空间测量数据区域性地壳形变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地壳运动和变形过程与人类生存环境、气候变化、地震、火山活动等有直接或间接的关系。研究中国西部地壳运动对我国现今和未来的气候变化的认识、自然灾害的预测具有重大的科学意义。空间大地测量是监测地壳运动和变形的主要方法之一。卫星重力测量具有全球覆盖率高、观测点选择不受自然条件限制、观测结果不受地面位置变化的影响等优点,是研究地壳形变的一种新的手段。本文利用卫星重力、GPS数据对中国西部地壳形变、断层活动进行了计算研究,取得的主要成果有:
     1.利用地球密度分层模型计算了中国大陆的地壳厚度,采用GRACE(Gravity Recovery and Climate Experiment)数据进行了验证,其结果与文献[66]结果一致。
     2.采用GRACE卫星数据计算了我国汶川Ms8.0级强震产生的同震重力变化,其变化值约为-3×10-8ms-2,并利用地壳膨胀模型和位错理论进行了解释。
     3.对标准PSO算法(Particle Swarm Optimization Algorithm)进行了改进。在改进后的PSO算法中,不论是惯性权值动态调整的因素,还是引进变异操作的因素,耗时均优于标准PSO算法,当两者组合可达到最佳效果。基于位错理论分别采用标准PSO算法和改进后的PSO算法对祁连山断裂带中东段的三维滑动速率进行反演。结果表明,改进后的算法比标准PSO算法耗时减少了36.34%。
     4.分析了断层运动特征与水平位移、高程变化、重力变化三种数据联合反演断层参数时的相对权比关系。当断层以走滑为主时,水平位移数据的权最大,重力变化数据的权次之,高程变化的数据权最小;当断层以倾滑为主时,高程变化数据的权大于重力变化数据的权;当断层以张裂为主时,重力变化数据的权最大,高程变化数据的权次之,水平位移数据的权最小
     5.首次建立了地壳水平运动在局部的坐标系下与地球外部空间观测点重力变化模型,以我国西部地区的GPS、水准等观测资料,结合该地区的高程数据,计算了我国西部地壳在进行水平运动、垂直运动等过程中引起的重力场时空变化特征。将地壳水平运动数值模拟的重力变化与GRACE观测结果进行对比,发现两者的重力变化值量级相近、图形轮廓相似。
     6.采用中国西部地区卫星重力数据,首次反演中国西部地区地壳水平运动速率、地壳垂直运动速率。反演结果表明:中国西部地壳水平运动具有整体由南向北顺时针运动,且伴有向东运动的特征,除昆明区域(地壳由北向南运动)外,在南北方向上地壳水平运动速率有从南向北逐渐递减的趋势,青藏高原南北方向运动速率为10-35mm/a,东西方向运动速率为1~25mm/a;塔里木盆地南北方向运动速率为5~15mm/a,东西方向运动速率为4~7mm/a;中国西部地壳垂直形变是趋势为南升北降。在南部喜马拉雅山脉地壳上升幅度最大,速率达1Omm/a;在北部准噶尔盆地的南部地壳垂直运动速率-3~-5mm/a,向北沉降速率有加大趋势,最大速率为-9mm/a。
The movement and deformation of the crust are directly or indirectly related to the environment for human survival, climate change, earthquakes, and volcanic eruptions. It is scientifically meaningful to study the crustal movement in China's western region for understanding climate change and predicting natural disasters in current China. Space geodetic measurement is one of the major means for monitoring crustal movement and deformation. The satellite gravity survey is a new method for the study of crustal deformation owing to its advantages of higher global coverage, observation points free of control of natural conditions, and observed results free of influence of ground position changes. In this work, the crustal deformation and the fault activity in China's western region were calculated by satellite gravity data and GPS data, on the basis of which major achievements are involved in:
     1. The earth density stratified model was then used to calculate the crustal thickness distribution in the mainland China. The crustal thickness distribution was verified Using GRACE (Gravity Recovery and Climate Experiment) data. The results were accord with that achieved by reference [66].
     2. The seismic gravity variation of Ms8.0earthquake at Wenchuan of China was computed by GRACE data. The variation value was about-3×10-8ms-2, which was interpreted by the earth's crust expansion model and the dislocation theory.
     3. The standard PSO algorithm (Particle Swarm Optimization Algorithm) was improved. In the improved PSO algorithm, either the dynamic adjustment inertia weight of the algorithm or the introduction of mutation of the algorithm, the time consumed was both better than that by the standard PSO algorithm. The maximum result was obtained when the two algorithms were combined. The standard PSO algorithm and the improved PSO algorithm, all of which are on the basis of the dislocation theory, were adopted to deduce the three-dimensional slip rate of Qilianshan fault in the middle and eastern segments. Results showed that the time consumed by the improved PSO algorithm was reduced by36.34%by the standard PSO algorithm.
     4. The relative weight ratio relationship among the characteristics of the fault movement, horizontal displacement, elevation change, and gravity variation when the three kinds of data were jointly used to inverse the fault parameters. When the fault was mainly in the state of strike-slip, the weight of the data in the horizontal displacement was the maximum, the gravity data came next, and the minimum was the weight of the elevation change data. When the dip-slip was the major factor of the fault, the weight of the elevation change data was greater than that of the gravity change data. When the fault was mainly in rifting, the weight of the gravity change data was the maximum, that of the elevation data came next, and that of the horizontal displacement data was the minimum.
