]张先勇.无刷双馈风力发电机组的建模及控制研究[D].广州:华南理工大学,2007
    [32]王孝洪.矩阵变换器及其在无刷双馈风力发电系统中的应用研究[D].广州:华南理工大学,2009
    [33]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].杭州:浙江大学,2005
    [34]卞松江.变速恒频风力发电关键技术研究[D].杭州:浙江大学,2003
    [35]Bianchi F.D.,Battista H.D.,Mantz R.J. Wind Turbine Control Systems[M]. Germany:Springer,2007
    [36]Thiringer T.,Linders J.Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range[J].IEEE Transactions on Energy Conversion,1993, 8(3):520-526
    [37]Teodorescu R.,Blaabjerg F. Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode[J].IEEE Transactions on Power Electronics,2004,19(5):1323-1332
    [38]Wai R.J.,Lin C.Y.,Chang Y.R. Novel maximum-power-extraction algorithm for PMSG wind generation system [J].IET Electric Power Applications,2007,1(2): 275-283
    [39]贾要勤,曹秉刚,杨仲庆.风力发电的MPPT快速响应控制方法[J].太阳能学报,2004,25(2):171-176
    [40]Datta R.,Ranganathan V.T. A method of tracking the peak power points for a variable speed wind energy conversion system[J]. IEEE Transactions on Energy Conversion, 2004,18(1):163-168
    [41]Tapia G,Tapia A. Wind generation optimisation algorithm for a doubly fed induction generator[J].IEE Proceedings on Generation, Transmission and Distribution,2005, 152(2):253-263
    [42]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J].电力系统自动化,2005,29(24):32-38
    [43]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003,27(20):62-67
    [44]李辉,何蓓.双馈风力发电系统的最大风能控制策略[J].太阳能学报,2008,29(7):797-803
    [45]杨金明,吴捷,杨俊华.基于自抗扰控制器的风力发电系统的最大风能捕获控制[J].太阳能学报,2004,25(4):525-529
    [46]杨金明,吴捷,董萍,et al.基于无源性理论的风力机最大风能捕获控制[J].太阳能学报,2003,24(5):724-728
    [47]Camblong H.,Tapia G,M. Rodriguez. Robust digital control of a wind turbine for rated-speed and variable-power operation regime[J].IEE Proceedings on Control Theory and Applications,2006,153(1):81-91
    [48]包能胜,叶枝全.水平轴失速型风力机主动非线性控制[J].太阳能学报,2004,25(4):519-524
    [49]陈思哲,吴捷,姚国兴,et al.基于微分几何的风力发电机组恒功率控制[J].控制理论与应用,2008,25(2):336-340
    [50]夏长亮,宋战锋.变速恒频风力发电系统变桨距自抗扰控制[J].中国电机工程学报,2007,27(14):91-95
    [51]Geng H.,Yang G Robust pitch controller for output power levelling of variable-speed variable-pitch wind turbine generator systems[J].IET Renewable Power Genereration, 2009,3(2):168-179
    [52]张先勇,吴捷,杨金明,et al.额定风速以上风力发电机组的恒功率H∞鲁棒控制[J].控制理论与应用,2008,25(2):321-324
    [53]Muhando E.B.,Senjyu T.,Uehara A.,et al.LQG Design for Megawatt-Class WECS With DFIG Based on Functional Models' Fidelity Prerequisites[J].IEEE Transactions on Energy Conversion,2009,24(4):893-904
    [54]李亚西,王志华,赵斌,et al.大功率双馈发电机“孤岛”并网方式[J].太阳能学报,2006,27(1):1-6
    [55]Tapia G,Santamaria G,Telleria M.,et al.Methodology for smooth connection of doubly fed induction generators to the grid[J].IEEE Transactions on Energy Conversion,2009,24(4):959-971
    [56]赵栋利,许洪华,赵斌,et al.变速恒频风力双馈发电机并网电压控制研究[J].太阳能学报,2004,25(5):587-591
    [57]Yuan G.F.,Chai J.Y.,Li Y.D.Vector control and synchronization of doubly fed induction wind generator system[A].Proceedings of the 4th International Power Electronic Motion Control Conference[C].Xi'an, China:2004:886-890
    [58]Morel L.,Godfroid H.,A.Mirzaian,et al.Double-fed induction machine:converter optimisation and field oriented control without position sensor[J].IEE Proceedings on Electric Power Applications,1998,145(4):360-368
    [59]Park J.,Lee K.,Kim D.Control method of a doubly-fed induction generator with automatic grid synchronization[A].Proceedings of the 32nd IEEE Industrial Electronics Annual Conference[C].Paris, France:2006:4254-4259
    [60]Wong K.C.,Ho S.L.,Cheng K.W.E. Direct voltage control for grid synchronization of doubly-fed induction generators[J].Electric Power Components and Systems,2008, 36(9):960-976
