不同蛋氨酸源相对营养价值的比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体消旋蛋氨酸(DLM)和蛋氨酸羟基类似物自由酸(MHA-FA)是两种常用的蛋氨酸添加剂。本试验旨在研究两种蛋氨酸添加剂的相对生物学效价,并得出肉仔鸡适宜的蛋氨酸添加量。试验采用单因素完全随机设计。7日龄艾维茵肉仔鸡560只,随机分为7个处理,每处理5个重复,每重复16只,试验持续至42日龄。设计7种试验日粮,DLM设两个添加水平(处理A、D),MHA-FA设四个添加水平(处理B、C、E、F)。处理A、B、C的蛋氨酸符合NRC(1994)标准(前期占日粮的0.50%,后期占日粮的0.37%),处理D、E、F中蛋氨酸不符合NRC(1994)标准(前期占日粮的0.40%,后期占日粮的0.32%),处理G为对照组。前期处理A和处理D分别在基础日粮中添加0.20%(后期0.10%)和0.10%(后期0.05%)的DLM。前期处理B、C、E、F分别在基础日粮中添加0.30%(后期0.15%)、0.23%(后期0.11%)、0.15%(后期0.08%),和0.12%(后期0. 06%)的MHA-FA。自由采食饮水。计算各周及全期增重、采食量和料肉比。试验结束时,放血屠宰测肉仔鸡胴体品质,无放血屠宰测肉鸡整体能量、蛋白含量及其沉积率。
    
    试验结果如下:
    1. 基础日粮中添加适宜水平的蛋氨酸可显著改善肉鸡的生产性能(P<0.05),但不影响肉鸡的采食量。
    2. 肉仔鸡的蛋氨酸需要量为,肉小鸡阶段0.44%(ME2900Kcal/Kg,CP19.5%),肉中大鸡阶段0.35%(ME2930Kcal/Kg,CP18.0%)。肉鸡对蛋氨酸的添加呈二次曲线规律。对生产性能来说,MHA-FA的相对生物学效价分别是64%(肉小鸡日增重),55%(肉小鸡料肉比),85%(肉中大鸡日增重),60%(肉中大鸡料肉比),74%(全期日增重),61%(全期料肉比)。
    3. 添加MHA-FA对肉仔鸡的腹脂率无影响,添加DLM可显著降低肉仔鸡的腹脂率。添加DLM和MHA-FA均可提高肉仔鸡的胸肌率,降低腿肌率。MHA-FA相对于DLM的生物学效价是74%(胸肌率),72%(腿肌率)。
    4. 添加DLM或MHA-FA影响肉鸡整体蛋白含量和蛋白沉积率,但影响规律不明显。同时还使肉鸡整体能量含量和能量沉积率升高。MHA-FA的相对生物学效价分别是52%(能量含量),48%(能量沉积率)。
Solid racemated methionine(DLM) and methionine hydroxy analogue free acid(MHA-FA) are two usual methionine additives. The aim of the trial is researching the relative biological value of two methionine additives and obtaining the appropriate methionine supplemental level for broiler. The trial has adopted one–factor completely random design. 560 7-day-old Avian chicks were divided into 7 treatments random, 5 replicates per treatment, 16 birds each replicate. The trial was lasted 42-day. 7 trial diets were designed. DLM has two supplemental levels(treatment A and D), MHA-FA has four supplemental levels(treatment B、C、D and E). Methionine of treatment A、B and C meet the NRC(1994) criterion(0.50% of diets in earlier stage, 0.37% of diets in later stage). Methionine of treatment D、E and F don't meet the NRC(1994) criterion (0.40% of diets in earlier stage, 0.32% of diets in later stage). Treatment G is control. In earlier stage, treatment A and D were added DLM with 0.20%(0.10% in later stage) and 0.10%(0.05% in later stage) in basal diet respectively. Treatment B、C、E and F were added MHA-FA with 0.30%(0.15% in later stage)、0.23%(0.11% in later stage),0.15%(0.08% in later stage) and 0.12%(0.06% in later stage)in basal diet respectively. Feed and water were given ad libitum. Weight gain, feed intake and feed/gain were calculated. Carcass quality was determined through slaughter with blood. The whole energy, protein concentration and their retention were determined through slaughter without blood when the trial ended.
