L波段频率可调同轴相对论返波振荡器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对论返波振荡器是一种发展最成熟的振荡器型的高功率微波源,具有高功率、高效率以及适合重频运行等特点,在工业和国防领域有着广泛的应用前景。受限于慢波结构尺寸大、导引磁场质量重等因素,相对论返波振荡器在向L波段拓展遇到了很大困难。同时,构造方便可调的电动力学结构以实现输出微波频率可调,是高功率微波的重要研究方向之一。在此背景下,论文提出了一种L波段频率可调同轴相对论返波振荡器。利用理论分析和粒子模拟方法对该器件进行了系统的研究,获得了一系列可用于指导该类型器件设计的物理思想及研究方法,并在实验中成功获得了吉瓦级L波段的高功率微波辐射,且频率在百兆赫兹范围内可调。论文的研究内容包括以下几个方面:
     首先,对同轴慢波结构进行了系统的理论研究。对比分析了同轴波导与圆波导的特性,利用同轴波导中TEM模的截止频率为0、空间电荷限制流较高的特性,在径向尺寸较小的情况下实现了L波段微波的高功率输出。求解了有限厚电子束下同轴任意形状周期慢波结构的色散关系,比较了三种双波纹慢波结构在冷腔情况下的高频特性,结果表明:相同条件下,余弦结构的准TEM模具有最宽的频率调节范围、最大的相速以及最小的耦合阻抗,梯形、矩形结构对应的特性依次减弱,且三种结构的准TEM模的纵向电场都具有表面波的特点;耦合阻抗随着波纹深度的增加而增大,随着周期和内外波纹结构相移的增大而变小,并且随着内波纹平均半径的增加先增大后减小。在考虑电子束的空间电荷影响下,求解了准TEM模的增长率,结果表明,增长率随波纹深度的增加而增大,随周期和电子束厚度的增大而减小,且随二极管电压的改变存在最大值。
     其次,为实现L波段器件小型化并提高器件效率,设计了由梯形外波纹同轴慢波结构和同轴引出结构组成的电动力学结构。阐述了梯形外波纹同轴慢波结构的优点,研究了准TEM模的场分布特性,并指出利用此结构下纵向电场具有表面波的特点可实现横向模式选择,从而缩小器件的径向尺寸;着重分析了内导体改变对频率的影响,得到了频率随内导体半径的增大而减小的结论,奠定了器件频率方便可调的基础;此外,采用S参数方法讨论了有限长同轴慢波结构的纵向谐振特性,提出纵向模式选择的概念;明确指出同轴引出结构的引入有利于提高各纵模、尤其是类π模的Q值,可在周期数较少的情况下实现高效的单频振荡,进而缩短器件轴向长度和提高束波作用效率。
     在粒子模拟方面,采用2.5维全电磁粒子模拟程序对器件产生高功率微波的机制进行了系统深入的研究,给出了束波作用过程详细的物理图像。着重分析了内导体半径和微波频率可调节特性之间的关系:当内导体半径在0.5-2.5cm范围内改变时,微波频率在1.63-1.51GHz范围内可调,且器件运行稳定,效率变化范围仅为27.7-35.4%。经优化,在导引磁场1.1T、二极管电压700kV、电流11.2kA的条件下,模拟获得了频率1.60GHz、功率2.78GW、效率35.4%的同轴TEM模微波输出。在此基础上,归纳出了低频段同轴相对论返波振荡器的设计原则,并给出了其在P波段和S波段的拓展应用,在模拟中均获得了效率大于20%的微波输出。此外,探讨了慢波结构表面爆炸发射、器件内中性气体电离产生的等离子体对器件工作特性的影响,结果表明:慢波结构表面的径向电场有利于抑制二次电子的发射;质量越轻的正离子对微波功率和脉宽的影响越严重;碰撞电离产生的等离子体的密度与中性气体的核电荷数相关。
     最后,对L波段频率可调同轴相对论返波振荡器的运行机制、工作特点进行了实验研究。在Torch-01加速器上开展了系统的实验研究。当导引磁场为0.8T、二极管电压为713kV、电流为11.4kA时,得到频率1.58GHz、功率1.07GW、效率13.2%、脉宽38.8ns、主模TM01模的微波输出。重点分析了微波频率可调节特性和模式竞争现象,结论如下:当内导体半径在0.5-1.5cm范围内改变时,微波频率在1.64-1.58GHz范围内可调,对应微波功率幅值的变化在3dB以内;去掉内导体能够获得功率为390MW的S波段微波输出;调节收集极深度可得到频率相差40MHz的微波信号;当二极管电压偏低、导引磁场偏小以及结构不同心时,会激励起非对称准TE11模,通过提高二极管电压和导引磁场、调节结构同心度可以有效抑制模式竞争现象。此外,还进行了长脉冲实验研究,在导引磁场0.9T、二极管电压700kV的条件下,获得了频率1.58GHz、功率1.2GW、脉宽86.4ns的微波输出,结果表明器件具有长脉冲运行的潜力。
The relativistic backward-wave oscillator (RBWO) is one of the most promising high-power microwave (HPM) sources and has wide potential for industrial and military applications due to its essential characters such as high power, high efficiency and high repetitive rate. Recently, there are extensive reports on RBWOs operating in the high frequency region (S-, X-band, and millimeter wave), but discussions on low operation band (L-, P-band) are rarely scanty. The main reason is that the dimension and the guiding-magnetic system of the low operation band RBWOs are especially large and complicated. Meanwhile, the RBWO with tunable frequency provides an effective approach to achieve extensive applications of HPM. Based on the above discussion, the L-band coaxial RBWO with tunable frequency is proposed in this dissertation. Experiments are carried out to verify the initiative idea, theoretical analysis and simulation results. It is demonstrated that an L-band, gigawatt level HPM can be generated effectively with a low guiding-magnetic field. The main content and innovative work are listed as follows.
