伪连续导电模式Boost功率因数校正器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功率因数校正(Power Factor Correction, PFC)技术可有效地减少网侧输入电流谐波含量并提高电源功率因数,是电网供电用电设备中不可或缺的重要组成部分。在各种PFC变换器电路拓扑中,Boost变换器因其拓扑结构简单、变换效率高、控制策略易实现等优点,被广泛应用于PFC电路中。
     工作于不连续导电模式(Discontinuous Conduction Mode, DCM)和连续导电模式(Continuous Conduction Mode, CCM)的Boost PFC变换器应用非常广泛,但二者均存在负载功率范围受限的缺点。伪连续导电模式(Pseudo Continuous Conduction Mode, PCCM)是一种介于DCM与CCM之间的新型工作模式。相比于DCM Boost变换器,PCCM Boost变换器的输出电压、电感电流纹波小,且负载输出能力强。与CCM Boost变换器相比,PCCM Boost变换器控制到输出的传递函数不存在右半平面(Right Half Plane, RHP)零点,进而具有理想的动态性能。因此,PCCM是一种具备优良工作特性的新型工作模式。
     本文提出工作于PCCM模式的Boost PFC变换器,在深入分析PCCM Boost PFC变换器的前提下,根据其特有的两个控制自由度,建立了电压环与电流环并行的控制环路。针对宽负载范围内具有高功率因数的控制目标,充分利用PCCM模式平均电感电流大于平均输入电流的特点,提出以负载电流为基准量实时调整参考电感电流谷值的控制策略。在此基础上,详细设计了电感电流谷值跟踪的数字控制算法和电压PI调节器参数。
     对PCCM Boost PFC变换器与传统DCM和CCM模式Boost PFC变换器进行了仿真验证。结果表明,负载功率较大时,DCM Boost PFC变换器的电感电流峰值远大于PCCM和CCM模式,大幅增加了开关管和EMI滤波器成本;PCCM和CCM Boost PFC变换器的电感电流峰值和纹波较小,具有应用于大功率场合的优良工作性能。在负载功率较小时,PCCM Boost PFC变换器实时降低参考电感电流谷值,使变换器稳定地工作在PCCM模式,保证变换器输入电流具有较高的正弦度;而此时CCM Boost PFC变换器的输入电流在输入电压过零点附近发生畸变,严重降低了变换器的功率因数。因此,在综合考虑功率因数、开关管电流应力、EMI等关键性能指标的前提下,宽负载范围下的PCCM Boost PFC变换器表现出了更加优越的工作特性。
     最后,本文设计了一台输出功率范围为70W-400W的实验样机,进一步对PCCM Boost PFC变换器和CCM Boost PFC变换器的工作性能进行了对比和验证。
Power factor correction (PFC) technology which is an indispensable component of the electrical equipment supplied by power system can effectively reduce the current harmonics and improve the power factor. Boost converter is widely used as PFC circuit because of many advantages, such as the simple topology, high efficiency and easily achieved control strategy.
     Boost PFC converters are generally designed to operate in discontinuous conduction mode (DCM) or in continuous conduction mode (CCM). However, it is known that the converter suffers from restricted load range in the two operation modes. Pseudo continuous conduction mode (PCCM) is a novel operation intervened between DCM and CCM. Compared with DCM Boost converter, the PCCM Boost converter has a smaller voltage and current ripple, resulting in greater capacity of taking heavy load. Besides, there is no right half plane (RHP) zero in the control to output transfer function which, however, exists in CCM Boost converter. So the PCCM Boost converter exhibits a very attractive feature on transient response. On the whole, PCCM is a novel mode with excellent performance.
     A novel PFC converter operating in pseudo continuous conduction mode is proposed in this paper. On the premise of studying PCCM Boost PFC converter, two side-by-side loops are established and designed to control the typical two degrees of freedom. To extend the load range of Boost PFC converter, the point that the average inductor current is higher than the average input current in PCCM is perfectly utilized, which is meet by calculating and adjusting the reference valley value of inductor current on the basis of load current. Based on which, the digital valley current control strategy of current loop and PI compensation of voltage loop is designed.