    The main results as follows:
    1. The performance of broiler was improved adding appropriate level methionine in basal diet significantly(P<0.05), but don't affect broiler feed intake.
    2. Broiler methionine requirement are 0.44%(ME2900Kcal/Kg,CP19.5%)in earlier stage and 0.35%(ME2930Kcal/Kg,CP18.0%)in later stage. Broiler shows quadratic curves when methionine was added. As performance, the RBV of MHA-FA are 64%(daily gain in
    
    
    earlier stage), 55%(feed/gain in earlier stage), 85%(daily gain in later stage), 60%(feed/gain in later stage), 74%(daily gain in all stage) and 61%(feed/gain in all stage).
    3. MHA-FA don't influence broiler abdomen fat rate. DLM can decrease broiler abdomen fat rate significantly. DLM and MHA-FA can increase broiler breast meat rate, decrease thigh meat rate. The RBV of MHA-FA are 74%( breast meat rate) and 72%( thigh meat rate), respectively.
    4. Adding DLM or MHA-FA influence broiler whole protein concentration and protein retention, but the regularity isn't obvious. Moreover, broiler whole energy concentration and energy retention increase. The RBV of MHA-FA are 52%(energy concentration) and 48%(energy retention), respectively.
引文
[1]. 安永义,伏桂华,何春枝. 2001. 蛋氨酸添加剂对肉用仔鸡生产性能的影响[J]. 中国饲料. (19):
    20~21.
    [2]. 程茂基, 王昌时, 吴承章. 2000. 日粮蛋氨酸水平对肉仔鸡的影响[J]. 中国家禽. 22(2): 14~15.
    [3]. 呙于明. 1997. 家禽饲养与饲料[M]. 中国农业大学出版社. 北京.
    [4]. 何要武. 2002. DL-蛋氨酸与DL-蛋氨酸羟基类似酸比较[J]. 中国饲料. (12): 18,21.
    [5]. 胡小平,王长发. 2001. SAS基础及统计实例教程[M]. 西安地图出版社.. 西安.
    [6]. 黄苏西. 2003. 不同蛋氨酸来源的相对生物学效价[J]. 中国饲料. (13): 26~26.
    [7]. 金岭梅,孟新宇,赵其平等. 2004. 日粮蛋氨酸水平对感染柔嫩艾美耳球虫的影响[J]. 中国饲料.
    (3):19~20.
    [8]. 康相涛,田亚东,竹学军. 2002. 5~8周龄固始鸡能量和蛋白质需要量的研究[J]. 中国畜牧业
    杂志. 38(5): 3~6.
    [9]. 李美同,李玲,张子仪. 1991. 饲料添加剂[M]. 北京大学出版社. 北京.
    [10]. 李美同译, E.E.M.Pierson, J.J.Dibner, C.D.Knight等著. 1993. 对于选择蛋氨酸活性源的研究[J].中
    国饲料. (1): 44~45.
    [11]. 李美同译, E.E.M.Pierson, J.J.Dibner, C.D.Knight等著. 1993. 对于选择蛋氨酸活性源的研究(续)
    [J].中国饲料. (2): 41~44.
    [12]. 李美同译, E.E.M.Pierson, J.J.Dibner, C.D.Knight等著. 1993. 对于选择蛋氨酸活性源的研究(续)
    [J]. 中国饲料. (3): 42~44.
    [13]. 梁琳,莫棣华,何霆等. 1994. 0~2周龄肉仔鸡可利用蛋氨酸、胱氨酸营养参数研究[J]. 饲料
    研究. (5): 7~10.
    [14]. 刘升军, 呙于明. 1999. 肉仔鸡蛋氨酸营养的研究与应用进展[J]. 饲料工业. 20(1): 14~16.
    [15]. 刘升军, 呙于明. 2001. 日粮蛋氨酸及赖氨酸对雌性肉仔鸡胴体组成的影响[J]. 中国畜牧兽医
    杂志. (3): 4~6.
