基于火焰测温的飞秒CARS光谱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相干反斯托克斯拉曼散射(CARS)光谱测温技术是一种广泛应用的光谱测量技术,具有非侵入、不干扰流场、可遥测、响应时间短、分辨率高等优点,适应于多种恶劣条件下的燃烧诊断研究。近年来,随着超短脉冲激光的发展,飞秒CARS及飞秒时间分辨CARS光谱技术已成功的应用到燃烧场的测温中,能够减少非共振背景信号的影响,极大的提高了测量的时间分辨能力,进一步提高了燃烧场测温的精度和范围。
     本文以基于燃烧测温的飞秒CARS光谱技术为研究重点,首先介绍了飞秒CARS的基本概念,从非线性效应基本方程出发,推导出CARS的光强表达式,给出了飞秒时间分辨CARS的计算模型,分析了影响光强的主要因素,计算了三阶非线性极化率中的不同能级上分子布居数密度差和拉曼线宽因子,在此基础上计算了氮气、一氧化碳的Q支振动CARS理论谱和氮气、氢气分子的S支转动CARS理论谱,讨论了泵浦激光线宽对谱线线型的影响,分析了谱线线型和温度之间的关系。此外对飞秒时间分辨CARS谱的计算模型进行了深入的分析和讨论,并模拟出不同温度下的氮气的时间分辨光谱。
     实验上,利用搭建的一套飞秒时间分辨CARS光谱测量系统开展了验证实验,利用BBO晶体和若丹明590溶液进行了时间分辨CARS谱研究的先前工作,通过调节探测光相对泵浦光和斯托克斯光的延迟时间,得到了样品的时间分辨CARS谱,验证系统进行时间分辨CARS测量的可行性。
Coherent anti-Stokes Raman scattering (CARS) spectrum technology is a widely used spectral measurement technology to measure the temperature. With the advantages of non-invasive and no interference to the flow field and with the features of remote control, short response time,high resolution, CARS adapts to various of harsh conditions of combustion diagnostic research. In recent years,with the progress of ultrafast laser pulse technology,the femtosecond CARS and femtosecond time-resolved CARS spectrum has successfully used to burn the field temperature measurement. It can greatly improve the measuring time resolution capability, reduce the effects of the non-resonant background signal, so widening the application range and improving the temperature measurement precision of the CARS.
     With the femtosecond CARS spectrum technology to temperature measurement as the research focus, this paper first introduced the basic concepts of femtosecond CARS. Then, from the basic equations of nonlinear effect, we described the basic theory of CARS and gave the calculation model of femtosecond time-resolution, deduced the light intensity expression of CARS and its main influence factors. In the third order nonlinear polarization rate, we calculated the molecule density difference and Raman line width factor of different energy level. Based on these theories, we calculated the Q vibration CARS theory spectrum of nitrogen and carbon monoxide and the S rotation CARS theory spectrum of nitrogen and hydrogen. We discussed the influence of pump laser line width and temperature to the linear of spectral line. At the same time, we analyzed and discussed the calculation model of femtosecond time-resolution CARS spectrum in depth. Using this model, we simulated time-resolution spectrum of nitrogen in different temperature.
     In experiment, we set up a set of femtosecond time-resolved CARS spectra measurement system and carried out the early verification experiment by measuring the time-resolved CARS spectra of BBO crystal and Rhodamine-590. By adjusting the delay time between probe beam and pump-Stokes beams,we got the time-resolved CARS spectra of the sample, validated the feasibility of this system to conduct time-resolution CARS.
引文
1夏慧荣,王祖庚.分子光谱学和激光光谱学导论.华东师范大学出版社. 1989: 226-229
    2杨仕润. CARS在超音速燃烧中的应用.中科院力学所博士学位论文. 1998:1-3
    3张虎.基于CARS的火焰温度测量技术研究.哈尔滨工业大学博士学位论文. 2009:1-2
    4 P. D. Maker, R. W. Terhune. Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength. Physical Review. 1965, 137(3A):A801-A818
    5 W. B. Roh, P.W. Schreiber and J.P.E.Taran, "Single-Pulse Coherent Anti-Stokes Raman Scattering". Applied Physics Letters, 1976, 29(3): 174-176
    6 A.C.Eckbreth, "BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases". Applied Physics Letters, 1978, 32(7): 421-423
    7 S.Roy, T.R.Meyer, Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals. Applied Physics Letters, 2005, 87, 264103
    8刘丙国.高压下分子超快动力学的飞秒时间分辨光谱.吉林大学博士学位论文, 2008: 11-13
    9 R. P. Lucht, S. Roy, T. R. Meyer. Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence. Applied Physics Letters, 2006, 89, 251112
    10 S.Roy, Paul J.Kinnius. Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy. Optics Communications, 2008(281): 319-325
    11闫军,徐更光. CARS光谱技术在炸药测温领域中的应用.火炸药学报, 2000(3): 59-61
    12 S. Roy, W. D. Kulatilak, D.R.Richardson, et al. Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy. Optics Letters, 2009, 34(24): 3857-3859
    13 N. Wenzel, B. Lange, G. Marowsky. High Temperature N2 CARS Thermometry. Applied Physics B, 1990(51): 61-62