     Firstly, the coaxial slow-wave structures (SWSs) are investigated systematically. Compared with the circular waveguide, the cutoff frequency of the transverse electromagnetic (TEM) mode is 0 and the space-charge limiting current is much higher in the coaxial waveguide, thus the transversal dimension of the coaxial waveguide can be reduced and the coaxial device has the potential of high power. Naturally, the coaxial SWSs are chosen in this paper. The dispersion relations of the SWSs with arbitrary geometrical structures are studied in detail under the condition of finite thickness of the beam. The dispersion curves and coupling impedance of the SWSs with the cosinoidal, trapezoidal and rectangular corrugations are obtained by numerical calculation. It is clearly found that the cosinoidal dispersion curve possesses the widest frequency range, the largest phase speed and the smallest coupling impedance. The corresponding characteristics of the trapezoidal and rectangular corrugations become inferior in order. And the longitudinal electrical field distribution of theπmode of the quasi-TEM wave conforms to the“surface wave”property. As the period and phase shift of the SWS decreases, the coupling impedance becomes higher. If the depth of the SWS decreases, the coupling impedance becomes smaller. In addition, the coupling impedance increases first and then decreases when the radius of the inner SWS increases. Considering the space charge effects of the beam, the growth rate of the quasi-TEM mode is calculated. Analytical results show that the growth rate increases along with the enlargement of the depth of the SWS, becomes smaller when the period of the SWS and the thickness of the beam increases, and possesses a maximum if the diode voltage varies.
     Secondly, the coaxial SWS with the outer trapezoidal corrugation and the coaxial extractor structure are designed to reduce the size and increase the efficiency of the L-band device. The transversal mode selection is achieved using the property of“surface wave”of the coaxial SWS to excite the quasi-TEM mode without the higher TM modes and it is proved that the coaxial SWS may decrease the transversal dimension of the SWS sections. Meanwhile, the relationship between the radius of inner-conductor and the resonance frequency is analyzed in detail, and it shows that the resonance frequency decreases obviously with the increasement of the inner-conductor radius. Moreover, the S-parameter method is employed to investigate the longitudinal resonant characteristic of the finite-length SWS. It is proved that the introduction of a well designed coaxial extractor to the slow-wave devices can make contributions to the more compact device and avoid the destructive competition between various longitudinal modes. Namely, the coaxial RBWO with a well designed coaxial extractor can realize the longitudinal mode selection and enhance the beam-wave efficiency.
     Thirdly, the mechanism of HPM generation from the device is investigated thoroughly by the 2.5-dimensional full electromagnetic particle-in-cell (PIC) code, and related physical images are presented. The dependences of the output microwave power, efficiency and frequency on structural parameters, beam parameters and guiding-magnetic field are analyzed intensively. It is shown that the frequency is lowered from 1.63GHz to 1.51GHz when the inner-conductor radius increases from 0.5cm to 2.5cm. And the efficiency varies in the range of 35.4-27.7%. After optimization, a microwave with frequency of 1.60GHz, power of 2.78GW and efficiency of 35.4% is obtained under the condition of diode voltage at 700kV, beam current at 11.2kA and guiding-magnetic field at 1.1T. Further, the basic design principles and processes for the compact and low frequency RBWO are presented. According to that, the P-, S-band compact coaxial RBWOs are provided, respectively. Additionally, effects of the plasma produced by the explosive emission in the inner-surface of SWSs and the collisional ionization of the pre-filled gas on the performance of the device are simulated sufficiently. Typical results showed that the transversal electrical field at the surface of the SWS is useful to prevent the emission of the secondary electrons. The lighter ions produced by the explosive emission have greater impacts on the output microwave. The density of the plasma produced by the collisional ionization is relative to the nucleus number of the pre-filled gas.
     Finally, experiments are carried out to demonstrate the operating mechanism and characteristics of the L-band coaxial RBWO with tunable frequency. On the Torch-01 accelerator, when the diode voltage is 713kV, the current is 11.4kA and the guiding-magnetic field is 0.8T, the radiated microwave with frequency of 1.58GHz, power of 1.07GW and pulse duration of 38.8ns is generated. Its efficiency is 13.2% and its main mode is TM01 mode. This result is the first experimental report on the L-band RBWO at home and abroad. Particularly, the tunable characteristics and mode-competition mechanism are studied in detail. It is found that the frequency decreases from 1.64GHz to 1.58GHz when the inner-conductor radius increases from 0.5cm to 1.5cm. An S-band microwave with power of 390MW could be obtained after removing the inner-conductor. As the depth of the collector changes, the tunable frequency varies in the range of 40MHz. If the diode voltage and guiding-magnetic field are lower and the device is non-homocentric, the asymmetric quasi-TE11 mode could be generated. On the other hand, the mode-competition mechanism could be restrained efficiently by increasing the diode voltage and guiding-magnetic field and adjusting the non-homocentric structure. Furthermore, experiments are carried out on the long pulse accelerator. When the diode voltage is 700kV and guiding-magnetic field is 0.9T, the microwave is obtained with power of 1.2GW at the frequency of 1.58GHz. The pulse duration of the radiated microwave is 86.4ns, which exhibits the RBWO’s promising application in terms of the long pulse.
