成像光谱仪光谱辐射定标新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像光谱仪是谱像合一的新型光学遥感仪器。成像光谱仪的定标包括光谱定标和辐射定标,是成像光谱仪应用的重要前提。光谱定标就是确定成像光谱仪各通道的中心波长、光谱带宽,辐射定标就是确定各通道的辐亮度响应度、响应线性和稳定性等。本文针对宽视场成像光谱仪的特点和工程定标的应用需求,开展了成像光谱仪定标新方法新技术的研究工作,主要工作如下:
     1开展了漫反射板法定标成像光谱仪新方法的研究。建立了漫反射板法定标成像光谱仪的模型,对定标几何参数和仪器本身参数的影响进行了计算分析。结果表明:狭缝方向垂直纸面、辐照度标准灯照射距离越长、辐照度标准灯照射角越大、成像光谱仪观察角越小,成像光谱仪探测器同一光谱通道不同景物像元采集到的信号电子数越均匀,但信号电子数就会相对较少。照射距离取在0.5m~1.25m之间,只要照射角度小于12?就可以使距离变化1mm,角度变化0.5?引起的信号电子数相对变化小于1%。
     2开展了成像光谱仪光谱辐射定标新方法的研究。光谱定标采用复合棱镜的色散特性和大气吸收线相结合的方法,结果表明光谱定标精度可以达到1nm。辐射定标分别利用辐照度标准灯和大气传输软件模拟的太阳直接辐照度作为标准定标。结果表明,两种方法得到的定标系数在可见光波段匹配的很好,并分析了定标系数失配的原因。
     3开展了成像光谱仪辐射非均匀性校正方法的研究。利用转台模拟成像光谱仪对地推帚实验,并对得到的图像进行的非均匀性校正,结果表明,成像光谱仪探测器帧频与转台转速相匹配,均匀性校正后图像达到预计成像效果,利用不同通道图像合成的彩色图像差异很好地体现了成像光谱仪采集景物光谱信息的能力。
Imaging spectrometer is a new type remote sensor which can collect both the image and the spectral information of the scene. The calibration of the imaging spectrometer includes the spectral calibration and the radiometric calibration. he spectral calibration is used to determine the central wavelength, spectral width, and the radiometric calibration is used to determine the radiance response of each channel, linearity of the response and the stability of the response. According to the characteristic of and the application of the imaging spectrometer, the new method and technique of the spectral calibration and the radiometric calibration are studied. The primary work in this paper is as followed:
     1 The new method by using the diffuser to calibrate the imaging spectrometer is studied. The method of using the standard detector as the radiometric standard and using the white diffuser as the extent source is modeled, and the effect of the geometry parameters of the calibration and the parameters of the imaging spectrometer on the relative electron number is computed and analyzed. The results indicate: when the slit is perpendicular to the meridional plane, the illuminating distance is longer, the illuminating angle is larger, the observation of the imaging spectrometer is smaller, the electron number collected by the different pixels of the same spectral channel is more uniform, but the electron number is relative less. When the illuminating distance ranges 0.5m~1.25m, the illuminating angle is less than 12?, the relative electron number changed caused by the distance changed 1mm and angle changed 0.5? is less than 1%.
     2 The new method to calibrate the imaging spectrometer is studied. The spectral sample interval of the imaging spectrometer calculated and the atmosphere absorption of the atmosphere are used to calibrate the central wavelength and spectral width of the channels of the imaging spectrometer. Comparison was made between the spectral calibration result and a spectrometer which has high spectral resolution and the results are improved. The results indicate that the spectral calibration of this method can achieve precision of 1nm.The standard lamp and the simulated radiance by the software are used to calibrate the fiber spectrometer, then the imaging spectrometer is calibrated by the fiber spectrometer and the white diffuser respectively. The calibration coefficients using two methods are obtained, and the results are analyzed.
