分子及晶格相干振动超快过程的飞秒CARS光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超短脉冲激光技术和时间分辨光谱技术的发展使得人们可以在超快时间尺度上获取无序分子材料中分子相干振动动力学及有序晶体材料中晶格相干振动(即相干声子)动力学的信息。对分子及晶格相干振动动力学的研究在许多方面都有着重要的价值,比如研究物质中各种元激发之间的相互作用;监控化学反应过程;研究分子及声子所处环境的变化等。飞秒时间分辨相干反斯托克斯拉曼散射(飞秒TR-CARS)光谱技术是以一种既能研究电子基态分子动力学又能研究电子激发态分子动力学的有力工具,而且已经被用于研究几种纳米晶体材料中相干声子动力学。飞秒TR-CARS技术的理论和实验研究已经取得了众多成果,但也存在着很多问题,比如其机理研究还不够系统和深入,实验研究还存在一定的狭隘性。本论文对飞秒TR-CARS技术进行了深入的理论分析,搭建了飞秒TR-CARS光谱实验系统,将宽谱带的超连续白光用作斯托克斯光,利用超连续白光的啁啾特性来实现对不同频率振动模式的选择激发,避免了采用复杂的激光系统。研究了无序分子材料甲苯和PVK中电子基态分子相干振动动力学以及有序晶体材料蓝宝石中相干声子动力学。
     目前,人们对飞秒TR-CARS技术的理论分析还不够深入,现存的理论模型还不够完善,对一些实验结果的模拟和解释尚存在一定困难。本文利用半经典理论分析方法深入分析了飞秒TR-CARS过程的机理,结合飞秒激光脉冲的特点,经过系统的公式推导,建立了利用飞秒TR-CARS技术激发并探测相干振动的理论模型,就飞秒TR-CARS实验中经常出现的量子拍频信号进行了理论解释,得到了飞秒CARS信号及量子拍频信号随探测脉冲相对同步的泵浦/斯托克斯脉冲对的延迟时间演变的理论公式,为合理分析和解释实验结果、获得关于拉曼模式振动动力学的信息提供了重要的理论依据。
     在分子振动动力学研究领域,对振动模式之间相干耦合问题的研究还存在很多不足,这影响了分子动力学的全面发展。本文利用飞秒TR-CARS光谱技术,以小分子材料甲苯液体和高分子聚合物材料PVK固态薄膜为研究对象,研究了电子基态分子振动动力学,选择激发并探测了高频振动区3000cm-1左右的C-H伸缩振动模式,在两种样品的飞秒TR-CARS信号中都观察到了振动模式之间相干耦合引起的量子拍频现象。利用建立的理论模型对实验结果进行了分析和解释,并对动力学曲线进行了理论拟合,得到了受激振动模式的振动动力学信息,并表明了分子中不同位置处同种化学键的振动模式之间可以发生相干耦合,这对深入理解量子相干并发展量子相干技术具有重要意义。
     对晶体中声子的研究是固体物理学中一项重要的课题,国内外利用飞秒TR-CARS技术对块状晶体中相干声子动力学的研究还未见报道,对相干声子基础研究的缺乏制约了其应用研究的发展。本文利用飞秒TR-CARS光谱技术研究了块状蓝宝石晶体中相干声子动力学,首先同时激发并探测了蓝宝石晶体中300~600cm-1范围内的多个声子模式,观察到了多个模式相干耦合的量子拍频,又选择激发并探测了较低频的379cm-1和418cm-1声子模式,通过理论拟合获得了这两个模式的动力学信息。此项工作对于丰富人们对相干声子的认识,发展相关领域的应用研究具有重要意义。
     缺陷对晶体的许多性质都有着重要的影响,因此发展对晶体缺陷的无损检测技术是非常必要的。晶体中缺陷的存在会影响声子的动力学行为,本文对经不同辐照剂量γ射线辐照过的蓝宝石晶体中较高频的645cm-1和750cm-1声子模式进行了选择激发和探测,研究了蓝宝石晶体中缺陷对相干声子动力学参数的影响,发现两种模式相干声子的失相时间都随着射线辐照剂量的增加而减小,这是由于随着γ射线辐照剂量的增加使蓝宝石晶体中缺陷密度增加,相干声子被缺陷散射加速了其失相过程。提出了飞秒TR-CARS光谱技术可以作为一种对晶体缺陷进行无损检测的新技术。
     本论文的工作丰富了飞秒TR-CARS过程理论研究内容,拓宽了飞秒TR-CARS光谱技术的研究范围,对于发展新技术也具有重要价值。
With the development of ultrashort pulse laser and time-resolved spectroscopytechnique, people can gain information about the molecular dynamics in the disorderedmolecular materials and coherent lattice vibrational, i.e. coherent phonon dynamics inordered crystalline materials in the ultrafast time-regime. The investigations onmolecular and lattice coherent vibration dynamic is of great value in many fields, suchas studying the interaction between element excitations, monitoring chemical reactionprocess, studying the changes of molecular and phonon surrounding environment, etc.Femtosecond time-resolved coherent anti-Stokes Raman scattering (TR-CARS)technique has proved to be a valuable tool to study the dynamics of molecular systemsboth in electronic ground state and excited state. It has been widely used to studycoherent phonon dynamics in nano-materials. So far, there are many achievements onthe theoretical and experimental investigations of femtosecond TR-CARS. However, thetheoretical investigations are not enough in-depth, and there are a lot of deficiency inexperimental investigations. Therefore, in the present thesis, the theory of femtosecondTR-CARS are analysed in depth. Based on the temporal chirp characteristics of thewhite-light continuum, we have designed the experimental system of femtosecondTR-CARS. The ultrabroadband white-light continuum (WLC) is used for the Stokespulse, due to the temporal chirp characteristics of the WLC, We have achieved theselective excitation of vibrational modes, no complicated laser system is required. Wehave studied the molecular dynamics in electronic ground state in small moleculetoluene and polymer PVK, and coherent phonon dynamics in bulk sapphire crystals.