引文
[1] J. Benford and J. A. Swegle. High-power microwaves [M]. Norwood, Mass: Artech House, 1992.
    [2] J. A. Swegle and J. Benford. High-power microwave at 25 years: the current state of development [C]. Proceedings of the 12th international conference on high-power particle beams, Haifa, Israel, 1998.
    [3] S. H. Gold and G. S. Nusinovich. Review of high-power microwave source research [J]. Rev. Sci. Instrum., 1997, 68(11): 3945-3974.
    [4] L. D. Bacon and L. F. Rinehart. A brief technology survey of high-power microwave sources [C]. Sandia National Laboratory report, 2001.
    [5] R. J. Barker and E. Schamiloglu. High-power microwave sources and technologies [M]. New York: The Institute of Electrical and Electronics Engineer, Inc., 2001.
    [6] E. Schamiloglu, K. H. Schoenbach, and R. Vidmar. Basic research on pulsed power for narrowband high power microwave sources [C]. Proceedings of SPIE, Intense Microwave PulsesⅨ, 2002, 4720: 1-9.
    [7] J. N. Benford, N. J. Cooksey, J. S. Levine, et al. Techniques for High Power Microwave Source at High Average Power [J]. IEEE Trans. Plasma Sci., 1993, 21(4): 388-392.
    [8] W. W. Destler and B. Levush. Introduction to the third special issue on high-power microwave generation [J]. IEEE Trans. Plasma Sci., 1990, 18(3): 257.
    [9] D. B. McDermott, A. T. Lin, and K. R. Chu. The ninth special issue on high-power microwave generation [J]. IEEE Trans. Plasma Sci., 2002, 30(3): 731.
    [10] J. Benford, J. A. Swegle, and E. Schamiloglu. High Power Microwaes, Second Edition [M]. New York, 2007.
    [11] J. N. Benford, S. Ashby, R. R. Smith, et al. High power microwave source development [J]. Technical report, Defense Nuclear Agency, 1995.
    [12]周传明,刘国治,刘永贵等.高功率微波源[M].北京:原子能出版社,2007:40-47.
    [13]《高功率微波源与技术》翻译组译,《高功率微波源与技术》[M].北京:清华大学出版社,2005.
    [14]刘盛纲.相对论电子学[M].北京:科学出版社, 1987.
    [15] R. B. Miller.强流带电粒子束物理学导论[M].北京:原子能出版社, 1990.
    [16]刘锡三.高功率脉冲技术[M].北京:国防工业出版社, 2005.
    [17]曾正中.实用脉冲功率技术引论[M].西安:陕西科学技术出版社, 2003
    [18] G. A. Mesyats.大功率毫微秒脉冲的产生[M].北京:原子能出版社, 1982.
    [19]吴诗信,莫伯锦译,《高功率微波》[M].成都:电子科技大学出版社,1996.
    [20]张军.新型过模慢波高功率微波发生器的研究[D].长沙:国防科技大学,2004.
    [21]樊玉伟.磁绝缘线振荡器及其相关技术研究[D].长沙:国防科技大学, 2007.
    [22] D. V. Giri, H. Lackner, C. E. Baum, et al. Design, fabrication and testing of a paraboloidal reflector antenna and pulse system for impulse-like waveforms [J].IEEE Trans. Plasma Sci., 1997, 25(2): 318.
    [23] J. A. Swegle, J. W. Poukey, and G. T. Leifeste. Backward wave oscillators with rippled wall resonators: analytic theory and numerical simulation [J]. Phys. Fluids., 1985, 28: 2882-2294.
    [24] B. Levush, T. M. Antonsen, A. Bromborsky, et al. Theory of relativistic backward-wave oscillators with end reflections [J]. IEEE Trans. Plasma Sci., 1992, 20(3): 263.
    [25] L. D. Moreland, E. Schamiloglu, R. W. Lemke, et al. Efficiency enhancement of high power vacuum BWOs using nonuniform slow wave structures [J]. IEEE Trans. Plasma Sci., 1994, 22: 554-565.
    [26] L. Baruch, M. A. Thomas, N. V. Alexander, et al. High-efficiency relativistic BWO: theory and design [J]. IEEE Trans. Plasma Sci., 1996, 24(3): 843.
    [27] D. Shiffler, J. A. Nation, G. S. Kerslick. A high-power traveling wave tube amplifier [J]. IEEE Trans. Plasma Sci., 1990, 18(3): 546.
    [28] S. P. Bugaev, V. A. Cherepenin, V. I. Kanavets, et al. Relativistic Multiwave Cerenkov Generators [J]. IEEE Trans. on Plasma Sci., 1990, 18(3): 525-536.
    [29]舒挺.多波切伦柯夫振荡器的研究[D].长沙:国防科技大学, 1998.
    [30] S. A. Kitsanov, A. I. Klimov, S. D. Korovin, et al. S-band resonant BWO with 5GW pulsed power [C]. Proceeding of Beams 2002. Edited by T. A. Mehlhorn and M. A. Sweeney, Albuquerque UM USA, 2002: 255.
    [31] A. V. Gunin, A. I. Klimov, S. D. Korovin, et al. Relativistic X-Band BWO with 3-GW Output Power [J]. IEEE Trans. on Plasma Sci., 1998, 26(3): 326-330.
    [32] M. Friedman, V. Serlin, M. Lampe, et al. Relativistic klystron amplifier in I: high power operation [C]. Proceedings of SPIE, 1991, 1407:147.