     To verify the theoretical analysis, the PCCM Boost PFC converter has been simulated and compared with the Boost PFC converter operating in CCM and DCM controlled by conventional technique. Simulation results show that, when the Boost PFC converter operates at high output power, the inductor current peak value in DCM operation is much higher than that in PCCM and DCM operation, which would obviously ehance the switch and EMI cost. The PCCM and CCM Boost PFC converter with low inductor current peak value and ripples have good performance for high-power application. On the other hand, if the output power is reduced, the PCCM Boost PFC converter could regulate the reference valley value of inductor current in time and keep stable operation mode, and then have sinusoidal input current. However, the input current of CCM Boost PFC converter at low output power is non-sinusoidal, resulting in a relatively low power factor. Therefore, when the overall performance including power factor, switch current stress and EMI is taken into account, the PCCM Boost PFC converter exhibits more excellent capability for wide load range application.
     The performance of PCCM Boost PFC converter and CCM Boost PFC converter is compared and verified by using an 70W~400W experimental prototype.
引文
[1]林渭勋.现代电力电子电路[M].浙江大学出版社,2002.
    [2]Abraham I.Pressman. Swithcing power supply design[M]. Second editon. Transl. by Zhiqiang Wang,2005, Beijing:Publishing House of Electronics Idustry.
    [3]张占松,蔡宣三.开关电源的原理与设计[M].修订版.电子工业出版,2004.
    [4]张立,赵永健.现代电力电子技术[M].科学出版社,1995.
    [5]周志敏,周纪海,纪爱华.开关电源功率因数校正电路设计与应用[M].第一版.人民邮电出版社,2004.
    [6]Mehmet K. Nalbant. Power factor calculation and measurement[C]. IEEE Applied Power Conference and Exposition,1990:543-552.
    [7]Kin-Siu Fung, Wing-Hung Ki, Philip K. T. Mok. Analysis and measurement of DCM power factor correctors[C]. IEEE Power Electronics Specialists Conference,1999: 709-714.
    [8]卢伟国,周维,罗全明,等.电压模式Buck变换器的分岔控制[J].电工技术学报,2009,24(4):133-138.
    [9]G. Spiazzi. Analysis of buck converters used as power factor preregulators[C]. IEEE Power Electronics Specialists Conference,1997:564-570.
    [10]K. Hirachi, M. Nakaoka. Improved control strategy on buck-type PFC converter[J]. IET Electronics Letters,1998,34(12):1162-1163.
    [11]H. Endo, T. Yamashita, T. Sugiura, et al. A high power factor buck converter[C]. IEEE Power Electronics Specialists Conference,1992:1071-1076.
    [12]杭丽君,阳岳丰,吕征宇,等.5kW全数字控制单级隔离型功率因数校正器的研究[J].中国电机工程学报,2007,27(7):68-73.
    [13]Wennan Guo, Praveen K. Jain. Comparison between boost and buck boost implemented PFC inverter with build-in soft switching and a unified controller[C]. IEEE Power Electronics Specialists Conference,2001:472-477.
    [14]K. Mastsui, I. Yamamoto, T. Kishi, et al. A comparison of various buck-boost converters and their application to PFC[C]. IEEE Annual Conference of Industrial Electronics Society,2002:30-36.
    [15]G. K. Andersen, F. Blaabjerg. Current programmed control of a single-phase two-switch buck-boost power factor power factor correction circuit[J]. IEEE Transactions on Industrial Electronics,2005,53(1):263-271.
    [16]W. Y. Choi, J. M. Kwon, B. H. Kwon. Bridgeless dual-boost rectifier with reduced diode reverse-recovery problems for power-factor correction[J]. IET Power Electronics, 2008,1(2):194-202.
    [17]J. P. Gegner, C. Q. Lee. Linear peak current mode control:a simple active power factor correction control technique for continuous conduction mode[C]. IEEE Power Electronics Specialists Conference,1996:196-202.
    [18]Dylan Dah-Chuan Lu, Herbert Ho-Ching Lu, Velibor Pjecalica. Single-stage AC/DC boost-forward converter with high power factor and regulated bus and output voltages[J]. IEEE Transactions on Industrial Electronics,2009,56(6):2128-2132.
    [19]Yu Qin, Shanshan Du. A novel adaptive hysteresis band current control using a DSP for a power factor corrected on-line UPS[C]. IEEE International Conference on Industrial Electronics,1997:208-212.
    [20]马皓,郎芸萍.一种关于单相Boost功率因数校正器数字控制的改进算法[J].电工技术学报,2006,21(2):83-87.