    [16]. 刘永刚. 2003. 液体蛋氨酸羟基类似物的生物学效价[J]. 中国饲料. (9): 31~33.
    [17]. 鲁建伟,蔡辉益. 2002. 日粮中添加叶酸和甜菜碱节约蛋氨酸和胆碱的效应对肉仔鸡生理生化
    和生产性能的影响[J]. 饲料工业. 23(7): 6~10.
    [18]. 沈同,王镜岩. 1998. 生物化学[M]. 高等教育出版社. 北京.
    [19]. 宋宇轩. 2003.日粮蛋白水平及添加尿素对肉鸡生产性能的影响[D].西北农林科技大学硕士论文
    [20]. 田河山译, C.L.Saunderson著. 1992. 蛋氨酸及其营养类似物的代谢[J]. 中国饲料. (4): 18~19.
    [21]. 田科雄,高凤仙,贺建华等. 2003. 有机微量元素的生物学利用率研究[J]. 湖南农业大学学报.
    29(2):147~149.
    [22]. 田晓燕,姚军虎,吴孝兵等. 2003. 择食饲喂对肉鸡生产性能、胃肠道发育及养分代谢的影响[C].
    家禽营养与饲料研究论文集. 131~141.
    [23]. 佟建明. 2001. 饲料添加剂手册[M]. 中国农业大学出版社. 北京.
    [24]. 王春霞,黄俊纯,杨忠源. 1991. 肉用肉仔鸡对甲硫亚砜生物利用率的研究[J]. 畜牧兽医学报.
    22(3): 212~218.
    [25]. 王米,邓敦,戴志明等. 2004. 营养对禽类免疫的影响[J]. 中国饲料. (2): 22~23.
    [26]. 王冉,周岩民. 1999. 动物蛋氨酸研究进展[J]. 粮食与饲料工业. (4): 27~30.
    [27]. 王文君,张维军. 1999. 蛋氨酸、胆碱和甜菜碱的关系[J]. 中国饲料. (4): 8~10.
    [28]. 吴晋强. 1998. 动物营养学[M]. 安徽科学技术出版社. 合肥.
    [29]. 吴维辉, 将宗勇, 林映才等. 1996. 肉仔鸡蛋氨酸需要量研究(一) [J]. 饲料博览. 8(5): 3~5.
    [30]. 吴维辉, 将宗勇, 林映才等. 1997. 中后期可利用蛋氨酸需求参数研究[J].饲料工业.18(8): 17-20.
    
    [31]. 谢明. 2003. 北京鸭生长前期蛋氨酸与胱氨酸互作关系的研究[D]. 西北农林科技大学硕士论文.
    [32]. 熊家林,张珩. 2001. 饲料添加剂[M]. 化学工业出版社. 北京.
    [33]. 杨正德,陶玉顺,罗爱平. 1996. 低蛋白质饲料添加蛋氨酸对促进肉仔鸡生长和抑制腹腔脂肪
    的效果[J]. 饲料研究. (9): 2~3.
    [34]. 姚继承,艾地云. 1998. 饲料分析[M]. 中国农业出版社. 北京.
    [35]. 袁志发,周静芋. 2000. 试验设计与分析[M]. 高等教育出版社. 北京.
    [36]. 张丽君,徐克明,曹福池. 1989. 商品代“AA”肉仔鸡饲料中蛋氨酸添加量的研究[J]. 黑龙江
    畜牧兽医. (11): 1~3.
    [37]. 张涛,董宽虎. 2003. 蛋氨酸、胆碱和甜菜碱在甲基供体中的相互关系[J]. 中国家禽. 25(12):
    39~41.
    [38]. 张维军. 2003. 从消化和代谢两方面看不同蛋氨酸来源的相对生物学效价[J]. 中国饲料. (17):
    32~33.
    [39]. 张英杰,刘月琴. 2001. 家禽饲养手册[J]. 中国农业大学出版社. 北京.
    [40]. 赵学军,叶均安,刘建新. 2003. 高产奶牛族维生素营养的研究现状[J]. 乳业科学与技术. (2):
    69~73.
    [41]. Frank Ivey. 2000. 液态蛋氨酸的生物效价[J]. 中国饲料. (10): 16~17.