    [33] M. D. Haworth, J. W. Luginsland, R. W. Lemke, et al. Improved cathode design for long-pulse MILO operation [J]. IEEE Trans. Plasma Sci., 2001, 29(2): 388.
    [34] M. Friedman. Present and future development of high power RKA [C]. Proceedings of SPIE, 1992, 1629: 2.
    [35] Y. W. Fan, H. H. Zhong, Z. Q. L, et al. Recent progress of the improved MILO [J]. Rev. Sci. Instrum., 2008, 79(3): 034703.
    [36] R. Smith, J. Benford, et al. Operation of an L-Band Relativistic Magnetron at 100Hz [C]. Intense Microwve and Particle Beam II. SPIE, 1991, 1407: 83.
    [37] J. N. Benford, et al. Techniques for High Power Microwave Source at High AveragePower [J]. IEEE Trans. On Plasma Sci., 1993, 21(4): 388.
    [38]陈昌华,刘国治等.吉瓦100赫兹重复频率相对论返波管研制报告[R].内部资料,2000.
    [39]钱宝良.具有等离子体背景或介质衬套的返波管[D].北京:清华大学,1996.
    [40]王文祥.微波工程技术[M].北京:国防工业出版社,2009:421.
    [41]丁武.高功率微波发生器原理[M].北京:国防工业出版社,2008:19.
    [42]肖仁珍.同轴慢波结构相对论切伦柯夫发生器研究[D].北京:清华大学,2007.
    [43] J. A. Nation. On the coupling of a high-current relativistic electron beam to a slow wave structure [J]. Appl. Phys. Lett. 1970, 17: 491-494.
    [44]陈洪斌.高功率毫米波返波管器件研究[D].绵阳:中国工程物理研究院,2005.
    [45] S. D. Korovin, S. D. Polevin, A. M. Roitman, et al. Relativistic backward wave tube with variable phase velocity [J]. Sov. Tech. Phys. Lett., 1992, 18: 265-266.
    [46]宋志敏,刘国治,陈昌华等.带谐振腔反射器的低磁场返波管实验研究[J].强激光与粒子束,2006,18(9):350-352.
    [47]宋玮,陈昌华,孙钧等.X波段相对论返波管实验研究[C].首届全国脉冲功率会议文集,安徽芜湖,2009:543-547.
    [48]杨建华.低磁场谐振腔切仑科夫振荡器-锥形放大管的研究[D].长沙:国防科技大学,2002.
    [49] R. Z. Xiao, C. H. Chen, X. W. Zhang, et al. Efficiency enhancement of a high power microwave generator based on a relativistic backward wave oscillator with a resonant reflector [J]. J. Appl. Phys., 2009, 105(5): 053306.
    [50] Y. Carmel, K. Minami, W. Lou, et al. High-power microwave generation by excitation of a plasma-filled rippled boundary resonator [J]. IEEE Trans. Plasma Sci., 1990, 18(3): 497-506.
    [51] Y. V. Tkach, Y. B. Fainberg, I. I. Magda, et al. Microwave emission in the interaction of a high-current relativistic beam with a plasma-filled slow-wave structure [J]. Sov. J. Plasma Phys., 1975, 1: 43-46.
    [52] A. T. Lin, L. Chen. Plasma-induced distributed feedback in plasma-filled backward wave oscillator [J]. Phys. Rev. Lett., 1989, 63: 2808-2811.
    [53] K. Minami, W. R. Lou, and W. W. Destler. Observation of a resonant enhancement of microwave radiation from a gas-filled backward wave oscillator [J]. Appl. Phys. Lett., 1988, 53(7): 559-561.
    [54] Y. Carmel, K. Minami, R. A. Kehs, et al. Demonstration of efficiency enhancement in a high-power backward-wave oscillator by plasma injection [J]. Phys. Rev. Lett., 1989, 62(20): 2389-2392.
    [55] X. Zhai, E. Garate, R. Prohaska, et al. Study of a plasma-filled X-band backward wave oscillator [J]. Appl. Phys. Lett., 1992: 2232-2234.
    [56] A. I. Klimov, et al. Highly efficient generation of subnansecond microwave pulses in Ka-band relativistic BWO [J]. IEEE Trans. Plasma Sci., 2002, 30(3): 1120-1125.
    [57]董烨,董志伟,周海京.超辐射机制相对论返波管的数值计算[J].强激光与粒子束, 2007,19(4):671-676.
    [58]胡林林,陈洪斌,马国武等.X波段重频GW级超辐射RBWO粒子模拟与实验研究[C].首届全国脉冲功率会议文集,安徽芜湖,2009:553-557.
    [59] A. A. Eltchaninov, S. D. Korovin, V. V. Rostov, et al. Production of short microwave pulses with a peak power exceeding the driving electron beam power [J]. Laser Part. Beams., 2003, 21(2): 187-196.
    [60] A. A. Eltchaninov, S. D. Korovin, G. A. Mesyats, et al. Review of studies of superradiative microwave generation in X band and Ka band relativistic BWOs (Review) [J]. IEEE Trans. Plasma Sci., 2004, 32(3): 1093-1099.
    [61] G. A. Huttlin, M. S. Bushell, D. B. Conrad, et al. The reflex-diode HPM source on aurora [J]. IEEE Trans. Plasma Sci., 1990, 18(3): 618-625.
    [62] R. J. Barker, and F. J. Agee. National university consortium on microwave rsearch (NUCOMR) [C]. In H. E. Brandt (Ed.), Proceedings of SPIE, Intense Microwave PulsesⅢ, 1995, 2557: 300.