     At present, the theoretical investigations of femtosecond TR-CARS technique arenot enough in-depth, there are still certain lacks of theoretical models, and there are a lotof difficulties in analyzing and explain experimental results. We analyse femtosecondTR-CARS process in depth by semiclassical theory. Considering the characteristics ofthe femtosecond laser pulses, we have built the theoretical model of femtosecondTR-CARS, explained the quantum beat signals in emtosecond TR-CARS procss. Thiswork provides important theoretical basis for analyzing and explaining the experimentalresults, and obtaining dynamic information of vibrational modes.
     In the field of molecular vibrational dynamics, it is insufficient on the study ofcoherent coupling between vibrational modes. This affects the integrated developmentof molecular dynamics. By femtosecond TR-CARS technique, we have achieved theselective excitation of CH stretching vibrational modes near3000cm-1in liquid tolueneand PVK film samples, and and probe the dynamics process of the vibrational modes.The theoretical formulas are in good agreement with the experimental results. Thedephasing times of the excited modes are obtained. Our investigations demonstrate that there exists coherent coupling between vibrational modes of the same kinds of chemicalbonds at different positions in molecules. This conclusion is especially helpful for us tounderstand quantum coherence and develop quantum coherence techniques.
     It is a subject of special significance for the study of phonon in crystals. At present,however, there is no report on coherent phonon dynamics in bulk crystals studied byfemtosecond TR-CARS technique. In order to fill the gap of research in this field, wehave studied the coherent phonon dynamics in sapphire crystals by femtosecondTR-CARS. The multiple phonon modes in300~600cm-1region are simultaneouslyexcitated and probed. The quantum beat signal is observed. We have also achieved theselective excitation of the379cm-1and418cm-1phonon mode in the low-frequencyregion, and detected the coherent phonon dynamics process. The experimental resultsare fitted using the theoretical model, the dephasing times of the two phonon modes areobtained. This work is improtant for understanding coherent phonon and developingapplied research.
     Defects will influence many properties of crystals.Therefore, it is important todevelop non-destructive detection technique of lattice defects. Phonon dynamicsDefects in crystals will influence phonon dynamics. We have achieved the selectiveexcitation of the645cm-1and750cm-1phonon mode in the high-frequency region, andstudied the ultrafast dynamics of coherent phonons in sapphire crystals irradiated with60Co γ-rays for three different doses. The dephasing times of the two modes bothdecrease with increasing γ-ray irradiation dose, which is due to that the dephasingprocesses of coherent phonons are accelerated because of the scattering of phonons bythe defects introduced by γ-ray irradiation. This investigation indicates that fs-CARStechnique is a powerful tool to study the effect of defects on the dynamics of coherentphonons, and it provides the possibility of developing a new non-destructive detectiontechnique to predict the damage degree of crystals.
     This work is of great valable for enriching the theory contents of femtosecondTR-CARS process, broadening the research scope of femtosecond TR-CARStechnology, and developing new technologies.
引文
[1]袁景和,肖繁荣,王桂英,等. CARS显微技术的基本原理及其进展[J].激光与光电子学进展,2004,41(7):17-23.