    [21]Chen Jingquan, A. Prodic, R. W. Erickson, et al. Predictive digital current programmed control[J]. IEEE Transactions on Power Electronics,2003,18(1):411-419.
    [22]H.S. Athab. A duty cycle control technique for elimination of line current harmonics in signle stage DCM boost PFC circuit[C]. IEEE Region 10 Conference,2008:1-6.
    [23]Enrico Santi, Zhe Zhang, Slobodan Cuk. Low-distortion control of unity-power-factor converters in discontinuous conduction mode[C]. IEEE Power Electronics Specialists Conference,1999:301-306.
    [24]Zhen Z. Ye, Milan M. Jovanovic. Implementation and performance evaluation of DSP based control for constant frequency discontinuous conduction mode Boost PFC front end[J]. IEEE Transactions on Industrial Electronics,2005,52(1):98-107.
    [25]Martin H. L. Chow, K. W. Siu, Chi K. Tse, Yim-Shu Lee. A novel Method for elimination of line current harmonics in single-stage PFC swithing regulators[J]. IEEE Transactions on Power Electronics,1998,13(1):75-83.
    [26]D. M. Van de Sype, K. D. Gusseme, A. P. Van den Bossche, et al. Duty-ratio feedforward for digitally controlled boost PFC converters[C]. IEEE Applied Power Electronics Conference and Exposition,2003:396-402.
    [27]J. Sun. On the zero-crossing distortion in single phase PFC converters[J]. IEEE Transactions on Power Electronics,2004,19(11):685-692.
    [28]Jinghai Zhou, Zhengyu Lin, Yuancheng Ren, et al. A novel DSP controlled 2kW PFC converter with a simple sampling algorithm[C]. IEEE Applied Power Electronics Conference and Exposition,2000:434-437.
    [29]David M. Van de Sype, Koen De Gusseme, Alex P. Van den Bossche, et al. A samling algorithm for digitally controlled boost PFC converters [J]. IEEE Transactions on Power Electronics,2004,19(3):649-657.
    [30]J. S. Lai, D. Chen. Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode[C]. IEEE Applied Power Electronics Conference and Exposition,1993:267-273.
    [31]Arturo Fernandez, Javier Sebastian, Pedro Villegas, et al. Dynamic limits of a power factor preregulator[J]. IEEE Transactions on Industrial Electronics,2005,52(1):77-87.
    [32]J. Sebastian, D. G. Lamar, M. A. P. de Azpeitia, et al. The voltage-controlled compensation ramp:a waveshaping technique for power factor correctors [J]. IEEE Transactions on Industrial Applications,2009,45(3):1016-1027.
    [33]Lee Yim-Shu, K. W. Siu. Single-switch fast-response switching regulators with unity power factor[C]. IEEE Applied Power Electronics Conference and Exposition,1996: 791-796.
    [34]M. H. L Chow, Lee Yim-Shu, C. K. Tse. Single-stage single-switch isolated PFC regulator with unity power factor, fast Transient response and low-voltage stress[J]. IEEE Transactions on Power Electronics,2000,15(1):156-163.
    [35]G. Spiazzi, P. Mattavelli, L. Rossetto. Methods to improve dynamic response of power factor preregulators:an overview[C]. IEEE European Power Electronics Conference, 1995:754-759.
    [36]刘桂花,王卫,徐殿国.具有快速动态响应的数字功率因数校正算法[J].中国电机工程学报,2009,29(12):10-15.
    [37]Rejesh Ghosh, G. Narayanan. A simple method to improve the dynamic response of single-phase PWM rectifiers [J]. IEEE Transactions on Power Electronics,2008,55(10): 3627-3634.
    [38]胡宗波,张波,胡少甫,等.Boost功率因数校正器单周期控制适用性的理论分析和实验验证[J].中国电机工程学报,2005,25(21):19-23.
    [39]K. M. Smedley, S. Cuk. One cycle control of switching converters [J]. IEEE Transactions on Power Electronics,1995,10(6):625-633.
    [40]Aleksandar Prodic, Dragan Maksimovic, Robert W. Erickson. Dead-zone digital controller for improved dynamic response of power factor preregulators[C]. IEEE Applied Power Electronics Conference and Exposition,1996:382-388.