    [42]. Johann Fickler,张维军,江逆. 2000. 蛋氨酸、液体蛋氨酸羟基类似物不等量代替对肉仔鸡生产
    性能的影响[J]. 中国饲料. (11): 36~36.
    [43]. Stefan Mack,张维军. 1998. 蛋氨狻、胆碱和甜菜碱的生物学功能及其在代谢中的互作[J]. 中国
    家禽. 20(2): 37~39.
    [44]. Baker,D.H., R.C.Blitenthal, and K.P.Boehel, et al, 1981. Protein amino acid evaluation of steam processed feather meal[J]. Poultry Sci. 60: 1865~1872.
    [45]. Baker,D.H., S.R.Fernandez, and D.M.Webel, et al, 1996. Sulfur amino acid requirement and cystine replacement value of broiler chicks during the period three to six weeks posthatching[J]. Poultry Sci. 75: 737~742.
    [46]. Boehel,K.P., and D.H.Baker, 1982. Effecting of the calcium salt and free acid forms of methionine hydroxy analog for chicks[J]. Poultry Sci. 61: 1167~1175.
    [47]. Boling,S.D., H.M.Edwards, and J.L.Emmert, et al, 1998. Bioavailability of iron in cottenseed meal, ferric sulfate and two ferrous sulfate by-products of the galvanizing industry[J]. Poultry Sci. 77: 1388~1392.
    [48]. Calderon,V.M., and L.S.Jensen, 1990. The requirement for sulfur amino acid by laying hens as influenced by the protein concentration[J]. Poultry Sci. 69: 934~944.
    [49]. Christensen,A.C., and J.O.Anderson, 1980. Factors affecting efficacy of methionine hydroxy analogue for chicks fed practical diets[J]. Poultry Sci. 59: 2485~2491.
    [50]. Christensen,A.C., J.O.Anderson, and D.C.Dobson, 1980. Factors affecting efficacy of methionine hydroxy analogue for chicks fed amino acid diets[J]. Poultry Sci. 59: 2480~2484.
    [51]. Crespo,N., and E.Esteve-Garcia, 2002. Nutrient and fatty acid deposition in broiler fed different dietary fatty acid profiles[J]. Poultry Sci. 81: 1533~1542.
    [52]. Dabbert,C.B., R.L.Lochmiller, and P.W.Waldroup, et al, 1996. Examination of the dietary methionine requirements of breeding northern bobwhite, colinus virginianus[J]. Poultry Sci. 75: 991~997.
    [53]. Damrom,B.L., and L.K.Flunker, 1992. 2-Hydroxy-4-(methylthio)-butanoic acid as a drinking water supplement for broiler chicks[J]. Poultry Sci. 71: 1695~1699.
    [54]. Dibner,J.J., and F.J.Ivey, 1992. Capacity in the liver of the broiler chick for conversion of supplemen-
    tal methionine activity to L-methionine[J]. Poultry Sci. 71: 700~708.
    
    [55]. Dibner,J.J., C.A.Atwell, and F.J.Ivey, 1992. Effect of heat stress on 2-hydroxy-4-(methylthio)-butanoi-
    cacid and DL-methionine absorption measured in vitro[J]. Poultry Sci. 71: 1900~1910.
    [56]. Dibner,J.J., C.D.Knight, and R.A.Swick, 1988. Absorption 0f 14C- 2-hydroxy-4-(methylthio)-butanoic
    acid (Alimet) from the hindgut of the broiler chick[J]. Poultry Sci. 67: 1314~1321.
    [57]. Drew,M.D., A.G.Van Kessel, and D.D.Maenz, 2003. Absorption of methionine and 2-hydroxy-4-met-
    hylthiobutoanic acid in conventional and germ-free chickens[J]. Poultry Sci.82: 1149~1153.
    [58]. Elkin,R.G., and P.Y.hester, 1983. A comparison of methionine sources for broiler chickens fed corn-so
    ybean meal diets under simulated commercial grow-out conditions[J]. Poultry Sci. 62: 2030~2043.
