S波段无外加导引磁场相对论返波振荡器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对论返波振荡器具有高功率、高效率、良好的稳定性等特点,是目前最有潜力的高功率微波器件之一,但其需要强磁场对电子束进行引导、约束,磁场系统庞大、笨重,制约了返波振荡器向小型化发展,降低甚至不加引导磁场成为相对论返波振荡器的研究方向。本文对S波段无外加导引磁场的相对论返波振荡器从理论分析、粒子模拟和实验设计等方面展开了研究工作,得到了一些有意义的结果。
     论文首先对慢波结构的色散曲线进行了理论分析,分别采用场匹配法和多项式展开法研究了慢波结构的色散特性,并详细研究了慢波结构中TM01模的色散特性与结构参数之间的关系,为器件的粒子模拟和设计提供了初始结构参数。
     论文还采用2.5维全电磁粒子模拟软件对S波段无外加导引磁场返波振荡器进行了粒子模拟研究。以均匀慢波结构的返波振荡器为模型研究了慢波结构的几何参数和二极管电压对其工作特性的影响,并进行了参数优化。结果表明在工作电压为335kV,束流为3.15kA的条件下,微波频率为2.79GHz,功率为274.2MW,束波转换效率达到26%。如果采用非均匀慢波结构,可以大大提高器件的束波转换效率。本文在均匀慢波结构的基础上研究了非均匀慢波结构,得到了较好的结果:在外加电压335kV,束流为3.19kA的条件下,微波功率358.2MW,频率为2.76GHz,效率达到34%。
     最后,对器件进行了实验设计。利用高频场分析软件设计了辐射系统,该辐射系统实现了TEM模到TM01模的模式转换、辐射波导与空间的匹配辐射、内导体的机械支撑、以及内外导体的金属连接等功能。另外,对非均匀结构S波段无外加磁场BWO进行了初步的工程设计。
     这些研究结果对今后开展无外加导引磁场返波振荡器的实验研究具有一定的参考价值。
The backward wave oscillator (BWO) is one of the promising devices that can produce high-power microwaves because of its high power, high efficiency and good stability. Generally, BWO needs an external guiding magnetic field to confine the electron beams. The system of the external magnetic is bulky and heavy. So scientists focus on how to decrease the magnetic field for obtaining a relatively light magnetic field system. This thesis presents preliminary investigation on the S-band BWO without an external magnetic field using theoretical analysis and particle simulation. Valuable results are obtained.
     First, the dispersion relationship of the slow wave structure (SWS) is analyzed. The dispersion characteristics of the SWS and the dispersion curves are investigated by using field-matching method and polynomials-expanding method. We analyze the dispersion relation of the TM01 mode and determine its operating parameters varying with geometrical structure. These results are useful for starting the investigation of the BWO in the particle simulation.
     Secondly, the BWO without an external magnetic field is investigated using a 2.5D fully electromagnetic particle-in-cell (PIC) code. The effects of the structure parameters and the beam voltage on the BWO are studied by using the uniform SWS model. We obtain typical results by optimizing the structure of the uniform SWS BWO without the external magnetic field. A 2.79GHz,274.2MW high power microwave can be obtained when the beam voltage is 335kV and beam current is about 3.15kA in the case of uniform SWS BWO, and the efficiency is about 26 %. The efficiency can be improved by using the nonuniform SWS. When the beam voltage is 335kV and the beam current is 3.19kA, a high power microwave with frequency of 2.76GHz and out put power of 358.2MW is observed in the case of nonuniform SWS BWO, and the efficiency of the power conversion is about 34% .
     Finally, a radiation system is designed and optimized by the high frequency simulation software. This system provides the functions such as converting from TEM to TM01, keeping the output waveguide and the space impedance in matching, making the inner and the outer conductor grounded, and mechanically supporting the inner conductor. In addition, we finish the engineering design of the S-band BWO without an external magnetic field.
     The results in this thesis are valuable to the future study of the S-band BWO without an external magnetic field.
引文
[1] J. Benford, J. Swegle, High power microwaves[M]. Artech House, Norwood, MA, 1991
    [2]牛洪昌,紧凑型L波段同轴相对论返波振荡器的研究[D].长沙:国防科学技术大学,2005
    [3]贺元吉,爆电能源高功率超宽带脉冲发生器研究[D].长沙:国防科技大学, 2001
    [4] A. V. Gunin, A. I. Klimov, et al., Relativistic X-Band BWO with 3-GW Output Power[J]. IEEE Tran. on Plasma Sci, 1998,26(3):326~330
    [5] S. P. BUGAEV, V. A. Cherepenin, et al., Relativistic Multiwave Cerenkov Generators [J]. IEEE Trans. on Plasma Sci, 1990,18(3): 525~536
    [6] M. Friedman, Present and future development of high power RKA[C]. Intense Microwaveand Particle Beam II, proc. SPIE, 1992, 1629: 2~7
    [7] M. Haworth, K. Allen, et al., Recent Progress in The Hard-Tube MILO Experiment[C]. Intense Microwave Pulses V.SPIE 1997,3158:28
    [8] J. N. Benford, et al., Techniques for High Power Microwave Source at High AveragePower[J], IEEE Trans. On Plasma Sci. 1993, 21(4):388
    [9] D. M. Goebel, et al., Performance and Pulse Shortening Efforts [J]. IEEE Trans. On Plasma Sci. 1998 ,26(3):354
    [10]陈昌华,刘国治等,吉瓦100赫兹重复频率相对论返波管研制报告.2000.9
    [11] R. Smith, J. Benford, et al., Operation of an L-Band Relativistic Magnetron at 100Hz[C].Intense Microwve and Particle Beam II. SPIE, 1991, 1407: 83
    [12] V. V Vasil’yev, I. I. Vintizenko, et al., Relativistic Magnetron Operating in the Mode of a Train of Pulse[J]. Sov. Tech. Phys. Lett., 1987, 13: 762
    [13]周传明,刘国治,刘永贵等,高功率微波源[M],原子能出版社2007.