     3 The correction of the uniformity of the radiometric characteristic of the imaging spectrometer is studied. The pushbroom of the imaging spectrometer is simulated by the rotating stage, and the image obtained is processed. The results indicate: the frame frequency of the CCD of the imaging spectrometer matches the rotating speed of the rotating stage. The images achieve the planned quality after the correction of the uniformity. The spectral information collecting capability of the imaging spectrometer is validated by getting the color fused image.
引文
[1] Goetz F H Alexander. Imaging spectrometry for Earth Remote Sensing [J]. SCIENCE, 1985, Vol.228: 1147.
    [2] Birk J Ronald, Mcord B Thomas. Airborne Hyperspectral Sensor Systems [J]. IEEE.AES Systems Magzine. 1994: 26-33.
    [3] James B Breckingridge. Evolution of imaging spectrometry: past, present and future[C].SPIE, 1996, Vol.2819:2-6.
    [4]沈中,航天超光谱成像仪原理分析[J].航天返回与遥感,2002(6): 28-34.
    [5]万庆余,高光谱遥感应用研究[M].北京:科学出版社,2006.30-44.
    [6] Green O Robert, Chrien G Thormas, Nielsen J Pia, et al.. Airborne Visible/Infrared Imaging Spectrometer(AVIRIS):Recent Improvements to the Sensor and Data Facility [J]. SPIE, 1993, Vol. 1937:180-190.
    [7] Liao lushalan, Jarecke Peter, Gleichauf Darrel. Performance Characterization of the Hyperion Imaging Spectrometer Instrument[J].SPIE,2004,Vol.4135:264-275.
    [8] Pearman Jay, Segal Carol, Liao Lushalan, et al.. Development and Operations of the OE-1Hyperon Imaging Spectrometer[J].SPIE,2004,Vol.4135:243-253.
    [9] Cutter A Mike, Hill South. Compact high-resolution imaging spectrometer (CHRIS) design and performance. SPIE,2004,Vol.5546: 126-131.
    [10] Zhang Xia, Zhang Bing, Hu Fangchao, et al..Calibration evaluation of the spaceborne hyperspectral CHRIS image [J].SPIE, 2006,Vol.6200:0B1-6.
    [11]张霞,张兵,胡方超等.航天成像光谱仪CHRIS辐射与光谱性能评价.中国科学E辑,2006, 36:85-93.
    [12] Demetrio Labate, Massimo Ceccherini, Andrea Cisbani,et al.. The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission[J]. Acta Astronautica, 2009,Vol. 65: 1429-1436.
    [13] Sang B, Schubert J, Kaiser S, et al.. The EnMAP hyperspectral imaging spectrometer:instrument concept, calibration and technologies[J]. SPIE, 2008,Vol.7068: 706805.
    [14] Hofer S, Kaufmannb H J, Stufflera T. EnMAP Hyperspectral Imager: an advanced optical payload for future applications in Earth observation programs[J]. SPIE, 2006, Vol.6366: 63660E.
    [15] Kampe U Thomas, Asner P Gregory, Green O Robert. Advances in Airborne Remote Sensing of Ecosystem Processes and Properties toward High Quality Measurement on a Global Scale [J].SPIE, 2010, Vol.7809:78090J.
    [16] Shu Rong, Xue Yong Qi, Yang Yi De. Calibration and application of airborne pushbroom hyperspectral imager (PHI) [J].SPIE, 2004, Vol. 5234:668-675.
    [17]邵晖,王建宇,薛永祺.推帚式超光谱成像仪(PHI)关键技术[J].遥感学报,1998,2(4):251-254.
    [18]刘银年,薛永祺,王建宇.实用型模块化成像光谱仪[J].红外与毫米波,2002,21(2):9-13.
    [19] Jeffery J puschell. Hyperspectral imagers for current and future mission [C]. SPIE, 2000, Vol.4041, pp.122-125.