    [59]. Estere-Garcia,E., and R.E.Austic, 1987. Intestinal absorption of methionine(Met) and methionine hydroxy analogue(MHA) in broiler chicks[J]. Poultry Sci. 65(Suppl. 1): 40.(Abstr.)
    [60]. Estere-Garcia,E., and R.E.Austic, 1988. Digestibility of methionine hydroxy analogue(MHA) in broiler chicks. Poultry Sci[J]. 67(Suppl. 1): 14.(Abstr.)
    [61]. Esteve-Garcia,E., and L.Llaurado, 1997. Performance, breast meat yield and abdominal fat deposition of male broiler chickens fed diets supplemented with DL-Methionine or DL-Methionine hydroxy an-
    alogue free acid[J]. Br.Poult.Sci. 38: 397~404.
    [62]. Fernandes,J.I.M., F.R.Lima, and C.X.Mendonca, et al, 1999. Relative bioavailability of phosphorus in feed and agricultural phosphorus for poultry[J]. Poultry Sci. 78: 1729~1736.
    [63]. Finkelstein,J.D. and S.H.Mudd, 1966. Trans-sulfuration in mammals-the methioning-sparing effect of cystine[J]. J.Biol.Chem. 242: 873~880.
    [64]. Finkelstein,J.D., and J.J.Martin, 1984. Methionine metabolism in mammals-distribution of homocyst-
    eine between competing pathways[J]. J.Biol.Chem. 259: 9508~9513.
    [65]. Finkelstein,J.D., and J.J.Martin, 1986. Methionine metabolism in mammals-adaptation to methionine
    excess[J]. J.Biol.Chem. 261: 1582~1587.
    [66]. Finkelstein,J.D., J.J.Martin, and B.J.Harris, 1988. Methionine metabolism in mammals-the methionine
    sparing effect of cystine[J]. J.Biol.Chem. 253: 11750~11754.
    [67]. Fisher,C., and T.R.Morris, 1970. The determination of the methionine requirement of laying pullet by a diet dilution technique[J]. Br.Poult.Sci. 11: 67~82.
    [68]. Garlich,J.D., 1985. Response of broiler to DL-methionune hydroxy analog free acid, DL-methionine,
    and L-methionine[J]. Poultry Sci. 64: 1541~1548.
    [69]. Graber,G., and D.H.Baker, 1971. Sulfur amino acid nutrition of the growing chick: quantitative aspects concerning the efficacy of dietary methionine, cysteine and cyatine[J]. J.Anim.Sci. 33(5):1005--1011.
    [70]. Guo,R., P.R.Henry, and R.A.Holwerda, et al, 2001. Chemical characteristics and relative bioavailability of supplemental organic copper sources for poultry[J]. J.Anim.Sci. 79: 1132~1141.
    [71]. Han Yanming. F.castanon, and C.M.Parson, et al, 1990. Absorption and bioavailability of DL-methionine hydroxy analog compared to DL-methionine[J]. Poultry Sci. 69: 281~287.
    [72]. Harms,R.H., and G.B.Russell, 1995. Re-evaluation of the methionine and protein requirements of the broiler breeder hen[J]. Poultry Sci. 74: 1349~1355.
    [73]. Harms.R.H., and B.L.Damron, 1969. Protein and sulfur amino acid requirement of laying hens as influenced by dietary formulation[J]. Poultry Sci. 48: 144~149.
    [74]. Hiramoto,K., T.Muramatsu, and J.Okumura, 1990. Effect of methionine and lysine deficiencies on protein synthesis in the liver and oviduct and in the whole body of laying hens[J]. Poultry Sci. 69: 84~89.
    [75]. Keshavarz,K., 1995. Further investigations on the effect of dietary manipulations of nutrients on early
    egg weight[J]. Poultry Sci. 74: 62~74.
    
    [76]. Kling,L.J., and R.O.Hawes, 1990. Effect of fat, protein, and methionine concentrations on egg size and production in early matured brown-egg-type pullets[J]. Poultry Sci. 69: 1943~1949.
    [77]. Knight,C.D., and J.J.Dibner, 1984, Comparative absorption of 2-hydroxy-4-(methylthio) butanoic acid and L-methionine in the broiler chick[J]. J.Nutr. 114: 2179~2186.