    14 P. Beaud, H.M.Frey, T.Lang, et al. Flame thermometry by femtosecond CARS. Cemical Physics Letters, 2001(344): 407-412
    15 T. Lang, M.Motzkusa. High resolution femtosecond coherent anti-Stokes Raman scattering: Determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature. Journal of Chem. Phys. 2001, 12(15): 5418-5426
    16 T. Lang, M.Motzkus. Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry. J.Opt. Soc.Am, 2002, 2(19): 340-344
    17 Thomas Hornung, M.Motzkus.Prospect of temperature determination using degenerate four-wave mixing with sub-20 fs pulses. J. Raman Spectrosc, 2004(35): 934–938
    18 Martin Schenk, Thomas Seeger. Time-resolved CO2 thermometry for pressures as great as 5 MPa by use of pure rotational coherent anti-Stokes Raman scattering. Applied Optics , 2005, 11( 44) : 6526-6536
    19 S. Roy et al. Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy . Combustion and Flame, 2004(138): 273–284
    20 T. R. Meyer et al. Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2–O2–N2 mole-fraction measurements in model gas-turbine combustors. Combustion and Flame, 2005(142): 52–61
    21 S. Roya and T. R. Meyer. Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals. Applied Physics Letters. 2005, 87, 264103
    22 Sukesh Roy, Waruna D.Kulatilaka. Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy. Optics Leters , 2009 , 34( 24 ): 3857-3859
    23 Waruna D.Kulatilaka, Ning Chai. Effects of pressure variations on electronic-resonance-enhanced coherent anti-Stokes Raman scattering of nitric oxide. Optics Communications, 2007(274): 441–446
    24 Chai et al. Single-laser-shot detection of nitric oxide in reacting flows using electronic resonance enhanced coherent anti-Stokes Raman scattering . Appl. Phys. Lett, 2008, 93, 091115
    25 Sukesh Roy et al. Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2. Appl. Phys. Lett. 2009, 94, 144101
    26 W.D. Kulatilaka, S.Roy. Effects of O2–CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of O2 . Appl Phys B 2011(102): 141–147
    27 F. Vestin. Development of rotational CARS for combustion diagnostics using a polarization approach. Proceedings of the Combustion Institute, 2007(31): 833-840
    28 F. Vestin, David Sedarsky. Rotational coherent anti-Stokes Raman spectroscopy (CARS) applied to thermometry in high-pressure hydrocarbon flames. Combustion and Flame, 2008(154): 143–152
    29 F. Vestin, Per-Erik Bengtsson. Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame. Proceedings of the Combustion Institute, 2009(32): 847-854
    30 Tran et al. Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: Experiment and modelization of speed memory effects on H2–N2 mixtures in the collision regime. The Journal of Chemical Physics, 2005, 122, 194317
    31 H.Tran, F.Chaussard, et al. Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2–N2 mixtures in the Dicke regime: Experiments and modeling of velocity effects. The Journal of Chemical Physics, 2009, 131, 174310
    32杨仕润,赵建荣,俞刚.同时测量氢氧CARS光谱确定火焰温度和氢氧浓度的研究.中国激光, 1999, 26(10): 884-888
    33耿辉,李麦亮,周进.相干反斯托克斯喇曼光谱单脉冲测量火焰温度.上海航天, 2001(4): 19-25
    34 YAN Jun, XU Geng guang. Theoretical Calculation of Nitrogen Q Branch CARS Spectra. Journal of Beijing Institute of Technology, 2001, 10(1): 108-112
    35李春喜,赵鸣,张蕊娥,袁潮,赵凤起.双基推进剂燃烧火焰温度CARS测定技术.火炸药学报, 2003(1): 65-67
    36胡志云,张振荣,刘晶儒,关小伟,黄梅生,叶锡生.宽带相干反斯托克斯喇曼散射法诊断固体燃剂燃烧场.强激光与粒子束, 2004, 16(1): 19-22
    37张天天.飞秒时间分辨CARS光谱在超快动力学及燃烧测温应用研究.哈尔滨工业大学硕士学位论文. 2010: 1-7
    38李麦亮.激光光谱诊断技术及其在发动机燃烧研究中的应用.国防科学技术大学博士学位论文, 2004: 27-31
    39 Alexis Bohlin. Improvement of rotational CARS thermometry in fuel-rich hydrocarbon flames by inclusion of N2-H2 Raman line widths. J. Raman Spectrosc, 2009(40): 788–794
    40虞海平,王庆宇,李郁芬.测温技术中CARS谱的模拟计算.中国激光, 1986, 14(12): 725-734
    41 A. M. Zheltikov. An analytical model of the rotational Raman response function of molecular gases. J. Raman Spectrosc, 2008(39): 756–765
    42 A. Bohlin. F. Vestin, Rotational CARS N2 thermometry: validation experiments for the influence of nitrogen spectral line broadening by hydrogen?. J. Raman Spectrosc, 2010(41): 875–881

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700