    [63] International Workshop on High Power Microwave Generation and Pulse Shortening [C]. Edinburgh International Conference Centre, United Kingdom. June 10-12, 1997.
    [64] F. J. Agee, S. E. Calico, K. J. Hendricks, et al. Pulse shortening in the magnetically insulated line oscillalor (MILO) [C]. Proceedings of SPIE, Intense Microwave PulsesⅣ, 1996, 2843: 144-152.
    [65] D. Price, J. S. Levine, and J. N. Benford. Diode plasma effects on the microwave pulse length from relativistic magnetrons [J]. IEEE Trans. Plasma Sci., 1998, 26(3): 348-353.
    [66] C. Grabowski and J. M. Gahl . Electron emission from slow-wave structure walls in a long-pulse, high-power backward wave oscillator [J]. IEEE Trans. Plasma Sci., 1997, 25(2): 335-341.
    [67] K. Hahn, M. Fuks. Initial studies of a long-pulse relativistic backward-wave oscillator utilizing a disk cathode [J]. IEEE Trans. Plasma Sci., 2002, 30(3): 1112-1119.
    [68]靳振兴,张军,杨建华等.S波段长脉冲相对论返波振荡器的实验研究[J].强激光与粒子束,已录用.
    [69]张军,靳振兴,杨建华等. X波段GW级长脉冲高功率微波源的设计与实验[J].强激光与粒子束,已录用.
    [70] C. H. Chen, G. Z. Liu, W. H. Huang, et al. A Repetitive X-band Relativisitic Backward-wave Oscillator [J]. IEEE Trans. Plasma Sci., 2002, 30(3): 1108-1111.
    [71] J. Zhang, H. H. Zhong, and L. Luo. A Novel Overmoded Slow-Wave High-Power Microwave (HPM) Generator [J]. IEEE Trans. Plasma Sci., 2004, 32(6): 2236-2242.
    [72] D. M. Goebel., J. M. Butter, R. W. Schumacher, etal. High power microwave sourcebased on an unmagnetized backward oscillator [J]. IEEE Trans P S, 1994, 22(5): 547-553.
    [73] E. M. Totmeninov, A. I. Klimov, S. D. Korovin, et al. Investigation of a Relativistic Cherenkov Microwave Oscillator without a Guiding Magnetic Field High power microwave [C]. High power microwaves, 2002: 355-358.
    [74]汪伟.S波段无外加导引磁场相对论返波振荡器的研究[D].长沙:国防科学技术大学,2009.
    [75] N. S. Ginzburg, R. M. Rozental, and A. S. Sergeev. Dual band operation of the relativistic BWO [C]. 4th IEEE international conference on vacuum electronics, 2003: 181-182.
    [76]宋刚永.X波段双频相对论返波振荡器的研究[D].成都:电子科技大学,2009.
    [77] T. Wang, J. D. Zhang, B. L. Qian, et al. Dual-band relativistic backward wave oscillators based on a single beam and dual beams [J]. Phys. Plasmas., 2010, to be published.
    [78]王浩英.高功率毫米波Cherenkov器件研究[D].成都:电子科技大学,2005.
    [79]刘本田.高效率宽频带连续可调回旋返波管的理论和实验研究[D].北京:中国科学院电子学研究所,2005.
    [80] N. C. Chen, C. F. Yu, C. P. Yuan, and T. H. Chang. A mode-selective circuit for TE01 gyrotron backward-wave oscillator with wide-tuning range [J]. Appl. Phys. Lett., 2009, 94(10): 101501.
    [81] J. Zhu and T. Shu. A high power millimeter-wave source operated at low magnetic field [C]. The 35th International Conference on Plasma Science, Karlsruhe, Germany 2008.
    [82]朱俊.毫米波低磁场慢波结构高功率微波发生器研究[D].长沙:国防科技大学, 2006.
    [83] A. S. Shlapakovskii. Ultrawide-bandwidth gain in a coaxial dielectric Cherenkov maser [J]. Tech. Phys., 1997, 42(5): 516-521.
    [84] G. V. Sotnikov. Microwave Amplification in a coaxial slow-wave plasma transmission line [J]. Plasma Phys Rep., 2001, 27(6): 509-518.
    [85] L. N. Yue, W. X. Wang, Y. Y. Wei, et al. Radio-frequency characteristics of the coaxial step-disk-loaded slow-wave structure for relativistic traveling wave tubes [J]. Chin. Phys. Lett., 2005, 22(3): 754-757.
    [86]张克潜,李德杰.微波与光电子学中的电磁场理论(第二版)[M].北京:电子工业出版社,2001.
    [87]文光俊,李家胤,熊祥正等.同轴相对论返波管高频特性的数值分析[J].强激光与粒子束,1997, 9(3):347-352.
    [88] G. J. Wen, J. Y. Li, F. Z. Xie, et al. Coaxial relativistic backward wave oscillator and coaxial master oscillator-power amplifier [J]. Int J Infrared Milli., 1999, 20(1): 57-69.
    [89]文光俊,李家胤,刘盛纲等.同轴相对论返波管的粒子模拟研究[J].电子学报,1999,27(12):132-134.
    [90]郭军.X波段低磁场高效率返波振荡器的研究[D].成都:电子科技大学,2005.
    [91]于新华.X波段低磁场高功率返波振荡器的研究[D].成都:电子科技大学,2006.
    [92]袁家德.X波段圆盘加载返波振荡器的特性研究[D].成都:电子科技大学,2006.
    [93]邢春超.具有Bragg反射器的相对论同轴慢波结构振荡器研究[D].成都:电子科技大学,2009.