    [61]付旺保,赵栋利,潘磊,et al.基于自抗扰控制器的变速恒频风力发电并网控制[J].中国电机工程学报,2006,26(3):13-18
    [62]Takahashi I.,Noguchi T. A new quick-response and high-efficiency control strategy of an induction motor[J].IEEE Transactions on Industry Applications,1986,22(5): 820-827
    [63]Depenbrock M. Direct self control of inverter-fed induction machines[J].IEEE Transactions on Power Electronics,1989,3(5):420-429
    [64]Gomez S.A.,Amenedo J.L.R. Grid synchronisation of doubly fed induction generators using direct torque control[A].Proceedings of the 28th IEEE Industrial Electronics Annual Conference[C].Sevilla, Spain:2002:3338-3343
    [65]Arbi J.,Ghorbal M.J.B.,Slama-Belkhodja I.,et al. Direct virtual torque control for doubly fed induction generator grid connection[J].IEEE Transactions on Industrial Electronics,2009,56(10):4163-4173
    [66]贺益康,郑康,潘再平,et al.交流励磁变速恒频风力发电系统运行研究[J].电力系统自动化,2004,28(13):55-68
    [67]Tapia A.,Tapia G,Ostolaza J.X.,et al. Modeling and Control of a Wind Turbine Driven Doubly Fed Induction Generator[J].IEEE Transactions on Energy Conversion, 2003,18(2):194-204
    [68]Pena R.,Clare J.C.,Asher G.M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[J].IEE Proceedings on Electric Power Applications,1996,143(3):231-241
    [69]Hopfensperger B.,Atkinson D.J.,Lakin R.A. Stator-flux-oriented control of a doubly-fed induction machine with and without position encoder [J].IEE Proceedings on Electric Power Applications,2000,147(4):241-250
    [70]Peresada S.,Tilli A.,Tonielli A. Indirect stator flux-oriented output feedback control of a doubly fed induction machine[J].IEEE Transactions on Control Systems Technology,2003,11(6):875-888
    [71]Li S.H.,Haskew T.A. Characteristic study of vector-controlled doubly-fed induction generator in stator-flux-oriented frame[J].Electric Power Components and Systems, 2008,36(9):990-1015
    [72]刘其辉,贺益康,赵仁德.交流励磁变速恒频风力发电系统的运行与控制[J].电工技术学报,2008,23(1):129-136
    [73]郭金东,赵栋利,林资旭,et al.兆瓦级变速恒频风力发电机组控制系统[J].中国电机工程学报,2007,27(6):1-6
    [74]Muller S.,Deicke M.,Doncker R.W.D.Doubly fed induction generator systems for wind turbines[J].IEEE Industry Applications Magazine,2002,17(1):26-33
    [75]Chondrogiannis S.,Barnes M. Stability of doubly-fed induction generator under stator voltage orientated vector control[J].IET Renewable Power Generation,2008,2(3): 170-180
    [76]李辉,杨顺昌,廖勇.并网双馈发电机电网电压定向励磁控制的研究[J].中国电机工程学报,2003,23(8):159-162
    [77]Utkin V.I.,Giildner J.,Shi J.X. Sliding Mode Control in Electromechanical Systems[M].Florida:CRC,1999
    [78]Xu L.,Cartwright P. Direct Active and Reactive Power Control of DFIG for Wind Energy Generation[J].IEEE Transactions on Energy Conversion,2006,21(3): 750-758
    [79]Arnalte S.,J.C.Burgos, Rodriguez-Amenedo J.L. Direct torque control of a doubly fed induction generator for variable speed wind turbines[J].Electric Power Components and Systems,2002,30(2):199-216
    [80]Benalia L.,Chaghi A.,Abdessemed R. Control of double feed induction machine using direct torque control[J].Advances in Modelling and Analysis C,2008,63(1-2): 64-74
    [81]马小亮,刘志强.双馈电动机直接转矩控制技术的研究[J].电工技术学报,2003,18(5):63-68
    [82]Liu Z.,O.A. Mohammed, Liu S.A novel direct torque control of doubly-fed induction generator used for variable speed wind power generation [A].2007 IEEE Power Engineering Society General Meeting[C].Tampa, FL, United states:2007:4276019
    [83]Xing Z.X.,Yao X.J.,Sui H.X.,et al.DTC in doubly-fed VSCF wind turbine control system [A].Proceedings of the IEEE International Conference on Industrial Technology [C].Mumbai, India:2006:2715-2718