    [20] Smith W L,Harrison F W, Hinton D E,et al.. GIFTS- A System for Temperature, Moisture, Wind, And Trace Gas Profiling from Geostationary Satellites [C]. NASA Langley Research Center white paper, 2000.
    [21] Hooker S B, Esaias W E, Feldman G C, et al. An Overview of SeaWiFS and Ocean Color [J]. NASA Tech. Memo. 104566, NASA Goddard Space Flight Center, 1992.
    [22] Basedow R W, Carmer D C, Anderson M E. HYDICE system, implementation and performance [C]. SPIE, 1995, Vol.2480, pp.258-267.
    [23] Gat N, Subramanian S, Barhen J, et al. Spectral Imaging Applications: Remote Sensing, Environmental Monitoring, Medicine, Military Operations, Factory Automation and Manufacturing [C]. SPIE, 1996, Vol.2962, pp.63- 77.
    [24] Endemann M and Fischer H. Envisat's high resolution limb sounder: MIPAS [G]. ESA Bulletin 76, 1994.
    [25] Thomas J Magner. Moderate Resolution Imaging Spectrometer-Tilt (MODIS-T) Baseline Concept [C]. SPIE, 1991, Vol.1492, 272-285.
    [26] Bello U Del, Kealy P, Meynart R. PRISM: a hyperspectral imager for a future ESA land observation mission[J]. SPIE, 1995, Vol. 2585: 233-240.
    [27] Delclaud Y, Labandibar J Y, Bello U Del. PRISM: Hyperspectral Spaceborne Imager forLand Processes Research. SPIE, 1997, Vol.2957: 144-153.
    [28] Marja Leena Junttila. Stationary Fourier-transform spectrometer[J]. Applied Optics.1992, Vol.31(21): 4106-4112.
    [29] Bliss Mary, Craig Richard A, and Anheier Norman C. Demonstration of a static Fourier transform spectrometer[C]. SPIE. 1999. Vol.3541: 103-109.
    [30] Mamoru Hashimoto, Satoshi Kawata. Multichannel Fourier-transform infrared spectrometer [J]. Applied Optics. 1992. Vol.31 (28): 6096-6101.
    [31] Takayuki Okamoto, Satoshi Kawata, Shigeo Minami. Fourier transform spectrometer with a self-scanning photodiode array [J]. Applied Optics. 1984. Vol. 23(2): 269-273.
    [32] Padgett M J , and Harvey A R. A static Fourier-transform spectrometer based on Wollaston prisms [J]. Review of Scientific Instruments. 1995. Vol. 66(4): 2807-2811.
    [33]郑玉权.超光谱成像仪的精细光谱定标.光学精密工程. 2010, 18(11): 2347-2354.
    [34]杨宜.成像光谱仪光谱定标技术.红外. 2006, 27(8): 24-32.
    [35] Ballinger Lt Dustin. Space-Based Hyperspectral Imaging and its Role in the Commercial World[C]. IEEE, Vol.2: 915-923.
    [36] John Fisher, Mark Baumback, Jeffrey Bowles, et al.. Comparison of low-cost hyperspectral sensors. SPIE, 1998, Vol.3438: 1-8.
    [37] Chrien T G, Green R O. Accuracy of the spectral and radiometric laboratory calibration of the Airborne Visible Infrared Imaging Spectrometer AVIRIS [J].SPIE, 1990, Vol. 1298: 37-49.
    [38] Liao Lushalan, Jarecke Peter, Gleichauf Darrel, et al.. Performance Characterization of the Hyperion Imaging Spectrometer Instrument [J]. SPIE, 2004, Vol.4135: 264-275.
    [39] Pearlman Jay, Segal Carol, Liao Lushalan. Development and Operations of the EO-1 Hyperion Imaging Spectrometer[J]. SPIE, 2004, Vol. 4135: 243-253.
    [40] Folkcman A Mark, Sandor Stephanie, Thordarson Sveinn, et al.. Updated results from performance characterization and calibration of the TRWIS III hyperspectral imager [J]. SPIE, 1997, Vol. 3118: 142-153.