    [94]刘国治.一种同轴慢波结构相对论高功率微波器件的数值模拟研究[C].全国第五届高功率微波学术研讨会论文集,广东珠海,2002:2-6.
    [95] R. Z. Xiao, Y. Z. Lin, Z. M. Song, et al. Theoretical Study of a Plasma-Filled Relativistic Cerenkov Generator with Coaxial Slow-Wave Structure [J]. IEEE Trans. Plasma Sci., 2007, 35(5): 1456-1466.
    [96] R. Z. Xiao, G. Z. Liu, and C. H. Chen, Comparative research on three types of coaxial slow wave structures [J]. Chin. Phys. B., 2008, 17(10): 3807-3811.
    [97] R. Z. Xiao, L.J. Zhang, T. Z. Liang, et al. Limitation of cross-excitation instability in a relativistic Cerenkov generator with coaxial slow wave structure [J]. Phys. Plasmas., 2008, 15(5): 053107.
    [98] G. Z. Liu, R. Z. Xiao, C. H. Chen, et al. A Cerenkov generator with coaxial slow wave structure [J]. J. Appl. Phys., 2008, 103(9): 093303.
    [99] Y. Teng, G. Z. Liu, H. Shao, et al. A New Reflector Designed for Efficiency Enhancement of CRBWO [J]. IEEE Trans. Plasma Sci., 2009, 37(6): 1062-1068.
    [100]姜幼明,王清源,杜祥琬.高功率高增益大直径相对论返波管[J].计算物理,2002, 19(4): 333-338.
    [101]牛洪昌.紧凑型L波段同轴相对论返波振荡器的研究[D].长沙:国防科学技术大学,2005.
    [102]陈旭.P波段同轴返波振荡器的研究[D].长沙:国防科学技术大学,2008.
    [103]曹亦兵.低阻无箔渡越辐射振荡器的研究[D].长沙:国防科学技术大学,2008.
    [104] X. J. Ge, H. H. Zhong, B. L. Qian, et al. Dispersive characteristics and longitudinal resonance properties in a relativistic backward wave oscillator with the coaxial arbitrary-profile slow-wave structure [J]. Phys. Plasmas., 2009, 16 (11): 113104.
    [105]岳玲娜.同轴加载圆波导慢波系统的研究[D].成都:电子科技大学,2005.
    [106]李庆扬,关治,白峰杉.数值计算原理[M]北京:清华大学出版社,2000.
    [107] J. A. Swegle. Approximate treatment near resonance of backward and traveling wave tubes in the Compton regime [J]. Phys. Fluids, 1985, 28 (12): 3696-3702.
    [108]黄峰,王冬,邢庆子等.相对论返波管注-波作用不稳定区的研究[J].强激光与粒子束,2005,17(10):1547-1552.
    [109]于新华,蒙林,鄢扬等.波纹内导体返波振荡器的热腔特性[J].强激光与粒子束,2008,20(6):981-984.
    [110]王冬,陈代兵,范植开等.HEMll模磁绝缘线振荡器的高频分析[J].物理学报,2008,57(8):4875-4882.
    [111]王冬,陈代兵,范植开等.磁绝缘线振荡器中高阶模式的3维数值模拟[J].强激光与粒子束,2008,20(4):641-644.
    [112]孙会芳,董志伟,杨温渊等.MILO实验模型的频移问题研究[J].信息与电子工程,2004,2(2):95-97.
    [113] W. Main, Y. Carmel, K. Ogura, et al. Electromagnetic properties of open and closed overmoded slow-wave resonators for interaction with relativistic electron beams [J]. IEEE Trans. Plasma Sci., 1994, 22(5): 566.
    [114] G. S. Nusinovich and Y. P. Bliokh. Mode interaction in backward-wave oscillators with strong end reflections [J]. Phys. Plasmas., 2000, 7(4): 1294-1301.
    [115] I. A. Chernyavsky, V. M. Pikunov. Numerical investigations of relativistic backward wave oscillator [J]. Journal of Radioelectronics. 1999, 44(7): 1364.
    [116]张军,钟辉煌.高功率O型慢波器件的纵向模式选择研究[J].物理学报,2005, 54(1):206-210.
    [117]葛行军,陈宇,钱宝良等.O型同轴慢波器件的纵向模式选择研究[J].电波科学学报, 2008, 23(6):1111-1114.
    [118]刘国治,陈昌华,张玉龙.同轴引出相对论返波管[J].强激光与粒子束,2001,13(4): 467-470.
    [119] X. J. Ge, H. H. Zhong, B. L. Qian, et al. Transversal and longitudinal mode selections in double-corrugation coaxial slow-wave devices [J]. Phys. Plasmas., 2009, 16 (6): 063107.
    [120] J. E.罗埃著,张静波译.电子与波的非线性相互作用现象[M].北京:科学出版社,1979.
    [121]盛建霓等.电磁场数值分析[M].北京:科学出版社,1984.
    [122] F. H. Harlow. The particle-in-cell computing method for fluid dynamics. Math. Comput. Phys., vol.3. New York: Academic Press, 1964, 319.
    [123] J. M. Dawson. One-dimensinal plasma model [J]. Phys. Fluids, 1962, 5(4): 403.
    [124] C. K. Birdsall and D. Fuss. Clouds-in-cells physics for many-body plasma simulation [J]. J. Comput. Phys., 1969, 12(3): 494.
    [125] A. B. Langdon and C. K. Birdsall. Theory of plasma simulation using Finite-size particles [J]. Phys. Fluids., 1970, 13(6): 2115.