     5. A model was established in a fixed coordinate system between the crust horizontal movement and the gravity changes in the external earth. Taking into account the GPS in China's western region, level, and some observation data as well as the local elevation data, the time and space variation characteristics of the gravity field were calculated, which were caused respectively by the crust horizontal movement and the vertical movement in the western area of China. The gravity change by the numerical simulation of the crustal horizontal movement was compared with that through the GRACE observation. Results showed that the magnitude of the two gravity changes was close, and the graphics contour was similar.
     6. The rate of the crustal horizontal movement and vertical crustal movement were investigated for the first time by the satellite gravity data in western China. Results showed that the characteristics of crustal horizontal movement in western China was clockwise from south to north with a trend of moving eastbound except Kunming in which the movement was from north to south. Along the south-north direction, the horizontal movement velocity was gradually declined. The south-north movement rate on the Qinghai-Tibet plateau was10~35mm/a, whereas the east-west movement rate was1~25mm/a. On the Tarim Basin, the south-north movement rate was5~15mm/a, whereas the south-north was4~7mm/a. The trend of the vertical crustal deformation in western China was up in south but down in north. In the southern Himalayas, the crust rose in a largest speed, reaching10mm/a. In the southern Junggar Basin, the vertical crustal movement rate was between-3~-5mm/a. The sedimentation rate northward trended to increase with the maximum rate of-9mm/a.
引文
1. 陈林,宋海斌,刘洪等.基于变参数板块模型的大洋岩石圈参数反演与岩石圈伸展成盆模拟[J].地球物理学报,2009,52(8):2056-2063.
    2. 陈兵,江在森,祝意青等.地震前地表重力场变化的一种可能解释——应力一损伤耦合效应[J].地震地质,2003,25(4):625-631.
    3. 陈运泰,顾浩鼎,卢造勋.1975年海城地震和1976年唐山地震前后的重力变化fJ].地震学报,1980,2(1):21-31.
    4. 陈运泰,林邦慧,林中洋等.根据地面形变的观测研究1966年邢台地震的震源过程[J].地球物理学报,1975,18(1):164-180.
    5. 晁定波,许才军,刘大杰.四维整体大地测量有限单元法[J].测绘学报,1997,26(1):7-13
    6. 崔笃信,王庆良,王文萍.青藏块体东北缘地壳水平运动状态[J].大地测量与地球动力学,2004,24(3):29-34.
    7. 丁国瑜.中国岩石圈动力学概论[M].北京:地震出版社,1991.
    8. 段虎荣,张永志,刘锋等.利用GRACE卫星数据研究汶川地震前后重力场的变化[J].地震研究,2009,32(3):295-298
    9. 段虎荣,张永志,刘锋等.利用卫星重力数据研究中国及邻域地壳厚度[J].地球物理学进展,2010,25(2):494-499.
    10.段虎荣,张永志,徐海军.改进的粒子群算法在断层滑动速率反演中的应用[J].大地测量与地球动力学,2010,30(6):31-36.
    11.段虎荣,张永志,徐海军等.中国西部地壳的水平运动引起重力场空间变化特征[J].大地测量与地球动力学,2011,31(1):24-28.
    12.段虎荣,张永志.断层滑动特征与多种反演数据的相对权比关系研究[J].大地测量与地球动力学,2009,29(6):18-21.
    13.董鸿闻,李国智,王文利.我国大陆垂直运动的趋势分析[J].测绘通报,2003,11,1-2.
    14.独知行,欧吉坤,靳奉祥等.联合反演模型中相对权比的优化反演[J].测绘学报.2002,32(1):15-19.
    15.冯锐,郑书真,黄桂芳.华北地区重力场与沉积层构造[J].地球物理学报,1989,32(4):385-397.
    16.范晓.汶川大地震地下的奥秘[J].中国国家地理,2008(06).
    17.方剑,许厚泽.中国及邻区岩石层密度三维结构[J].地球物理学进展,1999,14(2):88-93.
    18.方剑.中国海及邻域岩石圈三维密度分布[J].地球物理学进展,2003,18(2):306-311.
    19.方剑.利用卫星重力资料反演地壳及岩石圈厚度[J].地壳形变与地震,1999,19(1):26-31.
    20.高锡铭,伍吉仓.负位错模型与断层运动图像-确定滇西地区地震预报试验区的潜在震源区[J].地壳形变与地震,1994,14(4):1-8.
    21.郭俊义.物理大地测量学基础[M].武汉:武汉测绘科技大学出版社,1994.
    22.顾功叙,Kuo J.T.,刘克人等.中国京进唐张地区时间上连续的重力变化与地震的孕育和发生[J].科学通报,1997,42(18):1919-1930.
    23.黄建梁,李辉,李瑞浩.点源位错引起的重力、位势及其梯度变化[J].地震学报,1995,17(1):72-80.
    24.黄立人,马青,王若柏.中国大陆部分地区的地壳垂直运动[J].大地测量与地球动力学2004,24(4):7-12.
    25.黄建平,傅容珊,许萍.利用重力和地形观测反演中国及邻区地壳厚度[J].地震学报,2006,28(3):250-258.
    26.华昌才等.大同—阳高地震重力变化[J].地震学报,1992.14(3):369-372.
    27.华昌才,果勇,刘瑞法等.首都圈地区重力场的时空变化[J].地震学报,1995,17(3):347352.
    28.何文贵,袁道阳,葛伟鹏等.祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J].地震,2010,30(1):13-137.
    29.胡明成.现代大地测量学理论及应用[M].测绘出版社,2003:295—298.
    30.胡明成,鲁福.现代大地测量学(上册)[M].测绘出版社,1993:392—493.
    31.贾民育.唐山地震前后的重力场及其与垂直形变的关系[J].地壳形变与地震,1981,1(1),52-65.
    32.江在森,武艳强,方颖等.汶川8.0级地震前区域地壳运动与应变场动态特征[J].地震,2009, 29(1):68-76.