    [84]Wang Z.,Wang F.,Zong M.,et al.A new control strategy by combining direct torque control with vector control for doubly fed machine[A].Proceedings of the International Conference on Power System Technology[C].Singapore:2004:792-795
    [85]Yao X.,Jing Y,Xing Z. Direct torque control of a doubly-fed wind generator based on grey-fuzzy logic[A].Proceedings of the International Conference on Mechatronics and Automation[C]. Harbin,China:2007:3587-3592
    [86]Buja G.S.,Kazmierkowski M.P. Direct torque control of PWM inverter-fed AC motors-a survey[J].IEEE Transactions on Industrial Electronics,2004,51(4):744-757
    [87]Holtz J.Pulsewidth modulation for electronic power conversion[J].IEEE Proceedings, 1994,82(8):1194-1214
    [88]Zhi D.,Xu L. Direct Power Control of DFIG with Constant Switching Frequency and Improved Transient Performance[J].IEEE Transactions on Energy Conversion,2007, 22(1):110-118
    [89]郭晓明,贺益康,何奔腾.双馈异步风力发电机开关频率恒定的直接功率控制[J].电力系统自动化,2008,32(1):61-65
    [90]Vicatos M.S.,Tegopoulos J.A. Transient state analysis of a doubly-fed induction generator under three phase short circuit[J].IEEE Transaction on Energy Conversion, 1991,6(1):62-68
    [91]Slavomir S.,Jouko N.,Sami K.,et al. Performance study of a doubly fed wind-power induction generator under network disturbances[J].IEEE Transactions on Energy Conversion,2006,21(4):883-890
    [92]Lopez J.,Sanchis P.,Roboam X.,et al. Dynamic Behavior of the Doubly Fed Induction Generator During Three-Phase Voltage Dips[J].IEEE Transactions on Energy Conversion,2007,22(3):709-717
    [93]Sun T.,Chen Z.,Blaabjerg F. Transient stability of DFIG wind turbines at an external short-circuit fault [J].Wind Energy,2005,8(3):345-360
    [94]Morren J.,Haan S.W.H.d. Short-circuit current of wind turbines with doubly fed induction generator[J]. IEEE Transactions on on Energy Conversion,2007,22(1): 174-180
    [95]Petersson A.,Lundberg S.,Thiringer T. A DFIG wind turbine ride-through system, influence on the energy production[J].Wind Energy,2005,8(3):251-263
    [96]Erlich I.,Wrede H.,Feltes C. Dynamic behavior of DFIG-based wind turbines during grid faults[A].Proceedings on Fourth Power Conversion Conference[C].Nagoya, Japan:2007 1195-1200
    [97]IEEE P1547,IEEE standard for distributed resources interconnection with electric power systems[S].2004
    [98]Jauch C.,Matevosyan J.,Ackermann T.,et al. International comparison of requirements for connection of wind turbines to power systems[J].Wind Energy,2005, 8(3):295-306
    [99]Gomez E.,Fuentes J.A.,Molina A.,et al.Results using Different Reactive Power Definitions for Wind Turbines Submitted to Voltage Dips:Application to the Spanish Grid Code[A].IEEE PES Power Systems Conference and Exposition[C].Atlanta, GA, USA:2006:768-775
    [100]Erlich I.,Winter W.,Dittrich A. Advanced grid requirements for the integration of wind turbines into the German transmission system[A].IEEE Power Engineering Society General Meeting[C].Montreal, Canada:2006:1-7
    [101]关宏亮,赵海翔,王伟胜,et al.风电机组低电压穿越功能及其应用[J].电工技术学报,2007,22(10):173-177
    [102]Dittrich A.,Stoev A.C. Comparison of fault ride-through strategies for wind turbines with DFIM generators[A].European Conference on Power Electronics and Applications[C].Dresden, Germany:2005:1665912
    [103]王伟,孙明冬,朱晓东.双馈式风力发电机低电压穿越技术分析[J].电力系统自动化,2007,31(23):84-89
    [104]贺益康,周鹏.变速恒频双馈异步风力发电系统低电压穿越技术综述[J].电工技术学报,2009,24(9):140-146
    [105]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究[J].中国电机工程学报,2006,26(10):130-135
    [106]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170
    [107]向大为.双馈感应风力发电机特殊运行工况下励磁控制策略的研究[D].重庆:重庆大学,2006