    [2] Domènech-Amador N, Cuscó R, Artús L, et al. Raman Scattering Study ofAnharmonic Phonon Decay in Inn [J]. Physical Review B,2011,83(24):245203.
    [3] El-Diasty F. Coherent Anti-Stokes Raman Scattering: Spectroscopy andMicroscopy[J]. Vibrational Spectroscopy,2011,55(1):1-37.
    [4] Spence D E, Kean P N, and Sibbett W.60-Fsec Pulse Generation from aSelf-Mode-Locked Ti:Sapphire Laser[J]. Optics Letters,1991,16(1):42-44.
    [5] Goodberlet J, Wang J, and Fujimoto J G. Starting Dynamics of Additive-PulseMode Locking in the Ti: Al2O3Laser[J]. Optics Letters,1990,15(22):1300.
    [6] Linde D V D, Laubereau A, and Kaiser W. Molecular Vibrations in Liquids:Direct Measurement of the Molecular Dephasing Time; Determination of theShape of Picosecond Light Pulses.[J]. Physical Review Letters,1971,26:954-957.
    [7] Laubereau A, Linde D V D, and Kaiser W. Decay Time of Hot to Phonons inDiamond[J]. Physical Review Letters,1971,27(12):802-805.
    [8] Laubereau A, Kaiser W. Vibrational Dynamics of Liquids and SolidsInvestigated by Picosecond Light Pulses[J]. Reviews of Modern Physics,1978,50(3):607-665.
    [9] Graener H, Laubereau A, and Nibler J W. Picosecond Coherent Anti-StokesRaman Spectroscopy of Molecules in Free Jet Expansions[J]. Optics Letters,1984,9(5):165-167.
    [10] Akhmanov S A, Koroteev N I, Magnitskii S A, et al. Time-Domain CoherentActive Raman Spectroscopy of a Free-Nitrogen Jet[J]. Journal of the OpticalSociety of America B1985,2(4):640-648.
    [11] Roy S, Kinnius P J, Lucht R P, et al. Temperature Measurements in ReactingFlows by Time-Resolved Femtosecond Coherent Anti-Stokes Raman Scattering(Fs-Cars) Spectroscopy[J]. Optics Communications,2008,281(2):319-325.
    [12] Leonhardt R, Holzapfel W, Zinth W, et al. Terahertz Quantum Beats inMolecular Liquids[J]. Chemical Physics Letters,1987,133(5):373-377.
    [13] Leonhardt R, Holzapfel W, Zinth W, et al. Terahertz Beats of Vibrational ModesStudied by Femtosecond Coherent Raman Spectroscopy[J]. Revue de physiqueappliquée,1987,22(12):1735-1741.
    [14] Hayden C C, Chandler D W. Femtosecond Time-Resolved Studies of CoherentVibrational Raman Scattering in Large Gas-Phase Molecules[J]. the Journal ofChemical Physics,1995,103(24):10465-10472.
    [15] Schmitt M, Knopp G, Materny A, et al. The Application of FemtosecondTime-Resolved Coherent Anti-Stokes Raman Scattering for the Investigation ofGround and Excited State Molecular Dynamics of Molecules in the Gas Phase[J].Journal of Physical Chemistry A,1998,102(23):4059-4065.
    [16] Rubner O, Schmitt M, Knopp G, et al. Femtosecond Time-Resolved CARSSpectroscopy on Binary Gas-Phase Mixtures: A Theoretical and ExperimentalStudy of the Benzene/Toluene System[J]. Journal of Physical Chemistry A,1998,102(48):9734-9738.
    [17] Lang T, Kompa K L, and Motzkus M. Femtosecond CARS on H2[J]. ChemicalPhysics Letters,1999,310(1-2):65-72.
    [18]张虎,戴景民,辛春锁.氮气CARS理论光谱简化计算及应用[J].固体火箭技术,2009,32(3):351-354.
    [19]胡志云,刘晶儒,张振荣,等.激光燃烧诊断技术及应用研究进展[J].中国工程科学,2009,11(11):45-50.
    [20]韩立群,赵朔嫣,张培林,等.用位相失匹配CARS方法研究尿嘧啶核苷分子的振动结构[J].中国激光,1995,22(11):832-838.
    [21] Yin J, Yu L Y, Liu X, et al. Simultaneous Measurements of Global VibrationalSpectra and Dephasing Times of Molecular Vibrational Modes by BroadbandTime-Resolved Coherent Anti-Stokes Raman Scattering Spectrography[J].Chinese Physics B,2011,20(1):014206.
    [22]万辉,尹君,于凌尧,等.分子多振动模式的振动退相时间同时测量方法[J].光谱学与光谱分析,2011,31(2):314-318.