    [41]L. Rossetto, G. Spiazzi, P. Tenti, et al. Fast-response high-quality rectifier with sliding mode control[J]. IEEE Transactions on Power Electronics,1994,9(2):146-152.
    [42]任海鹏,刘丁.基于Matlab的PFC Boost变换器仿真研究和实验验证[J].电工技术学报,2006,21(5):29-35.
    [43]Mohamed Orabi, Tamotsu Ninomiya. Nonlinear dynamics of power-factor-correction converter[J]. IEEE Transactions on Industrial Electronics,2003,50(6):1116-1125.
    [44]戴栋,张波,李胜男,等.单级PFC变换器中的Hopf分岔[J].电工技术学报,2008,23(11):65-71.
    [45]In Dong Kim, B. K. Bose. A new ZCS turn-on and ZVS rurn-off unity power factor PWM rectifier with reduced conduction loss and no auxiliary switches[C]. IEEE Power Electronics Specialists Conference,1998:1344-1350.
    [46]Jang Yungtaek, M. M. Jovanovic. A new soft-switched high-power-factor boost converter with IGBTs[J]. IEEE Transactions on Power Electronics,2002,17(4): 469-476.
    [47]A. Pietkiewicz, D. Tollik. Snubber circuit and MOSFET paralleling considerations for high power boost-based power-factor correctors[C]. IEEE Telecommunications Energy Conference,1995:41-45.
    [48]W. Sulistyono, P. Enjeti. A series resonant AC-to-DC rectifier with high-frequency isolation[J]. IEEE Transactions on Power Electronics,1995,10(6):784-790.
    [49]Duarte Da Cunha, I. C. M. Barbi. A new ZVS-PWM active-clamping high power factor rectifier:analysis, design, and experimentation[C]. IEEE Applied Power Electronics Conference and Exposition,1998:230-236.
    [50]Souza De, I. A. F. Barbi. A new ZVS-PWM unity power factor rectifier with reduced conduction losses[J]. IEEE Transactions on Power Electronics,1995,10(6):746-752.
    [51]Chien-Ming Wang. A novel zero-voltage-switching PWM boost rectifier with high power factor and low conduction losses [J]. IEEE Transactions on Industrial Electronics,2005,52(2):427-435.
    [52]I. Lindroth, P. Melchert, T. Sahlstrom. Methods of improving efficiency in wide input range boost converters at low input voltages[C]. IEEE Telecommunications Energy Conference,2000:424-431.
    [53]Wei Huai, I. Batarseh. Comparison of basic converter topologies for power factor correction[C]. IEEE Southeastcon Proceedings,1998:348-353.
    [54]C. K. Tse, M. H. L. Chow, M. K. H. Cheung. A family of PFC voltage regulator configurations with reduced redundant power processing[J]. IEEE Transactions on Power Electronics,2001,16(6):794-802.
    [55]陈息坤,李丽娟,单鸿涛,等.基于数字信号处理器的有源功率因数校正器拓扑 结构及其控制策略研究[J].中国电机工程学报,2006,26(9):76-81.
    [56]J. Sebastian, J. A. Cobos, J. M. Lopera, et al. The determination of the boundaries between continuous and discontinuous conduction modes in PWM dc-to-dc converters used as power factor preregulators[J]. IEEE Transactions on Power Electronics,1995, 10(2):574-582.
    [57]R. K. Tripathi, S. P. Das, and G. K. Dubey. Mixed-mode operation of boost switch mode rectifier for wide range of load variations [J]. IEEE Transactions on Power Electronics, 2002,17(6):999-1009.
    [58]Rajesh Ghosh, G. Narayanan. A single-phase boost rectifier system for wide range of load variations [J]. IEEE Transactions on Power Electronics,2007,22(2):470-479.
    [59]K. D. Gusseme, D. M. Van de Sype, A. P. Van den Bossche, et al. Digitally controlled boost power factor correction converters operating in both continuous and discontinuous conduction mode[J]. IEEE Transactions on Industrial Electronics,2005, 52(1):88-97.
    [60]Dongsheng Ma, Wing-Hung Ki. Fast transient PCCM switching converter with freewheel switching control [J]. IEEE Transactions on Circuits and Systems,2007, 54(9):2194-2197.
    [61]Kanakasabai Viswanathan, Ramesh Oruganti, Dipti Srinivasan. A novel tri-state boost converter with fast dynamics [J]. IEEE Transactions on Power Electronics,2002,17(5): 677-683.