    [108]Xiang D.,Li R. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through[J].IEEE Transactions on Energy Conversion,2006,21(3): 652-662
    [109]胡家兵,孙丹,贺益康.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化,2006,30(8):21-26
    [110]Sun T.,Chen Z.,Blaabjerg F. Voltage recovery of grid-connected wind turbines with DFIG after a short-circuit fault[A].IEEE 35th Annual Power Electronics Specialists Conference,[C].Aachen, Germany:2004:1991-1997
    [111]Rodriguez M.,Abad G,Sarasola I.,et al.Crowbar control algorithms for doubly fed induction generator during voltage dips[A].2005 European Conference on Power Electronics and Applications[C].Dresden, Germany:2005:1-10
    [112]Morren J.,Haan S.W.H.d. Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip[J].IEEE Transactions on Energy Conversion,2005, 20(2):435-441
    [113]Lopez J.,Gubia E.,Olea E.,et al. Ride Through of Wind Turbines With Doubly Fed Induction Generator Under Symmetrical Voltage Dips[J].IEEE Transactions on Industrial Electronics,2009,56(10):4246-4254
    [114]Flannery P.,Venkataramanan G A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter[J].IEEE Transactions on Power Electronics,2008,23(3):1126-1135
    [115]廖勇,李辉,姚骏,et al.采用串联网侧变换器的双馈风电机组低电压过渡控制策略[J].中国电机工程学报,2009,29(27):90-98
    [116]Muljadi E.,Yildirim D.,Batan T. Understanding the unbalanced-voltage problem in wind turbine generation[A].Proceedings of the International Conference on Industry Application[C].Phoenix, USA:1999:1359-1365
    [117]Kearney J.,Conlon M. Performance of a variable speed double-fed induction generator wind turbine during network voltage unbalance conditions [A].41st International Universities Power Engineering Conference[C].Newcastle upon Tyne, U.K.:2006:36-40
    [118]Xu L.,Y.Wang. Dynamic modeling and control of DFIG based wind turbines under unbalanced network conditions[J].IEEE Transactions on Power System,2007,22(1): 314-323
    [119]Brekken T.,Mohan N.,Undeland T. Control of a doubly-fed induction wind generator under unbalanced grid voltage conditions[A].2005 European Conference on Power Electronics and Applications[C].Dresden, Germany:2005:1665505
    [120]Brekken T.A.,Mohan N. Control of a doubly fed induction wind generator under unbalanced grid voltage conditions[J].IEEE Transactions on Energy Conversion,2007, 22(1):129-135
    [121]Xu L. Enhanced Control and Operation of DFIG-Based Wind Farms During Network Unbalance[J].IEEE Transactions on Energy Conversion,2008,23(4):1073-1081
    [122]Hu J.B.,He Y.K.,Xu L.,et al. Improved Control of DFIG Systems During Network Unbalance Using PI-R Current Regulators[J].IEEE Transactions on Industrial Electronics,2009,56(2):439-451
    [123]郑艳文,李永东,柴建云,et al.不平衡电压下双馈发电系统控制策略[J].电力系统自动化,2009,33(15):89-93
    [124]Zhou Y.,Bauer P.,Ferreira J.A.,et al.Operation of Grid-Connected DFIG Under Unbalanced Grid Voltage Condition[J].IEEE Transactions on Energy Conversion, 2009,24(1):240-246
    [125]Xu L. Coordinated Control of DFIG's Rotor and Grid Side Converters During Network Unbalance[J].IEEE Transactions on Power Electronics,2008,23(3): 1041-1049
    [126]Hu J.B.,He Y.K.,Man H. Enhanced control of DFIG-used back-to-back PWM VSC under unbalanced grid voltage conditions[J].Journal of Zhejiang University SCIENCE A,2007,8(8):1330-1339
    [127]Hu J.B.,He Y.K. Reinforced Control and Operation of DFIG-Based Wind Power Generation System Under Unbalanced Grid Voltage Conditions[J].IEEE Transactions on Energy Conversion,2009,24(4):905-915
    [128]Zhou P.,He Y.K.,Sun D.Improved Direct Power Control of a DFIG-Based Wind Turbine During Network Unbalance[J].IEEE Transactions on Power Electronics, 2009,24(11):2465-2474