    [78]. Knight,C.D., C.W.Wuelling, and C.A.Atwell, et al, 1994. Effect of intermittent periods of high environmental temperature on broiler performance response to sources of methionine activity[J]. Poultry Sci. 73: 627~639.
    [79]. Lawson,C.Q., and F.J.Ivey, 1986. Hydrolysis of 2-hydroxy-4-(methylthio)-butanoic acid dimmer in two model systems[J]. Poultry Sci. 65: 1749~1753.
    [80]. Lemme,A.D., D.Hoehler, and J.J.Brennan, et al, 2002. Relative effectiveness of methionine hydroxy analog compared to DL-methionine in broiler chickens[J]. Poultry Sci. 81: 838~845.
    [81]. Lingens,G., and S.Molnar, 1996. Studies on metabolism of broilers by using 14C-labelled DL-methionine and DL-methionine hydroxyl analogue Ca-salt[J]. Arch.Anim.Nutr. 49: 113~124.
    [82]. Littell,R.C., P.R.Henry, and A.J.Lewis, et al, 1997. Estimation of relative bioavailability of nutrients using SAS procedures[J]. J.Anim. Sci. 75: 2672~2683.
    [83]. Lowry,S.R., 1992. Use or misuse of multiple comparisons in animal experiments[J]. J.Anim.Sci. 70:1971~1977.
    [84]. Maenz,D.D., and C.M.Engele-Schann, 1996a. Methionine and 2-hydroxy-4-methylthiobutanoic acid are transported by distinct Na+-dependent and H+-dependent system in the brush border membrane of the chick intestinal epithelium[J]. J.Nutr. 126: 529~536.
    [85]. Maenz,D.D., and C.M.Engele-Schann, 1996b. Methionine and 2-hydroxy-4-methyl-thiobutanoic acid are partially converted to nonabsorbed compounds during passage through the small intestinal and heat exposure does not affect small intestinal absorption of methionine sources in broiler chicks[J]. J.Nutr. 126: 1438~1444.
    [86]. Mandal,A.B., A.V.Elangovan, and T.S.Johri, 2004. Comparing bio-efficacy of liquid DL-methionine
    hydroxy analogue free acid with DL-methionine in broiler chickens[J]. Asian-Aust.J.Anim.Sci. 17(1): 102~108.
    [87]. Moran,E.T., 1994. Response of broiler strains differing in body fat to inadequate methionine: live performance and processing yields[J]. Poultry Sci. 73:1116~1126.
    [88]. Nadeem,M.A., A.H.Gilani and A.G.Khan, 1999. Assessment of dietary requirement of broiler chicks for available methionine during summer[J]. Asian-Aus.J.Anim.Sci. 12(5):772~775.
    [89]. Noy,Y., and D.Sklan, 1996. Uptake capacity in vitro for glucose and methionine and in situ for diet acid in the proximal small intestine of posthatch chicks[J]. Poultry Sci. 75: 998~1002.
    [90]. Pack,M., J.B.Schutte, 1995. Sulfur amino acid requirement of broiler chicks from fourteen to thirty-eight days of age. 2. economic evaluation[J]. Poultry Sci. 74: 488~493.
    [91]. Patel,M.B., K.O.Bishawi, and C.W.Nam, et al, 1980. Effect of drug additives and type of diet on methionine requirement for growth, feed efficiency, and feathering of broiler reared in floor pens[J]. Poultry Sci. 59: 2111~2120.
    [92]. Pesti,G.M., N.J.Benevenga, and A.E.Harper, 1981. The effect of high dietary protein and nitrogen levels on the preformed methyl group requirement and methionine –induced growth depression in chicks[J]. Poultry Sci. 60: 425~432.
    [93]. Pesti,G.M., R.I.Bakalli, and H.M.Cervantes, et al, 1999. Studies on semduramicin and nutritional response: 2. methionine levels[J]. Poultry Sci. 78: 1170~1176.
    
    
    [94]. Peterson,C.F., E.A.Sauter, and E.E.Steele, et al, 1983. Use of methionine intake restriction to improve egg shell quality by control of egg weight[J]. Poultry Sci. 62: 2044~2047.