    [62]Kanakasabai Viswanathan, Ramesh Oruganti, Dipti Srinivasan. Dual mode control of tri-state boost converter for improved performance[J]. IEEE Transactions on Power Electronics,2005,20(4):790-797.
    [63]Dongsheng Ma, Wing-Hung Ki, Chi-Ying Tsui. Apseudo-CCM/DCM SMO switching converter with freewhell switching[J]. IEEE Journal of Solid-state circuits,2003, 38(6):1007-1014.
    [64]C. Sreekumar, Agarwal Vivek. Comparison of mode switched controllers for a pseudo continuous current mode boost converter[C]. IEEE International Conference on Power Electronics, Drives and Energy Systems,2006:1-6.
    [65]K. Viswanathan, R. Oruganti, D. Srinivasan. Tri-state boost converter with no right half plane zero[C]. IEEE International Conference on Power Electronics and Drive systems, 2001:687-693.
    [66]C. Sreekumar, Agarwal Vivek. A circuit theoretical approach to hybrid mode switching control of a pseudo CCM boost converter[C]. IEEE International Conference on Industrial Technology,2006:791-795.
    [67]R. D. Middlebrook, S. Cuk. A general unified approach to modeling switching converter power satages[C]. IEEE Power Electronics Specialists Conference,1976:18-34.
    [68]F. A. Huliehel, F. C. Lee, and B. H. Cho. Small signal modeling of the single phase boost high power factor converter with constant frequency control[C]. IEEE Power Electronics Specialists Conference,1992:475-482.
    [69]G. Spiazzi, P. Mattavelli, L. Rossetto. Power factor preregulator with improved dynamic response[J]. IEEE Transactions on Power Electronics,1997,12(2):343-349.
    [70]周国华.开关电源数字电流控制技术研究[DB].西南交通大学硕士论文,2007年7月.
    [71]K. De Gusseme, D. M. Van de Sype, J. A. Melkebeek. Design issues for digital control of boost power factor correction converters[C]. IEEE International Symposium on Industrial Electronics,2002:731-736.
    [72]A. H. Mitwalli, S. B. Leeb, G. C. Verghese, et al. Simple digital control improving dynamic performance of power factor preregulators[J]. IEEE Transactions on Power Electronics,1998,13(5):814-823.
    [73]R. B. Ridely. Average small-signal analysis of the boost power factor correction circuit[C]. Virginia Power Electronics Center Seminar,1989:108-120.
    [74]A. Olayiwola, B. Sock, M. R. Zolghadri, et al. Digital controller for a boost PFC converter in continuous conduction mode[C]. IEEE Conference on Industrial Electronics and Applications,2006:1-8.
    [75]Aleksandar Prodic, Jingquan Chen, Robert W, et al. Digitally controlled low-harmonic rectifier having fast dynamic responses[C]. IEEE Applied Power Electronics Conference and Exposition,2002:476-482.
    [76]D. G. Lamar, A. Fernandez, M. Rodriguez, et al. A unity power factor correction preregulator with fast dynamic response based on a low-cost microcontroller[C]. IEEE Applied Power Electronics Conference and Exposition,2007:186-192.
    [77]Vishu Murahari Rao, Amit Kumar Jain, Kishore K. Reddy, et al. Experimental comparison of digital implementations of single-phase PFC controllers [J]. IEEE Transactions on Industrial Electronics,2008,55(1):67-78.
    [78]Praneet Athalye, Dragan Maksimovic, Robert Erickson, et al. DSP implementation of a single-cycle predictive current controller in a boost PFC rectifier[C]. IEEE Applied Power Electronics Conference and Exposition,2005:837-842.
    [79]Ahmet Karaarslan. Hysterisis control of power factor correction with a new approach of sampling technique[C]. IEEE Electrical and Electronics Engineers in Israel,2008: 765-769.
    [80]Ranjan K. Gupta, Hariharan Krishnaswami, Ned Moban. A unified analysis of CCM boost PFC for various current control strategies[C]. IEEE International Conference on Power Electronics, Drives and Energy Systems,2006:1-5.
    [81]K. De Gusseme, W. R. Ryckaert, David M.Van de Sype. A boost PFC converter with programmable harmonic resistance[J]. IEEE Transactions on Industry Applications, 2007,43(3):742-750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700