    33.江在森等.青藏块体东北缘水平应变场与构造变形分析[J].地震地质,2001,23(3):337—345.
    34.江在森等.青藏块体东北缘近期水平运动与变形[J].地球物理学报,2001,44(5):636—644.
    35.江在森,马宗晋,张希等.青藏块体东北缘水平应变场与构造变形分析[J].地震地质,2001,23(3):337—345.
    36.江在森,张希,崔笃信等.青藏块体东北缘近期水平运动与变形[J].地球物理学报,2001,44(5):636—644.
    37.焦孟梅,张景发,姜文亮.颜蕊卫星重力发展及应用[A].地壳构造与地壳应力文集,2007,(20):95-101.
    38.柯小平,王勇,许厚泽.用变密度模型反演青藏高原的莫霍面深度[J].武汉大学学报(信息科学版),2006,31(4):289-292.
    39.何玉梅,姚振兴.中国台湾南部及其周边岛屿现今地壳形变的位错模型[J].地球物理学报,2002,45(5):638-645
    40.康荣华,地壳运动引起的重力场变化特征[D],长安大学,硕士学位论文,2010.
    41.李安生.地球内部密度重力加速度与压强分布公式的拟合[J].云南大学学报(自然科学版),2007,29(5):480—484.
    42.李延兴,张静华,何建坤等,菲律宾海板块的整体旋转线性应变模型与板内形变-应变场[J].地球物理学报,2006,49(5)1339-1346.
    43.李建成,陈俊勇,宁津生等.地球重力场逼近理论与中国2000似大地水准面的确定[M].武汉大学出版社,2003.
    44.李飞,张智.张家口塘沽测线岩石圈有效弹性厚度研究[J].地球物理学进展,2009,24(5):1602-1608.
    45.李斐,柯宝贵,王文睿等.利用重力地形导纳估计月壳厚度[J].地球物理学报,2009,52(8):2001-2007.
    46.李瑞浩.重力学引论[M].地震出版社,1988.
    47.李瑞浩,黄建梁,李辉等.唐山地震前后区域重力场变化机制[J].地震学报,1999,19(4):399-407.
    48.李祥根.中国新构造运动概论[M].北京:地震出版社,2003.
    49.李爽,许才军,王新洲.位错模式反演的算法研究[J].大地测量与地球动力学,2003,23(1):53-55.
    50.李爽,许才军,王新洲.论多种数据联合反演的模式及算法[J].大地测量与地球动力学,2002,22(3):78-82.
    51.李辉,付光裕,孙少安,项爱民.滇西地区重力场动态变化计算[J].地壳形变与地震,2000,20(1):60-66.
    52.李辉,付广裕,李正心.重复重力测量结果计算垂线偏差的时间变化[J].地震学报,2001,23(1):61-67.
    53.李如琦,周媛媛.基于改进粒子群算法的输电网扩展规划[J].昆明理工大学学报(理工版),2009,34(1):82-86.
    54.陆仲连,吴晓平.人造地球卫星与地球重力场[M].测绘出版社,1994.
    55.陆克中,王汝传,帅小应.保持粒子活性的改进粒子群优化算法[J].计算机工程与应用,2007,43(11):35-38.
    56.骆遥.两种新的长方体重力场正演表达式及其理论推导[J].工程地球物理学报,2008,5(2):210-214.
    57.卢占武,高锐,李秋生等.中国青藏高原深部地球物理探测与地球动力学研究[J].地球物理学报,2006,49(3):753-770.
    58.卢红艳,郑金涵,刘瑞法,郭风等.1985-2003京津唐张地区重力变化[J].地球物理学进展,2004,19(4):887-892.
    59.卢造勋,方昌流等.重力变化与海城地震[J].地球物理学报,1978,21(1):1-8.
    60.刘鼎文.地壳形变理论研究的内容、进展与任务[M].地壳形变与地震,1990,10(1):30-41.
    61.刘宁。,张永志.位错模式的蚁群算法反演断层参数[J].大地测量与地球动力学,2008,28(6):1-5.
    62.刘宁,蚁群算法反演断层三维滑动速率[D].长安大学,硕十学位论文,2009.
    63.楼海,王椿镛,王飞.卫星重力资料揭示的新疆天山地区构造动力学状态[J].地震学报,2000, 22(5):482-490.
    64.罗志才.利用卫星重力梯度数据确定地球重力场的理论利方法[D].武汉测绘科技大学1996.88-91.
    65.马丽,李家正.大同地区几次中强地震前后的重力变化[J].西北地震学报,1994,16(1):32-39.
    66.马杏垣.中国岩石圈动力学地图集[M].北京:中国地图出版社,1992.
    67.申重阳,李辉等.丽江7.0级地震重力前兆模式研究[J].地震学报,2003,25(2):163-171.
    68.申重阳.地壳形变与密度变化耦合运动探析[J].大地测量与地球动力学,2005,25(3):7-12.
    69.申重阳,吴云,王琪等.云南地区主要断层运动模型的GPS数据反演[J].大地测量与地球动力学,2002,22(3):46-51.
    70.申重阳,王琪,吴云等.川滇菱型块体主要边界运动模型的GPS数据反演研究[J].地球物理学报,2002,45(3):352-361
    71.赖锡安,黄立人,徐菊生等.中国大陆现今地壳运动[M].北京:地震出版社,2004.
    72.宁津生.跟踪世界发展动态-致力地球重力场研究[J].武汉大学学报.信息科学版,2001,26(6):471-474.
    73.宁津生,罗志才.卫星跟踪卫星技术的进展及应用前景[J].测绘科学,2000,25(4):1-4.