    [41] Zadnik Jerry, Guerin Daniel, Moss Robert, et al.. Calibration Procedures and Measurements for the COMPASS Hyperspectral Imager[J]. SPIE, 2004, Vol. 5425: 182-188.
    [42] Suhr Birgit, Fries Jochen, Gege Peter. APEX Calibration Facility: Status and first commissioning results[J]. SPIE, 2006, Vol. 6361: 636110.
    [43] Mendenhall A Jeffrey, Parker C Alexander. Spectral Calibration of the EO-1 Advanced Land Imager[J]. SPIE, 1999, Vol. 3750: 109-116.
    [44] Shu Rong, Xue Yong Qi, Yang Yi De. Calibration and application of airborne pushbroom hyperspectral imager (PHI) [J]. SPIE, 2004, Vol. 5234: 668-675.
    [45] Hedman Theodore R, Beach Redondo, Jarecke J Peter. Hyperspectral imaging spectrometer spectral calibration [P]. US patent: 6,111,640.2009-8-29.
    [46] Ramon Didier,Santer Richard,Dubuisson Philippe. MERIS in-flight spectral calibration in O2 absorption using surface pressure retrieval [J]. SPIE, 2003, Vol.4891: 505-514.
    [47] Davis O Curtiss, Bowles Jeffrey, Leathers A Robert, et al.. Ocean PHILLS hyperspectral imager: design, characterization, and calibration [J]. Optics express, 2002, Vol. 10(4): 210-221.
    [48]崔敦杰.成像光谱仪的定标[J].遥感技术与应用,1996,Vol. 11(3): 56-64.
    [49]李幼平,禹秉熙,王玉鹏等.成像光谱仪辐射定标影响量的测量链与不确定度[J].光学精密工程,2006, Vol. 14(5): 822-828.
    [50]赵晓熠,张伟,谢蓄芬.绝对辐射定标与相对辐射定标的关系研究[J].红外,2010, Vol.31(9): 23-29.
    [51] Walker H James, Saumders D Robert. NBS special publication 250-20[M].1987, 24-25.
    [52]周胜利,积分球在实验室内用于空间遥感器的辐射定标[J].航天返回与遥感,1998,Vol. 19(1): 29-34.
    [53]乔延利,吴浩宇,姜树蓉.辐射定标研究及辐射定标实验室的建立[C].见:荀毓龙主编遥感基础实验与应用.北京:科学技术出版社,1991,45-60.
    [54] Chrien G Thomas, Kopp Greg, Green O Robert. Improvements to the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Calibration System[C]. IEEE, 1994, 2993-2994.
    [55] Suhr Birgit, Gege Peter, Nieke Jens, et al.. Calibration Facility for Airborne Imaging Spectrometers [J]. SPIE, 2005, Vol.5978: 59780R.
    [56] Schaepman E Michael, Vos De Lieve, Itten I Klaus. APEX-Airborne PRISM Experiment: hyperspectral radiometric performance analysis for the simulation of the future ESA land surface processes earth explorer mission [C]. SPIE, 1998, Vol. 3438:253-262.
    [57] Simi G Christopher. New procedures for the calibration of COMPASS [J]. SPIE, 2004, Vol. 5425: 189-196.
    [58]李照洲,郑小兵,唐伶俐等.光学有效载荷高精度绝对辐射定标技术研究[J].遥感学报,2007,Vol.11(4): 581-588.
    [59] Larason C Thomas, Bruce S Sally. NIST Special Publication 250-41[M]. 1998, 25-29.
    [60]林志强,郑小兵,张磊等.基于低温辐射计的红外辐射定标方法[J].激光与光电子学进展, 2007,Vol. 14(4): 62-67.
    [61]杨华元,崔敦杰,任建伟等.基于探测器的成像光谱仪绝对辐射定标方法[J],计量学报, 1998, 19(2):123-128.