    [14] Nation J A. Applied Physics Letters,1970,17(11):491-494
    [15]范菊平等.带Bragg反射器高功率相对论返波管的数值模拟[J].强激光与粒子束,2002.14(1):103-106
    [16]刘盛刚等.高功率微波[J].电子科技大学学报,1993,22(8)
    [17]文光俊等.变阻抗相对论返波振荡器的模拟研究[J].强激光与粒子束,1999,11(6):737-741
    [18]张军,钟辉煌.过模慢波结构高频特性[J].国防科技大学学报,2004,26(2):66-69
    [19] Minami, K.; Ogura, K.; Aiba, Y.; Amin, M.R.; Zheng, X.D.; Watanabe, T.; Carmel, Y.;Destler, W.W.; Granatstein, V.L. Starting energy and current for a large diameter finitelength backward wave oscillator operated at the fundamental mode[J]. Plasma Science, IEEE Transactions 1995,23(2): 124–132
    [20]刘国治.一种同轴慢波结构相对论高功率微波器件的数值模拟研究.全国第五届高功率微波学术研讨会论文集[C],珠海, 2002: 2-6.
    [21]刘列等.充中性气体相对论返波振荡器的相对论研究[J].强激光与粒子束,2002,14(5):757-761
    [22] Klimov A I, et al. Highly efficient generation of subnansecond microwave pulses in Ka-band relativistic BWO.[J] IEEE Transactions on Plasma Science,2002,30(3):.1120-1125
    [23] Eltchnaniov A A, et al. Highly efficient generation of subnanosecond pulses in Ka-band and nanosecond pulses in X-band [J].IEEE Trans. On Plasma Sci, 2004, 32(3):1093-1099.
    [24] VS.Ivanov, N.F.Kovalev, S.I.Krementsov. M.D.Raiser Relativistic millimeter Carcinotron [J]. Sov.Tech,Phys.Lett. 1978, 4: 329
    [25]张克潜,李德杰.微波与光电子学中的电磁场理论(第二版).北京:电子工业出版社,1994
    [26]张军,新型过模慢波高功率微波发生器的研究[D].长沙:国防科学技术大学,2004
    [27]陈旭,P波段同轴返波振荡器的研究[D].长沙:国防科学技术大学,2008
    [28]盛建霓等.电磁场数值分析[M].北京:科学出版社,1984
    [29] J. M. Dawson. Particle Simulation of Plasmas [J]. Rev. Mod. Phys, 1983, 55(2): 403.
    [30]靳振兴,P波段磁绝缘线振荡器的研究[D].长沙:国防科学技术大学,2006
    [31] Abubakirov E B, Petelin MI.Role of the asynchronous component of the RF filed in relativistic electron microwave generators of the Cerenkov type [J]. Sov Phys Tech Phys,1988,33(6):635-638
    [32]张晓萍,新型磁绝缘线振荡器的研究[D].长沙:国防科学技术大学,2004
    [33]顾茂章,张克潜.微波技术[M].北京:清华大学出版社,1989
    [34]袁成卫.高功率微波轴对称模式天线辐射技术研究[D].长沙:国防科技大学,2002.
    [35]王闽,等离子体物理及其计算机模拟[M],陕西科学技术出版社,1993
    [36]葛行军,钱宝良,钟辉煌.同轴引出电子束相对论返波振荡器的粒子模拟[J].强激光与粒子束, 2009, 21(4): 526-530.
    [37]葛行军,陈宇,钱宝良,钟辉煌. O型同轴慢波器件的纵向模式选择研究[J].电波科学学报, 2008, 23(6):1111-1114.
    [38]刘松,磁绝缘线振荡器的研究[D].长沙:国防科学技术大学,2001
    [39]宋志敏,刘国治等.带谐振腔反射器的低磁场返波管实验研究[J].强激光与粒子束,2006,18(9):350-352
    [40] Goebel. D. M, Butter. J. M, Schumacher R W, etal. High power microwave source based on an unmagnetized backward oscillator[J].IEEE Trans P S,1994,22(3):547~553
    [41] E.M.Totmeninov, A.I.Klimov, S.D.Korovin, V.V.Rostov Investigation of a Relativistic Cherenkov Microwave Oscillator without a Guiding Magnetic Field High power microwave [C] .High power microwaves. 2002:355-358
    [42]钱宝良.具有等离子体背景或介质衬套的返波管[D].北京:清华大学,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700