    [129]Wang Y,Xu L.,Williams B.W. Compensation of network voltage unbalance using doubly fed induction generator-based wind farms[J].IET Renewable Power Generation,2009,3(1):12-22
    [130]Hansen A.D.,Hansen L.H. Wind turbine concept market penetration over 10 years (1995-2004)[J].Wind Energy,2007,10(1):81-97
    [131]汤蕴璆,罗应立,梁艳萍.电机学[M].第3版.北京:机械工业出版社,2008
    [132]许实章.电机学[M].北京:机械工业出版社,1981
    [133]陈伯时,陈敏逊.交流调速系统[M]. 北京:机械工业出版社,2000
    [134]Bose B.K. Modern power electronics and AC drives[M].New Jersey:Prentice Hall, 2002
    [135]Hancock N.N.电机的矩阵分析[M].李发海,郑逢时,张麟征.北京:科学出版社,1980
    [136]刘其辉.变速恒频风力发电系统运行与控制研究[D].杭州:浙江大学,2005
    [137]尔桂花,窦曰轩.运动控制系统[M].北京:清华大学出版社,2002
    [138]Leonhard W. Control of elect rical drives[M].3rd-ed. Berlin, Germany:Springer Verlag,2001
    [139]Wangsathitwong S.,Sirisumrannukul S.,Chatratana S.,et al.Symmetrical components-Based control technique of doubly fed induction generators under unbalanced voltages for reduction of torque and reactive power pulsations[A]. Proceedings of the International Conference on Power Electronics and Drive Systems[C].Bangkok, Thailand:2007:1325-1330
    [140]Albertos P.,Sala A. Multivariable Control Systems[M].London, U.K.:Springer, 2004
    [141]Bristol E.H. On a new measure of interactions for multivariable process control[J]. IEEE Transactions on Automatic Control,1966,11:133-134
    [142]Skogestad S., Postlethwaite I. Multivariable Feedback Control[M].Chichester, U.K. Wiley,1996
    [143]Jean-Jacques E.S.Applied nonlinear control[M].Beijing:China Machine Press, 2004
    [144]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996
    [145]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1998
    [146]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003
    [147]贾增周.大型风力发电机组的智能滑模变结构控制研究[D].北京:华北电力大学,2008
    [148]Roberto G.d.V.,Maria C.P.,Domingo B.S.Two families of sliding mode controllers for a doubly-fed induction generator in an isolated generation system [J].IEEE Latin America Transactions,2007,5(2):115-121
    [149]Chung S.K.,Lee J.H.,Park J.W.,et al.Current control of voltage-fed PWM inverter for AC machine drives using integral variable structure control[A].Proceedings of the International Conference on Industrial Electronics, Control, and Instrumentation[C]. Orlando,USA:1995:668-673
    [150]Munteanu I.,Bacha S.,Bratcu A.,et al. Energy-reliability optimization of wind energy conversion systems by sliding mode control,[J].IEEE Transactions on Energy Conversion,2008,23(3):975-985
    [151]Vidal P.E.,David M.P.,Bonnet F. Mixed control strategy of a doubly fed induction machine[J].Electrical Engineering,2008,90(5):337-346
    [152]Xu Z.,Rahman M.F. Direct torque and flux regulation of an IPM synchronous motor drive using variable structure control approach[J].IEEE Transactions on Power Electronics,2007,22(6):2487-2498
    [153]Drid S.,Tadjine M.,Nait-Said M.S.Robust backstepping vector control for the doubly fed induction motor[J].IET Control Theory and Applications,2007,1(4):861-868
    [154]Valenciaga F.,Puleston P.F.,Battaiotto P.E. Variable structure system control design method based on a differential geometric approach:application to a wind energy conversion subsystem[J].IEE Proceedings on Control Theory and Applications,2004, 151(1):6-12
    [155]Valenciaga F.,Puleston P.F. High-Order Sliding Control for a Wind Energy Conversion System Based on a Permanent Magnet Synchronous Generator[J].IEEE Transactions on Energy Conversion,2008,23(3):860-867

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700