    [126] J. M. Dawson. Particle Simulation of Plasmas [J]. Rev. Mod. Phys, 1983, 55(2): 403.
    [127] B. Goplen. Magic’s manual [R]. Virginia: Mission Research corporation, 1996.
    [128] V. P. Tarakanov. User’s manual for code Karat [R]. Virginia: Berkeley Research Associates inc., 1999.
    [129] B. Goplen, L. Ludeking, D. Smithe. Magic user’s manual [R]. Technical Report of Mission Research Corporation, 1999.
    [130] J. P. Verboncoeur, A. B. Langdon and N. T. Gladd. An object-oriented electromagnetic PIC code [J]. Comp. Phys. Comm., 1995, 87: 199.
    [131] J. G. Wang, D. H. Zhang, C. L. Liu, et al. UNIPIC code for simulations of high power microwave devices [J]. Phys. Plasmas., 2009, 16(3): 033108.
    [132] J. Zhou, D. G. Liu, C. Liao, et al. CHIPIC: An Efficient Code for Electromagnetic PIC Modeling and Simulation [J]. IEEE Trans. Plasma Sci., 2009, 37(10): 2002-2011.
    [133]葛行军,钟辉煌,钱宝良等.内导体对相对论返波振荡器工作波段选择的影响[J].强激光与粒子束,2009,21(6):894-898.
    [134] A. N. Vlasov, A. S. Ilyin and Y. Carmel. Cyclotron Effects in RBWOs operating at low magnetic fields [J]. IEEE Trans Plasma Sci., 1998, 26(3): 605.
    [135] K. Minami, M. Saito, Y. Choyal, et al. Linear dispersion relation of backward-wave oscillators with finite-strength axial magnetic field [J]. IEEE Trans Plasma Sci., 2002, 30(3): 1134.
    [136] S. M. Miller, T. M. Antonsen, B. Levush, et al. Cyclotron resonances in relativistic BWO’s operating near cutoff [J]. IEEE Trans Plasma Sci., 1996, 24(3): 859.
    [137] S. M. Miller, T. M. Antonsen, B. Levush, et al. Theory of relativistic backward wave oscillators operating near cutoff [J]. Phys. Plasmas., 1993, 24(3): 730.
    [138]张晓萍.新型磁绝缘线振荡器研究[D].长沙:国防科技大学, 2004.
    [139] C. W. Yuan, Q. X. Liu, H. H. Zhong, et al. A novel TEM-TE11 mode converter [J]. IEEE Microw. Wirel. Component Lett., 2005, 15(8): 515-535.
    [140] C. W. Yuan, Y. W. Fan, H. H. Zhong, et al. A novel mode-transducing antenna for high-power microwave application [J]. IEEE Trans. Antennas Propag., 2006, 54(10): 3022.
    [141]袁成卫.高功率微波轴对称模式天线辐射技术研究[D].长沙:国防科技大学,2002.
    [142]刘庆想,袁成卫.一种新型TEM-TE11模式转换器[J].强激光与粒子束,2004,16(11): 1421-1424.
    [143]张章.高功率微波源中脉冲缩短现象的粒子模拟与机理研究[D].成都:电子科技大学,2004.
    [144] M. Friedman and V. Serlin. Electrostatic insulation of high-voltage gap [J]. IEEE Trans. on Electrical insulation Sci., 1988, 23(1): 51-56.
    [145]宫玉彬,张章,魏彦玉等.相对论返波管中的脉冲缩短现象[J].强激光与粒子束2004,16(12):1567-1570.
    [146]肖仁珍,刘国治,林郁正.充空气的同轴慢波结构高功率微波器件粒子模拟[J].强激光与粒子束,2007,19(6):910-914.
    [147]杨梓强,梁正.非磁化等离子体填充的相对论返波振荡管的粒子模拟[J].强激光与粒子束,2002,14(4):608-612.
    [148]刘列,刘永贵,李传胪.充中性气体相对论返波振荡器的相对论研究[J].强激光与粒子束,2002,14(5):757-761.
    [149]蒋世义.等离子体对微波管输出性能的影响研究[D].成都:电子科技大学,2007.
    [150]张军,钟辉煌,舒挺等.X波段长脉冲HPM产生的实验研究[J].强激光与粒子束,2008,20(3):443-446.
    [151] M. E. Cuneo, P. R. Menge, D. L. Hanson, et al. Results of vacuum cleaning techniques on the performance of lif field-threshold ion sources on extraction applied-b ion diodes at 1–10 TW [J]. IEEE Trans. Plasma Sci., 1997, 25(2): 229-251.
    [152] M. E. Cuneo. The Effect of electrode contamination, cleaning and conditioning on high-energy pulsed-power device performance [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(4): 469-485.
    [153] C. S. Mayberry, B. Wroblewski, E. Schamiloglu, et al. Suppression of vacuum breakdown using thin-film coatings [J]. J. Appl. Phys., 2002, 76(7): 4448-4450.
    [154] R. C. Talcott. The effects of Titanium films on secondary electron emission phenomena in resonant cavities and at dielectric surfaces [J]. IRE Trans. Electron Devices, 1962, 9: 405.
    [155] W. E. Cohen, R. M. Gilgenbach, R L Jaynes, et al. Radio-frequency plasma cleaning for mitigation of high-power microwave-pulse shortening in a coaxial gyrotron [J]. Appl. Phys. Lett., 2000, 77(23): 3725-3727.