    74.孙和平.重力场的时间变化与地球动力学[J].中国科学院院刊,2004,19(3):189-193.
    75.孙少安,项爱民,李辉.滇西和北京区域重力场演化及其与地震关系的探讨[J].地震,1999,19(1):97-106.
    76.孙文科.地震火山活动产生重力变化的理论与观测研究的进展及现状[J].大地测量与地球动力学,2008,4:44-53.
    77.谈洪波,申重阳,李辉.断层位错引起的地表重力变化特征研究[J].大地测量与地球动力学2008,28(4):54-62.
    78.滕吉文,白登海,杨辉等.2008汶川Ms8.0地震发生的深层过程和动力学响应[J].地球物理学报,2008,25:1385-1402.
    79.田明俊,周晶.岩土工程参数反演的一种新方法[J].岩石力学与工程学报,2005,24(9):1492-2005.
    80.吴国华,罗增雄等.丽江7.0级地震前后滇西实验场的重力异常变化特征[J].地震研究,1997,20(1):101-107.
    81.吴国华,罗增雄等.云南孟连中缅边境Ms7.3级地震前后滇西实验场的重力变化[J].地震,1998,18(2):146-154.
    82.吴华丽,吴进华,汪秀莉.基于动态改变惯性权值的粒子群算法[J].理论与方法,2008,27(10):6-8.
    83.Wolfgang Torge,徐菊生,刘序俨.译.重力测量学[M].北京:地震出版社,1993.
    84.赖锡安,黄立人,徐菊生等.中国大陆现今地壳运动.地震出版社[M].2004.
    85.万永革,王敏,沈正康等.利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布[J].地震地质,2004,26(3):393-404
    86.王谦身,张赤军,蒋福珍等.微重力测量理论、方法与应用[M].北京:科学出版社,1995.
    87.王谦身.重力学[M].地震出版社,2003.
    88.王乐洋,朱建军.大地测量反演问题统一综述[J].测绘科学,2007,32(6):14-16
    89.王万银,刘金兰.利用卫星重力异常研究南黄海地区中生界厚度[J].中国海上气,2004,16(3):151-169.
    90.王锋堂.地球重力场模型EGM96三维可视化(硕士论文)[D].首都师范大学,2004
    91.王丹,李辉,申重阳等.地面重力时空变化向卫星高度的解析延拓[J].大地测量与地球动力学2005,2:69-74.
    92.王琪,张培震,马宗晋.中国大陆现今构造变形GPS观测数据与速度场[J].地学前缘(中国地质人学,北京),2002,9(2):415-429.
    93.王勇.粘弹性半空间内膨胀引起的地表垂直位移和重力变化义[J].地壳形变与地震,1996,16(2):8-11.
    94.王勇,张为民,詹金刚等.重复绝对重力测量观测的滇西地区和拉萨点的重力变化及其意义[J].地球物理学报,2004,47(1):95-100.
    95.王卫民,赵连锋,李娟等.1999年台湾集集地震震源破裂过程[J].地球物理学报,2005,48(1): 132-147.
    96.王晓英.改进的粒子群优化算法[D].西安:西北大学,2007.
    97.汪汉胜.深部大尺度单—密度界面重力异常迭代反演[J].地球物理学报,1993,36(5):643-650.
    98.王文萍,王庆良.利用遗传算法和最小二乘联合反演共和地震位错参数[J].地震学报,1999,21(3):285-290.
    99.王武星,石耀霖,顾国华等.GRACE卫星观测到的与汶川MS8.0地震有关的重力变化[J].地球物理学报,2010,53(8):1767-1777.
    100.王卫民,赵连锋,李娟,姚振兴.四川汶川8.0级地震震源过程[J].地球物理学报,2008,51(9):14031410.
    101.王懋基,宋正范,尹春霞.海南重力卫星研究[J].物探与化探,1998,22(5):329335.
    102.伍吉仓,陈永奇.顾及先验信息的模型参数反演-澜沧-耿马地震位错模型参数的求定[J].地壳形变与地震,1997,17(2):2732.
    103.伍吉仓,许才军.利用GPS资料反演华北块体运动的负位错模型参数[J].武汉大学学报(信息科学版),2002,27(4):352-357.
    104.伍吉仓,邓康伟,陈永奇.板块内部层状负位错模型及其反演[J].武汉大学学报(信息科学版),2003,28(6):671-674.
    105.吴忠良.地震断层面上的位错分布[J],地震学报,2004,26(5):5,489-494
    106.杨国华,韩月萍,杨博.川滇地区地壳水平运动与变形场的演化特征及其机制讨论[J].地震研究,2009,32(3):275-281
    107.徐世芳,李博.地震学辞典[M].北京:地震出版社,2000.
    108.许厚泽.重力观测在中国地壳运动观测网络中的作用[J].大地测量与地球动力学,2003,23(3):1-3.
    109.许家姝,孟令顺,宁亚灵等.利用重力异常研究内蒙古八大关—伊敏苏木剖面的地壳构造[J].地球物理学进展,2009,24(6):2044—2049.
    110.许才军,张朝玉.地壳形变测量与数据处理[M].武汉大学出版社,2009.
    111.许才军,大地测量联合反演理论和方法研究进展[J].武汉大学学报.信息科学版,2001,26(6):555-561.
    112.许才军,晁定波,刘经南等.用大地测量资料反演青藏高原构造应力场初步尝试[J].测绘学报,1997,26(2):95—100
    113.向文,李辉.活动断层的重力场反演[J].地壳形变与地震,2000,20(3):11-16.
    114.肖云,夏哲仁,王兴涛.高低卫卫跟踪模式恢复地球重力场的误差分析[J].测绘学报,2006,35(2):106-111.