    [23] Zhang S A, Zhang H, Wang Z G, et al. Selective Excitation and Suppression ofCoherent Anti-Stokes Raman Scattering by Shaping Femtosecond Pulses[J].Chinese Physics B,2010,19(4):043201.
    [24] Zhang S A, Zhang L, Zhang X Y, et al. Selective Excitation of CARS byAdaptive Pulse Shaping Based on Genetic Algorithm[J]. Chemical PhysicsLetters,2007,433(4-6):416-421.
    [25] He P, Fan R W, Xia Y Q, et al. Femtosecond Time-ResolvedResonance-Enhanced CARS of Gaseous Iodine at Room Temperature[J].Chinese Physics Letters,2011,28(4):047804.
    [26] He P, Li S N, Fan R W, et al. Molecular Dynamics in Low Vibrational StatesInvestigated by Fs Time-Resolved Coherent Anti-Stokes Raman SpectroscopyTechnique[J]. Optics Communications,2011,284(19):4677-4682.
    [27] Heid M, Schlücker S, Schmitt U, et al. Two-Dimensional Probing ofGround-State Vibrational Dynamics in Porphyrin Molecules by Fs-CARS[J].Journal of Raman Spectroscopy,2001,32(9):771-784.
    [28] Pestov D, Zhi M C, Sariyanni Z E, et al. Femtosecond CARS of Methanol-WaterMixtures[J]. Journal of Raman Spectroscopy,2006,37(1):392-396.
    [29]李霞,张晖,张诗按,等.甲醇溶液相干反斯托克斯拉曼光谱(CARS)的选择激发[J].量子电子学报,2008,25(3):282-286.
    [30] Zewail A H. Femtochemistry[J]. Journal of Physical Chemistry,1993,97(48):12427-12446.
    [31] Zewail A H. Femtochemistry:Atomic-Scale Dynamics of the Chemical Bond[J].Journal of Physical Chemistry A,2000,104(24):5660-5694.
    [32] Boni L D, Franzen L, Goncalves P J, et al. Pulse Train Fluorescence Techniquefor Measuring Triplet State Dynamics [J]. Optics Communications,2011,19(11):10813-10823.
    [33] Busby E, Carroll E C, Chinn E M, et al. Excited-State Self-Trapping andGround-State Relaxation Dynamics in Poly(3-Hexylthiophene) Resolved withBroadband Pump-Dump-Probe Spectroscopy [J]. Journal of Physical ChemistryLetters,2011,2(21):2764-2769.
    [34] Yu Y G, Song Y F, Wang Y et al. Watching the Coherence of MultipleVibrational States in Organic Dye Molecules by Using Supercontinuum ProbingPhoton Echo Spectroscopy[J]. Chemical Physics Letters,2011(4-6),517:242-245.
    [35] Ho J, Yen H, Chou W, et al. Disentangling Intrinsic Ultrafast Excited-StateDynamics of Cytosine Tautomers [J]. Journal of Physical Chemistry A,2011,115(30):8406-8418.
    [36] Cervetto V, Pfister R, and Heibing J. Time-Resolved Infrared Spectroscopy ofThiopeptide Isomerization and Hydrogen-Bond Breaking[J]. Journal of PhysicalChemistry B,2008,112:3540-3544.
    [37] Wolf S, Sommerer G, Rutz S, et al. Spectroscopy of Size-Selected NeutralClusters-Femtosecond Evolution of Neutral Silver Trimers[J]. Physical ReviewLetters,1995,74(21):4177-4180
    [38] Yan S, Seidel M, Zhang Z, et al. Ultrafast Vibrational Relaxation Dynamics ofCarbonyl Stretching Modes in Os3(CO)12[J]. the Journal of Chemical Physics,2011,135(2):024501.
    [39] Song D Y, Holtz M, Chandolu A, et al. Optical Phonon Decay in BulkAluminum Nitride[J]. Applied Physics Letters,2006,89(2):021901.
    [40] Thomas B, Samuel G. Temperature and Doping Dependence of PhononLifetimes and Decay Pathways in Gan [J]. Journal of Applied Physics,2008,103(9):093507.
    [41] Pu X D, Chen J, Shen W Z, et al. Temperature Dependence of Raman Scatteringin Hexagonal Indium Nitride Films[J]. Journal of Applied Physics,2005,98(3):033527.
    [42] Alfano R. R, Shapiro S. L. Optical Phonon Lifetime Measured Directly withPicosecond Pulses[J]. Physical Review Letters,1971,26(20):1247-1251.