    [156] D. A. Shiffler, M. J. LaCour, M. D. Sena, et al. Comparison of carbon fiber and cesium iodide coated carbon fiber cathodes [J]. IEEE Trans. Plasma Sci., 2000, 28(3): 517-522.
    [157] D. Shiffler, M. LaCour, K. Golby, et al. Comparison of velvet and cesium iodide coated carbon fiber cathode [J]. IEEE Trans. Plasma Sci., 2001, 29(3): 445-451.
    [158] R. B. Miller. Mechanism of explosive electron emission for dielectric fiber (velvet) cathodes [J]. J. Appl. Phys., 1998, 84(7): 3880-3889.
    [159] D. Shiffler, J. Heggemeier, M. LaCour, et al. Low level plasma formation in a carbon velvet cesium iodide coated cathode [J]. Phys. Plasmas., 2004, 11(4): 1680-1684.
    [160] L. Lie, L. M. Li, X. P. Zhang, et al. Carbon fiber-based cathodes for magnetically insulated transmission lineoscillator operation [J]. Appl. Phys. Lett., 2007, 91(16): 161504.
    [161]舒挺,王勇,李继健等.高功率微波的远场测量[J].强激光与粒子束,2003, 15(5):485.
    [162]刘金亮,张亚洲,陈国强等.混频技术测量单次脉冲微波频率的实验研究[J].强激光与粒子束,1997, 9(4):631.
    [163] D. A. Shiffler, M. J. LaCour, M. D. Sena, et al. Comparison of carbon fiber and cesium iodide-coated carbon fiber cathodes [J]. IEEE Trans. Plasma Sci., 2000, 28: 517-522.
    [164] Y. M. Saveliev, W. Sibbett, and D. M. Parkes. Current conduction and plasma distribution on dielectric (velvet) explosive emission cathodes [J]. J. Appl. Phys., 2003, 94: 7416-7421.
    [165] L. Schachter and J. A. Nation. Limiting current from a metallic ideal edge attached to a dielectric edge [J]. Appl. Phys. Lett., 1999, 75: 3084-3086.
    [166] L. M. Li, L. Liu, G. X. Cheng, et al. Electrical explosion process and amorphous structure of carbon fibers under high-density current pulse igniting intense electron-beam accelerator [J]. Laser Part. Beams., 2009, 27(3): 511-520.
    [167] L. Liu, L. M. Li, J. C. Wen, et al. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams [J]. Rev. Sci. Instrum., 2009, 80 (2): 023303.
    [168] L. Liu, L. M. Li, J. Zhang, et al. A series of tufted carbon fiber cathodes designed for different high power microwave sources [J]. Rev. Sci. Instrum., 2008, 79(6): 064701.
    [169] L. Liu, L. M. Li, X. P. Zhang, et al. Carbon fiber-based cathodes for magnetically insulated transmission line oscillator operation [J]. Appl. Phys. Lett., 2007, 91(16): 161504.
    [170] L. M. Li, L. Liu, G. X. Cheng, et al. Layer structure, plasma jet, and thermal dynamics of Cu target irradiated by relativistic pulsed electron beam [J]. Laser Part. Beams., 2009, 27(3): 497-509.
    [171]白现臣.单台加速器产生同步高功率双电子注研究[D].长沙:国防科学技术大学,2007.
    [172]张建德,李传胪,钟辉煌等.自由电子激光装置导引场绕组设计[J].国防科技大学学报. 1993, 15:113.
    [173]葛行军,杜广星,朱俊等. L波段同轴相对论返波振荡器的导引磁场的设计[J].强激光与粒子束,2010,22(1):109-113.
    [174]葛行军,钟辉煌,钱宝良等.频率可调L波段同轴RBWO实验研究[C].湖南省核学会2009年学术年会,湖南长沙,2009.
    [175] T. W. Sanford, J. A. Halbieib, J. W. Poukey, et al. Measurement of electron energy deposition necessary to form an anode plasma in Ta, Ti, and C for coaxial bremsstrahlung diodes [J]. J. Appl. Phys., 1989, 66(1): 10.
    [176] D. A. Shiffler, J. W. Luginsland, R. J. Umstattd, et al. Effects of anode materials on the performance of explosive field emission diodes [J]. IEEE Trans. Plasma Sci., 2002, 30(3): 1232-1237.
    [177] E. Mu?oz-Serrano, E. Casado, and V. Colomerc. Modeling and experimental investigation of spot dynamics on graphite cathodes in dc plasma arcs at high pressure [J]. J. Appl. Phys., 2006, 99(4): 043303.
    [178] D. Shiffler, M. Ruebush, and D. Zagar. Cathode and anode plasmas in short-pulseexplosive field emission cathodes [J]. J. Appl. Phys. 2002, 91(9): 5599-5603.
    [179] C. Chang, G. Z. Liu, C. X. Tang, et al. The influence of desorption gas to high power microwave window multipactor [J]. Phys. Plasmas. 2008, 15(9): 093508.
    [180]Y. Saito. Surface breakdown phenomena in alumina rf windows[J]. IEEE Trans. on Dielectrics and Electrical Insulation. 1995, 2(2):243-250.
    [181] A. A. Neuber, J. T. Krile, G. F. Edmiston, et al. Dielectric surface flashover at atmospheric conditions under high-power microwave excitation [J]. Phys. Plasmas., 2007, 14(5): 057102.
    [182] C. Chang, G. Z. Liu, H. J. Huang, et al. Suppressing high-power microwave dielectric multipactor by the sawtooth surface [J]. Phys. Plasmas., 2009, 16(8): 083501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700