    115.肖云,夏哲仁,王兴涛.用GRACE星间速度恢复地球重力场[J].测会学报,2007,36(1):19-25.
    116.邢乐林,李建成,李辉等.青藏高原均衡重力异常的地震构造动力学研究[J].大地测量与地球动力学,2007,27(6):33-36.
    117.邢乐林,李建成,李辉等Sumatra-Adaman大地震同震和震后形变的GRACE卫星检测[J].武汉大学学报(信息科学版),2009,34(9):1080-1084.
    118.张培震,徐锡伟,闻学泽等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J].地球物理学报,2008,4:1066-1073.
    119.张永志,王卫东,魏玉明等.用GPS资料反演祁连山断层的三维滑动速率[J].大地测量与地球动力学,2006,26(1):31-35.
    120.张永志,王卫东.青藏高原东北缘断层活动变形的模拟研究[J].大地测量与地球动力学,2004,24(1):63-67.
    121.张永志,罗凌燕,王卫东.位错理论在西安地面沉降模拟中的应用[J].西北地震学报,2008,30(1):17-20.
    122.张永仙,石耀霖,刘桂萍.热物质上涌与震前重力异常关系初探[J].地震,2000,20(增):135-141.
    123.张赤军.断层活动引起的重力效应[J].地壳形变与地震,1994,14(1):9-16.
    124.张会战,方剑,张子占.小波分析在重力界面反演中的应用[J].武汉大学学报(信息科学版),2006,31(3):233-237.
    125.张勤,范一中.地壳垂直运动的均衡理论及其分析模型[J].测绘学报,2001,30(3):233-236.
    126.张晶,孙柏成,张成强.唐山地震的重力异常及其震后变化[J].地震,1998,18(3):293-298.
    127.张健,石耀霖.利用卫星地球重力场模型研究新疆壳幔结构[J].中曾科学院研究生院学报,1996,13(2): 169-177.
    128.张希 张四新 王双绪.昆仑山口西8.1级地震前后地壳乖直运动的负位错模型[J].地震研究2004,27(2):153-158
    129.赵娟,韩延本.地球重力场时变性的研究进展[J].地球物理学进展,2005,20(4):980-985.
    130.赵少荣.利用大地测量资料反演的1976年唐山地震双断层位错模式[J].测绘学报,1995,24(4):250-258.
    131.赵少荣.动态大地测量反演理论与应刚及其物理解释(博士论文)[D].武汉:武汉测绘科技大学,1991.
    132.郑伟,许厚泽,钟敏等.国际重力卫星研究进展和我国将来卫星重力测量计划[J].测绘科学,2010.
    133.郑伟,许厚泽,钟敏等.国际卫星重力梯度测量计划研究进展[J].测绘科学,2010.
    134.周旭华,吴斌,许厚泽,彭碧波.数值模拟估算低低卫-卫跟踪观测技术反演地球重力场的空间分辨率[J].地球物理学报,2005,48(2):282-287.
    135.周江存,孙和平.海潮对卫星重力场恢复的影响[J].地球物理学报,2007,50(1):115-121.
    136.周新,邢乐林,邹正波等GRACE时变重力场的高斯平滑研究[J].大地测量与地球动力学,2008,3:41-45.
    137.周苗,陈义保,刘加光.一种新的协同多目标粒子群算法[J].山东理工大学学报(自然科学版),2008,22(5):7-10.
    138.邹正波,邢乐林,李辉等.中国人陆及邻区GRACE卫星重力变化研究[J].大地测量与地球动力学,2008,1:23-27.
    139.朱广彬.利用GRACE位模型研究陆地水储量的时变特征[D].中国测绘科学研究院,硕士学位论文,2007.
    140.朱岳清,吴兵,邢如英.1976年唐山地震前后的重力变化和震区莫霍面的变形[J].地震学报,1985,7(1):57-73.
    141.郑伟,邵成刚,罗俊等.基于卫卫跟踪观测技术利用能量守恒法恢复地球重力场的数值模拟研究[J].地球物理学报,2006,49(3):712-717.
    142.郑伟,许厚泽,钟敏等.GRACE卫星关键载荷实测数据的有效处理和地球重力场的精确解算[J].地球物理学报,2009,52(8):1966-1975.
    143.郑金涵,宋合胜等.利用重力资料反演京津唐张地区震质中[J].地震学报,2003,25(4):422-431.
    144.祝意青,梁伟锋等.北祁连—河西地区重力场变化及其与强震关系[J].地震,1999,19(4):345-351.
    145.祝意青,王双绪,江在森,朱桂芝等.昆仑山口西8.1级地震前重力变化[J].地震学报,2003,25(3):291-297.
    146.祝意青,李辉,朱桂芝等.青藏块体东北缘重力场演化与地震活动[J].地震学报,2004,26(增):7l-78.
    147.曾哗光.关于地球密度的分层分布[J].重庆师范学院学报(自然科学版),1989,6(1):15-17.
    148.钟伟民,钱锋.一种改进的O-PSO算法[J].华东理工大学学报(自然科学版)2008,34(5):759-763.
    149. Andres Tassara, Chris Swain, Ron Hackney, et al. Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data[J].Earth and Planetary Science Letters, 2007(253):17-36.
    150. Barnes, D F.Gravity variations during the Alaska earthquake.J Geophys Res,1966,71 (2):451-456.
    151.Barzaghi R., Tselfes N., Tziavos I. N., et al. Geoid and high resolution sea surface topography modelling in the mediterranean from gravimetry, altimetry and GOCE data:evaluation by simulation, J.Geod.2009,83:751-772.