    [43] Cho G C, Kütt W, and Kurz H. Subpicosecond Time-Resolved Coherent-PhononOscillations in Gaas[J]. Physical Review Letters,1990,65(6):764-766.
    [44] Cheng T K, Brorson S D, Kazeroonian A S, et al. Impulsive Excitation ofCoherent Phonons Observed in Reflection in Bismuth and Antimony[J]. AppliedPhysics Letters,1990,57(10):1004-1006.
    [45] Lee I H, Yee K J, Lee K G, et al. Coherent Optical Phonon Mode Oscillations inWurtzite ZnO Excited by Femtosecond Pulses[J]. Journal of Applied Physics,2003,93(8):4939-4941.
    [46] Merlin R. Generating Coherent Thz Phonons with Light Pulses [J]. Solid StateCommunications,1997,102(2-3):207-220.
    [47] Silvestri S D, Fujimoto J G, Ippen E P, et al. Femtosecond Time-ResolvedMeasurements of Optic Phonon Dephasing by Impulsive Stimulated RamanScattering in Α-Perylene Crystal from20to300K[J]. Chemical Physics Letters,1985,116(2-3):146-152.
    [48] Yan Y X, Gamble E B, and Nelson K A. Impulsive Stimulated Scattering:General Importance in Femtosecond Laser Pulse Interactions with Matter, andSpectroscopic Applications[J]. the Journal of Chemical Physics,1985,83(11):5391-5399.
    [49] Garrett G A, Albrecht T F, Whitaker J F, et al. Coherent Thz Phonons Driven byLight Pulses and the Sb Problem: What Is the Mechanism?[J]. Physical ReviewLetters,1996.77(17):3661-3664.
    [50] Hase M, Mizoguchi K, Harima H, et al. Dynamics of Coherent Phonons inBismuth Generated by Ultrashort Laser Pulses[J]. Physical Review B,1998,58(9):5448-5452.
    [51] Zeiger H J, Vidal J, Cheng T K, et al. Theory for Displacive Excitation ofCoherent Phonons[J]. Physical Review B,1992,45(2):768-778.
    [52] Hase M, Ishioka K, Kitajima M, et al. Ultrafast Carrier and Plasmon-PhononDynamics in Ion-Irradiated n-GaAs[J]. Applied Physics Letters,2003,82(21):3668-3670.
    [53] Lim Y S, Yoon S C, Yee K J, et al. Coherent optical phonon oscillations in cubicZnSe[J]. Applied Physics Letters,2003,82(15):2446-2448.
    [54] Chwalek J M, Uher C, Whitaker J F, et al. Femtosecond Optical-AnsorptionStudies of Nonequilibrium Electronic Porcesses in High-Tc Superconductors[J].Applied Physics Letters,1990,57(16):1696-1698.
    [55] Chwalek J M, Uher C, Whitaker J F, et al. Subpicosecond Time-ResolvedStudies of Coherent Phonon Oscillations in Thin-FilmYba2cu3o6+X(X-Less-Than-0.4)[J]. Applied Physics Letters,1991,58(9):980-982.
    [56] Krauss T D, Wise F W. Coherent Acoustic Phonons in a SemiconductorQuantum Dot [J]. Physical Review Letters,1997,79(25):5102-5105.
    [57] Melnikov A, Radu I, Bovensiepen U, et al. Coherent Optical Phonons andParametrically Coupled Magnons Induced by Femtosecond Laser Excitation ofthe Gd(0001) Surface[J]. Physical Review Letters,2003,91(22):227403.
    [58] Hase M, Ishioka K, Demsar J, et al. Ultrafast Dynamics of Coherent OpticalPhonons and Nonequilibrium Electrons in Transition Metals[J]. Physical ReviewB,2005,71(18):184301.
    [59] Chang Y M, Xu L, and Tom H W K. Observation of Coherent Surface OpticalPhonon Oscillations by Time-Resolved Surface Second-Harmonic Generation[J].Physical Review Letters,1997,78(24):4649-4652.
    [60] Chang Y-M, Xu L, and Tom H W K. Coherent Phonon Spectroscopy of GaasSurfaces Using Time-Resolved Second-Harmonic Generation[J]. ChemicalPhysics,2000,251(1-3):283-308.
    [61] Chang Y-M, Lin H H, Chia C T, et al. Observation of Coherent InterfacialOptical Phonons in Gainp/Gaas/Gainp Single Quantum Wells[J]. AppliedPhysics Letters,2004,84(14):2548-2550.
    [62] Bovensiepen U. Coherent and Incoherent Excitations of the Gd(0001) Surfaceon Ultrafast Timescales [J]. Journal of Physics-Condensed Matter,2007,19(8):083201.