    [62] Yoon W Howard, Gibson E Charles, Barnes Y Patricia. Realization of the National Institute of Standards and Technology detector-based spectral irradiance scale. Applied Optics, 2002, Vol. 41(28): 5879-5890.
    [63] Pietrzykowski Jerzy. Optical radiation trap detectors as transfer standards in radiometry [J].SPIE, 1999, Vol. 3730: 174-177.
    [64] Thome K, Czapla-Myers J, Kuester M, et al.. Accuracy Assessment for the Radiometric Calibration of Imaging Sensors Using Preflight Techniques Relying on the Sun as A Source[J].SPIE, 2008, Vol. 7081:708118.
    [65] Slater N Philip, Biggar F Stuart, Palmer M James, et al.. Unified approach to pre- and in-flight satellite-sensor absolute radiometric calibration [J].SPIE,1995, Vol. 2583:130-141.
    [66] Anderson Nik, Biggar Stuart, Thome Kurt, et al..Solar radiation-based calibration of laboratory grade radiometers[J]. SPIE, 2007, Vol. 6677:66770X.
    [67] Kuester A Michele, Thome J Kurt, Biggar F Stuart. et al.. Solar radiation based calibration of an airborne radiometer for vicarious calibration of earth observing sensors [J]. SPIE, 2002, Vol. 4483:85-92.
    [68] Kuester A Michel, Czapla-Myers Jeffrey, Kaptchen Paul, et al.. Development of a heliostat facility for solar-radiation-based calibration of earth observing sensors [J]. SPIE, 2008, Vol. 7081:708119.
    [69] Czapla-Myers J, Thome K, Anderson N, et al.. Transmittance measurement of a heliostat facility used in the preflight radiometric calibration of Earth-observing sensors [J]. SPIE, 2009, Vol.7452: 74520P.
    [70] Folkman Mark, Peariman Jay, Liao Lushalan, et al.. EO-1/Hyperion hyperspectral imager design, development, characterization, and calibration. SPIE, 2001, Vol. 4151: 40-51.
    [71] Jarecke Peter and Yokoyama Karen. Radiometric Calibration Transfer Chain from Primary Standards to the End-to-End Hyperion Sensor. SPIE, 2004, Vol. 4135: 254-263.
    [72]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,1994. 69-70.
    [73]格鲁姆F,贝彻雷R J.辐射度学[M].第1版.缪家鼎等译.北京:机械工业出版社,1987,96-109.
    [74] Heath D F, Wei Z. Comparability of spectral radiance calibrations of large aperture earth observing instruments based upon diffuse reflective panels and internally illuminated spherical integrator techniques [J]. SPIE, 1994, Vol. 2209: 148-159.
    [75] Xiong X, Xie X, Angal A. Characterization of MODIS Solar Diffuser On-orbit Degradation [J]. SPIE, 2007, Vol. 6677: 66770O.
    [76]陈福春,陈桂林.用于地球同步轨道遥感仪器星上定标的漫反射板特性分析[J].科学技术与工程. 2008, Vol. 8(2): 371-375.
    [77]李聪,王咏梅,张仲谋.紫外光谱辐射定标中的漫反射板反射特性研究.光谱学与光谱分析. 2008, Vol. 28(4): 865-869.
    [78] Barnes P yvonne, Early A Edward. Diffuse reflectance of sintered and pressed polytetrafluoroethylene (PTFE) [C]. SPIE, 1998, Vol.3426: 190-194.
    [79]陈述.遥感技术与遥感数字图像分析处理方法、解译制图及其综合应用实务全书[M].银川:宁夏大地音像出版社. 2005, 87-105.
    [80] Blechinger F, Harnisch B, Kunkel B. Optical Concepts for High Resolution Imaging Spectrometers [C]. SPIE, 1995, Vol.2480, pp.165.
    [81]第一机械工业部技术情报所,光学玻璃目录[M],第一机械工业部技术情报所,北京,1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700