    152. Cazenave A, Nerem RS. Redistributing Earth's mass[J].Science 2002,297(5582):783-787.
    153. Celine Tirela, Frederic Gueydana, Christel Tiberi. Aegean crustal thickness inferred from gravity inversion Geodynamical implications[J].Earth and Planetary Science Letters,2004(228):267-280.
    154. Chen, J.L., Wilson, C.R., Famiglietti, J.S., et al. Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations.J.Geophys. Res.,2005.110(B9):8408-+,doi:10.1029/2004JB003536.
    155. Chen J L, Wilson C R, Tapley B D, et al. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake[J].Geophysical Research Letters,2007, 34(13):L13302.
    156. Christoph Reigber, Roland Schmidt. An Earth gravity field model complete to degree and order 150 fromGRACE:EIGEN-GRACE02S[J].Journal of Geodynamics 2005,39:1-10.
    157. Carl Bowin, Scheer E and Smith W. Dep th estimates from ratios of gravity, geoid and gradient anomalies[J].. Geophysics,1986,51(1):123-136.
    158. Dobrovolsky. Gravitational precursors of a tectonic earthquake[J].Physics of the Solid Earth,2005,41 (2):273-278.
    159. Eshagh M. On satellite gravity gradiometry, Doctoral dissertation in Geodesy, Royal Institute of Technology (KTH), Stockholm, Sweden,2009.
    160. Eshagh M. and Sjoberg L. E. Determination of gravity anomaly at sea level from inversion of satellite gravity gradiometric data, J. Geody.(accepted),2010.
    161. Fei Qi. Major Earthquakes by Rheological Diapirism of Crust-Mantle Material-Evidence from Satellite Gravity Data[J].EARTH SCIENCE FRONTIER,2009,16(3):282-293.
    162. FuJii Y. Gravity variations in the shock area of the Niigata earthquake. Zisin,1966,19 (3):200-216.
    163. Fu G, Sun W. Surface coseismic gravity changes caused by dislocations in a 3-D heterogeneous earth. Geophys.J.Int..,2008,172:479-503.
    164. Freymuller Jeff, Murray M.H., Segall P.et al, Kinematics of the Pacific-North America plateboundary zone, northern California[J].J. Geophys. Res.,1999,104:7419-7441.
    165. GamalEl-Fiky, Teruyuki Kato. Secular crustal deformation an dinter plate coupling of the Japanese Islands as deduced from continuous GPS array,1996-2001.Tectonophysics,2006,422:1-22.
    166. Guangyu Fu and Wenke Sun. Effects of spatial distribution of fault slip on calculatingco-seismic displacement:Case studies of the Chi-Chi earthquake and the Kunlun earthquake[J].J.Geophys.Res.,2004,31,L21601.
    167. G. Vilardo, G. Ventura, C. Terranova, et al. Ground deformation due to tectonic,hydrothermal, gravity,hydrogeological,and anthropic processes in the Campania Region (Southern Italy) from Permanent Scatterers Synthetic Aperture Radar Interferometry[J].Remote Sensing of Environment,2009,113:197-212.
    168. GRACE Mission,2002, http://isdc.gfz-potsdam.de/
    169. GRACE Gravity Modle EIGEN-GRACE02S.http://www-app2.gfz-potsdam.de/
    170. Hagiwara Y. The Mogi model as a possible cause of the crustal uplift in the eastern part of Izu Peninsula and the related gravity change. Bull.Earthquake Res.Inst.TokyoUniv,1977,52:301-309.
    171.Haines A J, Holt W E. A procedure to obtain the complete horizontal motion within zones of distributed deformation form the inversion of strain rate data[J]J.geophys,Res,1993,98:2057-12082.
    172. Haines A J, Jackson J A, Holt W E, et al. Representing distributed deformation by continuous velocityfields,Science Report,May 1998,Wellington New Zealand:instituteof geology.And Nuclear Sciences,1998.
    173. Han S-C, Sauber J, Luthcke S. Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large-scale mass redistribution. Geophys Res Lett,2010,37,L23307,doi: 10.129/2010GL045449.
    174. Han SC, Shum CK, Bevis M, et al. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andama earthquake[J].Sceince,2006,313(5787):685-62.
    175. Heki K, Matsuo K. Coseismic gravity changes of the 2010 earthquake in Central Chile from satellite gravimetry. Geophys Res Lett,2010,doi:10.1029/2010GL045335.
    176. Heki. Horizontal and vertical crustal movements from three-dimensional very long baseline interferometry kinematic reference frame:Implication for the reversal timescale revision[J].J. geophys. Res,1996,101:3187-3198.
    177. Holt WE, Li M, Haines A J. Earthquake strain rates and instantaneous relative motions within central andeastern Asia[J].Geophys. J Int,1995,122:569-593.
    178. Hunt T M. Gravity variations associated with the 1968 Inangahua earthquake.J Geo 1 Geophys,1970,13 (4):1050-1051.
    179. H. Wh Moritz, H. Advance Physical Geodesy ichman Verlag, Karlsruhe,1980.
    180. Janak J., Fukda Y. and Xu P. Application of GOCE data for regional gravity filed modeling. EPS,2009,61:835-843.
    181. Harris R.A.,Paul Segall, Detection of a locked zone at depth on the parkfiled, California, Segment of the San Andras faut[J].J.Geophys.Res.,1987,92:7945-7962.
    182. H.W.S. McQueen and F.D. Stacey. Interpretation of low degree components of gravitational potential in terms of undulations of mantle phase boundaries[J].Tectonophysics.1976,34(1-2):T1-T8.
    183. http://baike.baidu.com/view/1590428.htm.