    [63] Matsumoto Y,Watanabe K. Coherent Vibrations of Adsorbates Induced byFemtosecond Laser Excitation [J]. Chemical Reviews,2006,106(10):4234-4260.
    [64] Sokolowsky-Tinten K, Blome C, Blums J, et al. Femtosecond X-RayMeasurements of Coherent Lattice Vibrations near Lindemann Stability Limit.[J].Nature,2003,422(6929):287-289.
    [65] Bargheer M, Zhavoronkov N, Gritsai Y, et al. Coherent Atomic Motions in aNanostructure Studied by Femtosecond X-Ray Diffraction[J]. Science,2004,306(5702):1771-1773.
    [66] Nakamura K G, Ishii S, Ishitsu S, et al. Femtosecond Time-Resolved X-RayDiffraction from Optical Coherent Phonons in CdTe (111) Crystal[J]. AppliedPhysics Letters,2008,93(6):061905.
    [67] Chen J, Chen W-K, Tang J, et al. Time-Resolved Structural Dynamics of ThinMetal Films Heated with Femtosecond Optical Pulses[J]. Proceedings of theNational Academy of Sciences of the United States of America,2011,108(47):18887-18892.
    [68] Bron W E, Kuhl J, and Rhee B K. Picosecond-Laser-Induced TransientDynamics of Phonons in Gap and Znse.[J]. Physical Review B,1986,34(10):6961-6971.
    [69] Rhee B K, Bron W E. Dynamics of Coherent Optical Generation and Decay inGap[J]. Physical Review Letters,1986,34(10):7107-7113.
    [70] Vallée F, Bogani F. Coherent Time-Resolved Investigation of Lo-PhononDynamics in Gaas[J]. Physical Review B,1991,43(14):12049-12052.
    [71] Vallée F. Time-Resolved Investigation of Coherent Lo-Phonon Relaxation inIii-V Semiconductors.[J]. Physical Review B,1994,49(4):2460-2468.
    [72] Ganikhanov F, Vallée F. Coherent to Phonon Relaxation in Gaas and Inp.[J].Physical Review B,1997,55(23):15614-15618.
    [73] Waltner P, Materny A, and Kiefer W. Phonon Relaxation in CdsseSemiconductor Quantum Dots Studied by Femtosecond Time-ResolvedCoherent Anti-Stokes Raman Scattering[J]. Journal of Applied Physics,2000,88(9):5268-5271.
    [74] Ikeda K, Uosaki K. Coherent Phonon Dynamics in Single-Walled CarbonNanotubes Studied by Time-Frequency Two-Dimensional Coherent Anti-StokesRaman Scattering Spectroscopy[J]. Nano Letters,2009,9(4):1378-1381.
    [75] Ushida K, Hase M, Ishioka K, et al. Use of Vibrational Coherence to ProbeDisorders and Defects in Solids: A Review[J]. RIKEN Review,2002,49:33-37.
    [76] Kitajima M. Defects in Crystals Studied by Raman Scattering[J]. CriticalReviews in Solid State and Materials Sciences,1997,22(4):275-349.
    [77] Hase M, Ishioka K, Kitajima M, et al. Dephasing of Coherent Phonons byLattice Defects in Bismuth Films[J]. Applied Physics Letters,2000,76(10):1258-1260.
    [78] Ishioka K, Hase M, Kitajima M, et al. Ultrafast Carrier and Phonon Dynamics inIon-Irradiated Graphite[J]. Applied Physics Letters,2001,78(25):3965-3967.
    [79] Boyd R W. Nonlinear Optics[M]. Third Edition. Boston: Academic Press,2008:69-74.
    [80] Mukamel S. Principles of Nonlinear Optical Spectroscopy[M]. New York:Oxford University Press,1995:89-103.
    [81] Alfano R R, Shapiro S L. Observation of Self-Phase Modulation andSmall-Scale Filaments in Crystals and Glasses[J]. Physical Review Letters,1970,24(11):592-594.
    [82] Stolen R H, Lin C. Self-Phase-Modulation in Silica Optical Fibers[J]. PhysicalReview A,1978,17(4):1448-1453.
    [83] Fork R L, Shank C V, Hirlimann C, et al. Femtosecond White-Light ContinuumPulses[J]. Optics Letters,1983,8(1):1-3.
    [84] Corkum P B, Rolland C, and Srinivasan-Rao T. Supercontinuum Generation inGases[J]. Physical Review Letters,1986,57(18):2268-2271.