    [95]. Potter,L.M., 1988. Bioavailability of phosphorus from various phosphates based on body weight and toe ash measurements[J]. Poultry Sci. 67: 96~102.
    [96]. Potter,L.M., M.Potchanakorn, and V.Ravindran, et al, 1995. Bioavailability of phosphorus in various phosphate sources using body weight and toe ash as response criteria[J]. Poultry Sci. 74: 813~820.
    [97]. Quilin,E.C., G.F.Combs, and R.D.Creek, et al, 1961. Effect of choline on the methionine requireme-
    nts of broiler chickens[J]. Poultry Sci. 40: 639~645.
    [98]. Rostagno,H.S., and W.A.Barbosa, 1995. Biological efficacy and absorption of DL-methionine hydroxy analog free acid compared to DL-methionine in chickens as affected by heat stress[J]. Br.Poult.Sci. 36: 303~312.
    [99]. Schutte,J.B., J.D.Jone, and W.Smink, et al, 1997. Replacement value of betaine for DL-methionine in male broiler chicks[J]. Poultry Sci. 76: 321~325.
    [100]. Schutte,J.B., M.Pack, 1995. Sulfur amino acid requirement of broiler chicks from fourteen to thirty-eight days of age. 1. performance and carcass yield[J]. Poultry Sci. 74: 480~487.
    [101]. Sell,D.R., J.C.Rogler, W.R.Featherston , 1980. Influence of dietary cystine on intestinal absorption and tissue distribution of methionine in the chick[J]. Poultry Sci. 59: 1885~1891.
    [102]. Sell,D.R., W.R.Featherston , and J.C.Rogler, 1980. Methionine-cystine interrelationships in chicks and rats fed diets containing suboptimal levels of methionine[J]. Poultry sci. 59:1878~1891.
    [103]. Shafer,D.J., J.B.Carey, and J.F.Prochaska, 1996. Effect of dietary methionine intake on egg component yield and composition[J]. Poultry Sci. 75: 1080~1085.
    [104]. Sklan,D., and I.Plavnik, 2002. Interactions between dietary crude protein and essential amino acid intake on performance in broiler[J]. Br.Poult.Sci. 43: 442~449.
    [105]. Summers,J.D., S.Blackman, and S.Leeson, 1987. Assay for estimating the potency of various methionine-active sources[J]. Poultry Sci. 66: 1779~1787.
    [106]. Summers,J.D., S.Blackman, and S.Leeson, 1988. A simplified diets for assaying methionine activity[J]. Poultry Sci. 67:88~95.
    [107]. Thomas,O.P., C.Tamplin, and S.D.Crissey, et al, 1991. An evaluation of methionine hydroxy analog free acid using a nonlinear(exponential) bioassay[J]. Poultry Sci. 70: 605~610.
    [108]. Uzu,G., M.Picard, and E.A.Dunnington, et al, 1993. Feed intake adjustments by hens to feeding regimens in which dietary methionine is varied[J]. Poultry Sci. 72: 1656~1662.
    [109]. Van Weerden,E.J., H.L.Bertram, and J.B.Schutte, 1982. Comparison of DL-methionine, DL-methio-
    nine-Na, DL-methionine hydroxyl-Ca, and DL-methionine hydroxy analog free acid in broiler by using a crystalline amino acid diet[J]. Poultry Sci. 61: 1125~1130.
    [110]. Van Weerden,E.J., J.B.Schutte, and H.L.Bertram, 1983. DL-methionine ad DL-methionine hydroxy analogue free acid in broiler diets[J]. Poultry Sci. 62: 1269~1274.
    [111]. Waldroup,P.W., C.J.Mabray, and J.R.Blackman, et al, 1981. Effectiveness of the free acid of methion-
    ine hydroxy analog as a methionine supplement in broiler diets[J]. Poultry Sci. 60: 438~443.
    [112]. Waldroup,P.W., R.G.Mitchell, and J.R.Payne, et al, 1976. Performance of chicks fed diets formulated to minimize excess levels of essential amino acid[J]. Poultry Sci. 55:243~2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700