    184. http://hanyu.iciba.com/wiki/index.php?doc-view-553886.
    185. Jekeli, C. The determination of gravitational potential differences from satellite-to-satellite tracking. Celestial Mech. Dyn. Astron,1999,75:85-101.
    186. Johnson K.M.and Segall P.,Viscoelastic earthquake cycle models with deep stress-drivencreep along the San Andreas fault system[J].J.Geophys.Res.,2003,108,B6,2289
    187. Klaus Bataille, Marcelo Contreras. Nonlinear elastic effects on permanent deformation due to large earthquakes[J].Physics of the Earth and Planetary Interiors,2009,175:47-52.
    188. Kennedy J, Eberhart R. Particle swarm optimization[C].In Proceedings of IEEE International Conference on Neural Networks,1995,4:1942-1948.
    189. Kaula W M. global gravity and mantle convection[J].Tectonophysics,1972,13:341-359.
    190. Kotsakis C. A covariance-adaptive approach for regularized inversion in linear models, Geophys.J. Int,2007,171:509-522.
    191. Krarup T. A contribution to the mathematical foundation of physical geodesy. Danish Geodetic Institute, Copenhagen,1969,44.
    192. Krarup T. and Tscherning C.C. Evaluation of isotropic covariance functions of torsion balance observations, Bull. Geod,1984,58:180-192.
    193. Lisowski, M., W. H. Prescott, J. C. Savage, et al. Geodetic estimate of coseismic slip during the 1989 Loma Prieta, California, earthquake[J].Geophys.Res.Lett,1990,17:1437-1440.
    194. Larson K.M.Burgmann, R.Biham.Kinematics of the India-Eurasia collision zone from GPS measurements[J]. J. Geophys.Res.,1999,101:1077-1093.
    195. Mashinha L and D.E.Smylie.The displacement fields of inclined faults[J].Bull Seisn.Soc.Am.,1971,61: 1433-1440
    196. Masterlark T., Finite element model predictions of static deformation from dislocation sources in a subductionzone:Sensitivities to homogeneous,isotropic,Poission-solid, and half-space assumptions[J].J.Geophys.Res.,2003,108,B11
    197. Murray M.H., G.Marshall, et al.The 1992 M=7 Cape Mendocino California, Earthquake:Coseismic deformation the south of the Cascadia megathrust[J].J. Geophys. Res.,1996,101:17707-17725.
    198. Muhammad Sadiq, C. C. Tscherning, Zulfiqar Ahmad. Regional gravity field model in Pakistan area from the combination of CHAMP, GRACE and ground data Using least squares collocation:A case study, advances in space research(2010) 46:1466-1476.
    199. Monteslnos F G, Amoso J, Vieira R. Using a genetic algorithm for 3 D inversion of gravity data in fuerteventura(Canara Islands). Int J. Erath Sci.,2005,94:301-316.
    200. Nguyen Nhu Trung, Sang-Mook Lee and Bui Cong Que. Satellite Gravity Anomalies andTheir Correlationwith the MaJor Tectonic Features in the South China Sea[J].Gortdwana Research,2004,7(2):407-424.
    201. Okubo S. Potential and gravity changes raised by point dislocation. Geophys J Int,1991,105: 573-586.
    202. Okubo S. Potential and gravity changes due to shear and tensile faults in a half-space. Geophys J Res,1992,97 (B5):7137-7144.
    203. Okada Y. Surface deformation due to shear and tensile faults in a half space[J].Bull. Seismol. Soc. Am.,1985,75:1135-1154.
    204. Okada Y. Internal Deformation due to shear and tensile faults in a half-space[J].BSSA,1992, 82:1018-1040.
    205. Oldenburg D. The inversion and interpretation of gravity anomalies[J].Geophysics,1974 (39):526-536.
    206. Parker R L. The rapid calculation of potential anomalies. Geophys. J. R. Astron. Soc.,1973,31:447-455.
    207. Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization [J].Natural Computing,2002,1(2/3):235-306.
    208. Peter Molnara and Paul Tapponnier, A possible dependence of tectonic strength on the age of the crust in Asia [J],Earth and Planetary Science Letters,1981,52(1):107-114.
    209. Reed G. B. Application of kinematical geodesy for determining the shorts wavelength component of the gravity field by satellite gradiometry, Ohio state University, Dept.of Geod Science,Rep.No.201,Columbus,Ohio,1973.
    210. R. C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in:Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan,1995:39-43.
    211. Runcorn S K. flow in the mantle Inferred from the low degree harmonics of the geopotential[J].Geophys J. R. Astr.Soc,1967.14:375-384.
    212. Runcorn S K. satellite gravity measurements and laminar viscous flow model of the earth's mantle[J].J. Geophys. Res..,1964,69:4389-4394.
    213. Rummel R. A model comparison in least-squares collocation, Bull.Geod.1976,50:181-192.
    214. Reigber, C. Lecture notes on gravity field recovery from satellite tracking data. International Summer School on Theoretical Geodesy, Assisiltaly,1988. Sjoberg LE(1981)Least-Squares combination of satellite and terrestrial data in physical geodesy. Ann Geophys 37:25-30.
    215. Sjoberg, Least-Squares combination of satellite and terrestrial data in physical geodesy. Ann Geophys,1981,37:25-30.
    216. S.Amir Reza Beyabanaki, Roozbeh Geraili Mikola, Kianoosh Hatami. Three-dimensional discontinuous deformation analysis (3-DDDA) using a new contact resolution algorithm[J].Computers and Geotechnics,2008,35:346-356.
    217. Savage J. C. and L.M.Hastie.Surface deformation associated with dip-faulting [J].J. Geophys. Res.,1966,71,4897-7904.