    [85] Corkum P B, Rolland C. Femtosecond continua produced in gases[J]. IEEEJournal of Quantum Electron,1989,25(12):2634-2639.
    [86] Liu W, Kosareva O, Golubtsov I S, et al. Random Deflection of the White LightBeam During Self-Focusing and Filamentation of a Femtosecond Laser Pulse inWater.[J]. Applied Physics B-Lasers and Optics,2002,75(4):595-599.
    [87] Bejot P, Petit Y, Bonacina L, et al. Ultrafast Gaseous "Half-Wave Plate".[J].Optics Express,2008,16(10):7564-7570.
    [88] He G S, Xu G C, Cui Y, et al. Difference of Spectral Superbroadening Behaviorin Kerr-Type and Non-Kerr-Type Liquids with Ultrashot Laser-Pulses[J].Applied Optics,1993,32(24):4507-4512.
    [89] Brodeur A, Ilkov F A, and Chin S L. Beam Filamentation and the White LightContinuum Divergence[J]. Optics Communications,1996,129(3-4):193-198.
    [90] Ranka J, Schirmer R W, and Gaeta A. Observation of Pulse Splitting inNonlinear Dispersive Media[J]. Physical Review Letters,1996,77(18):3783-3786.
    [91] Salata O V, Dobson P J, Hull P J, et al. Uniform Gaas Quantum Dots in aPolymer Matrix.[J]. Applied Physics Letters,1994,65(2):189-191.
    [92] Brown E J, Zhang Q G, and Dantus M. Femtosecond Transient-GratingTechniques: Population and Coherence Dyanamics Involving Ground andExcited States.[J]. Journal of Chemical Physics,1999,110(12):5772-5788.
    [93] Fran ois V, Ilkov F, and Chin S. Supercontinuum Generation in CO2GasAccompanied by Optical Breakdown[J]. Journal of Physics B: Atomic,Molecular, and Optical Physics,1992,25(11):2709-2924.
    [94] Ilkov F A, Ilkova L S, and Chin S L. Supercontinuum Generation VersusOptical-Breakdown in CO2Gas[J]. Optics Letters,1993,18(9):681-683.
    [95] Dudley J M, Genty G, and Coen S. Supercontinuum Generation in PhotonicCrystal Fiber[J]. Reviews of Modern Physics,2006,78(4):1135-1184.
    [96] Hartl I, Li X D, Chudoba C, et al. Ultrahigh-Resolution Optical CoherenceTomography Using Continuum Generation in an Air–Silica MicrostructureOptical Fiber[J]. Optics Letters,2001,26(9):608-610.
    [97] Diddams S A, Jones D J, Ye J, et al. Direct Link between Microwave andOptical Frequencies with a300Thz Femtosecond Laser Comb[J]. PhysicalReview Letters,2000,84(22):5102-5105.
    [98] Holzwarth R, Udem T, H nsch T W, et al. Optical Frequency Synthesizer forPrecision Spectroscopy[J]. Physical Review Letters,2000,85(11):2264-2267.
    [99] Th.Udem, Holzwarth R, and H nsch T W. Optical Frequency Metrology[J].Nature,2002.416:233-237.
    [100] Jones D J, Diddams S A, Ranka J K, et al. Carrier-Envelope Phase Control ofFemtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis [J].Science,2000,288:635-639.
    [101] Cooksey C C, Reid P J. Femtosecond Pump-Probe Studies of DichlorineMonoxide in Solution.[J]. Journal of Physical Chemistry A,2003,107(29):5508-5514.
    [102] Husakou A V, Herrmann J. Supercontinuum Generation of Higher-OrderSolitons by Fisstion in Photonic Crystal Fibers.[J]. Physical Review Letters,2001,87(20):203901-203904.
    [103] Herrman J, Griebner U, and Zhavoronkov N. Experimental Evidence forSupercontinuum Generation by Fission of Higher-Order Solitons in PhotonicFibers.[J]. Physical Review Letters,2002,88(17):173901-173904.
    [104]季玲玲,陈伟,曹迎春,等.光子晶体光纤中基于孤子分裂的超连续光谱产生[J].物理学报,2009,58(8):5462-5466.
    [105] Alfano R R, Shapiro. S L. Emission in the Region4000to7000AoViaFour-Photon Coupling in Glass[J]. Physical Review Letters,1970,24(11):584-587.
    [106] Penzkofer A, Laubereau A, and Kaiser W. Stimulated Short-Wave Radiation Dueto Single-Frequency Resonances ofχ (3)[J]. Physical Review Letters,1973,31(14):863-866.
    [107] Yang G, Shen Y R. Spectral Broadening of Ultrashort Pulses in a NonlinearMedium[J]. Optics Letters,1984,9(11):510-512.
    [108] Prince B D, Chakraborty A, Prince B M, et al. Development of SimultaneousFrequency-and Time-Resolved Coherent Anti-Stokes Raman Scattering forUltrafast Detection of Molecular Raman Spectra[J]. the Journal of ChemicalPhysics,2006,125(4):044502.
    [109] Kasap E, Demirci E, and Kantarci Z. Infrared Spectroscopic Study of theHofmann-Dapn-Type Clathrates: M (1,5-Diaminopentane) Ni (Cn)4Toluene(M=Co, Ni or Cd)[J]. ARI,1998,50:220-222.
    [110] Hommel E L,Allen H C. The Air-Liquid Interface of Benzene, Toluene,M-Xylene, and Mesitylene: A Sum Frequency, Raman, and InfraredSpectroscopic Study[J]. Analyst,2003,128:750-755.
    [111] Dykstra T E, Kovalevskij V, Yang X, et al. Excited State Dynamics of aConformationally Disordered Conjugated Polymer: A Comparison of Solutionsand Film[J]. Chemical Physics Letters,2005,318:21-32.
    [112] Burrows P E, Forrest S R, Sibley S P, et al. Color-Tunable OrganicLight-Emitting Devices[J]. Applied Physics Letters,1996,69(20):2959-2961.
    [113] Michelotti F, Borghese F, Bertolotti M, et al. Alq3/PVK HeterojunctionElectroluminescent Devices[J]. Synthetic Metals,2000,111-112:105-108.
    [114] Ling Q D, Lim S L, Song Y, et al. Nonvolatile Polymer Memory Device Basedon Bistable Electrical Switching in a Thin Film of Poly(N-Vinylcarbazole) withCovalently Bonded C60[J]. Langmuir,2007,23(1):312-319.
    [115] Papez V, Josowicz M. Electrochemical Preparation and Study ofPoly(N-Vinylcarbazole) as a Sensing Layer for Propylamine Vapor[J]. Journal ofElectroanalytical Chemistry,1994,365(1-2):139-150.
    [116] Fulghum T M, Taranekar P, and Advincula R C. Grafting Hole-TransportPrecursor Polymer Brushes on Ito Electrodes: Surface-Initiated Polymerizationand Conjugated Polymer Network Formation of PVK[J]. Macromolecules,2008,41(15):5681-5687.
    [117]常建华,董绮功.波谱原理及分析[M].北京:科学出版社,2001:113-118.
    [118] Silvestri S D, Fujimoto J G, Ippen E, et al. Femtosecond Time-ResolvedMeasurements of Optic Phonon Dephasing by Impulsive Stimulated RamanScattering in α-Perylene Crystal from20to300K[J]. Chemical PhysicsLetters,1985,116(2-3):146-152.
    [119] Dhar L, Rogers J, and Nelson K A. Time-Resolved Vibrational Spectroscopy inthe Impulsive Limit[J]. Chemical Reviews,1994,94(1):157-193.
    [120] Wang G G, Zhang M F, Han J C, et al. High-Temperature Infrared and DielectricProperties of Large Sapphire Crystal for Seeker Dome Application[J]. CrystalResearch and Technology,2008,43(5):531-536.
    [121] Kadleíková M, Breza J, and Vesely M. Raman Spectra of Synthetic Sapphire[J].Microelectronics Journal,2001,32(12):955-958.
    [122] Aminzadeh A, Sarikhani-fard H. Raman Spectroscopic Study of Ni:Al2O3Catalyst[J]. Spectrochimica ACTA part A-Molecular and BiomolecularSpectroscopy,1999,55(7-8):1421-1425.
    [123] Farmer V R. A Review of Reliability and Quality Assurance Issues for SpaceOptics Systems[J]. Proceedings of SPIE,1992,1761:14-24.
    [124] Henson T D, Torrington G K. Space Radiation Testing of Radiation ResistantGlasses and Crystals[J]. Proceedings of SPIE,2001,4452:54-65.
    [125]廖毅.空间辐照环境及红外光子探测器的辐照效应.[J].红外,2006,27(5):125-128.
    [126]何捷,林理彬,卢勇,等. γ辐射及退火MgAl2O4透明陶瓷光谱特性研究[J].人工晶体学报,2002,31(1):63-66.
    [127] Lee Y J, Parekh S H, Fagan J A, et al. Phonon Dephasing and Population DecayDynamics of the G-Band of Semiconducting Single-Wall Carbon Nanotubes[J].Physical Review B,2010,82(16):165432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700