    218. Sato R, Matsu'ura M. Static deformation due to the fault spreading over several layers in a multi-layered medium, Part I:Dispalcement[J].J. Phys. Earth,1973,21,227-249.
    219. Sato R, Matsu'ura M. Static deformation due to the fault spreading over several layers in amulti-layered medium, Part II:Dip-slip fault[J].J.Phys.Earth,1975,23,113-125.
    220. Shigeo Yoshida, Gaku Seta, et al.absolute gravity change associated with the March 1997 earthquake swarm in the Izu Peninsula, Japan[J].Earth Planets Space.,1999,51:3-12.
    221. SHI Y, EBERHART R C.A modified particle swarm optimizer[C].Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, NJ:IEEE Press,1998:303-308.
    222. SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C].Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, NJ:IEEE Press,1999:1945-1950.
    223. Shin-Chan Han, C K, Shum, et al. Crustal Dilatation Observed by GRACE After the 2004 Sumatra-Andaman Earthquake[J].Science,2006,313(5787):658-662.
    224. Simons M, Hager BH.Localization of the gravity field and the signature of glacial rebound[J].Nature,1997,390(6659):500-504.
    225. Steketee, J. A., Some geophysical applications of the elasticity theory of dislocations [J].CanJ. Phys,1958,36:1168-1196.
    226. Steketee J A., On Volterra's dislocations in a semi-infinite elastic medium[J].1985,36:192-205.
    227. SunW, OkuboS, Coseismic deformations detectable by satellite gravity missions:a case study of Alaska (1964,2002) and Hokkaido (2003) earthquakes in the spectral domain[J]. J. Geophys. Res,2004,109,B04405.
    228. Swenson S Wahr J.Methods for inferring regional surface mass anomalies from GRACE measurements of time-variable gravity[J].J. Geophys. Res.,2002,107(B9),2193, doi:10.10 29/2001 JB000576.
    229. Tapley BD, Bettadpur S, Ries JC, et al. GRACE measurements of mass variability in the Earth system [J].Science,2004,305(5683):503-508.
    230. Tan Hongbo, Shen, Chongyang et al, characteristics of surface gravity changes caused by a fault or faults dislocation[J].Journal of Geodesy and Geodynamic,2008,28(4):54-62.
    231. Thora A.,H.Geirsson,Coseismic stress changes and crustal deformation onthe Reykjanes Peninsula due to triggered earthquakes on 17 June 2000[J].J.Geophys.Res.,2004,109,B09307
    232. Tscherning C.C. A study of satellite altitude influence on the sensitivity of gravity gradiometer measurements. DGK, Reihe B, Heft Nr.287(Festschrift R. Sigl), pp.218-223, Muenchen,1988.
    233. Tscherning C.C. Computation of covariances of derivatives of the anomalous gravity potential in a rotated reference frame. Manus. Geod,1993,18:115-123.
    234. Tscherning C.C. Refinement of observation requirements for GOCE ESA Sponsored GOCE Study, terminated 1999.
    235. Tapley, B.D. Statistical orbit determination theory, in:Tapley, B.D.,Szebehely, v. (Eds.), Recent Advances in Dynamical Astronomy. D.Reidel Publ. Co., Holland,1973:96-425.
    236. Valentin Mikhailov V, Sergei Tikhotsky S, Michel Diament M et al. Can tectonic processes be recovered from new gravity satellite data?[J].Earth and Planetary Science Letters,2004,228:02:0081-297.
    237. Velicogna I, Wahr J, postglacial rebound and earths viscosity structure from GRACE[J].Geophys. Res,2002,107,2376.
    238. Velicogna I, Wahr J. Acceleration of Greenland ice massloss in spring 2004[J].Nature,2006, 443(7109):329-341.
    239. Valentin Mikhailov, Sergei Tikhotsky, Michel Diament et al. Can tectonic processes be recovered from new gravity satellite data?[J].Earth and Planetary Science Letters,2004,228: 281-297.
    240. Wu J. C, H. W. Tang, Y. Q. Chen. Inversion of GPS measurements for a layer of negativedislocation distribution in north China[J].J. Geophys. Res.,2003,108,B10.
    241. Wu J. C. and Xu C. J. Research on a intraplate movement model by inversion of GPS datain Northchina[J].J. Geodesy,2001,31,507-518.
    242. Wahr J, Molenaar M, BryanF, The time variability of the earths gravity field:hydrological and oceaniceffects and their possible detection using GRACE[J].Geophys. Res,1998,103-30:302 05-30229.
    243. Xu P. Determination of surface gravity anomalies using gradiometric observables, Geophys. J. Int., 1992,110:321-332.
    244. Xu P. Truncated SVD methods for discrete linear ill-posed problems, Geophys.J.Int,1998,1 35:505-514.
    245. Xu P. Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems, Geophys.J.Int,2009,179:182-200.
    246. Yoshiyuki Tanaka, Shuhei Okubo. First Detection of Absolute Gravity Change Caused by Earthquake. Geophysical Research Letters,2001,28(15):2979-2981.
    247. Yosuke Aoki and C.H.Scholz,Interseismic deformation at the Nankai subduction zone and the Median Tectonic Line,southwest Japan[J].J.Geophys.Res,2003,108, B 10,2470
    248. Zhao Shaorong and ShuzoTakemoto. Aseismic fault movement before the 1995 Kobe earthquake detected by a GPS survey:implication for preseismic stress localization?[J].Geophys. J. Int,1998,135:595-606.
    249. Zhao S R. Joint inversion of observed gravity and GPS baseline changes for the detection of active fault segment at the Red River fault zone[J].Geophys. J. Int,1995b,122:70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700