单脉冲时间分辨CARS光谱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着超快激光脉冲技术的发展与完善,超快速时间分辨光谱技术已经广泛地应用到光物理、光化学的超快反应动力学过程的研究中,使人们对极短时间内发生的超快过程有了充分的了解。相干反斯托克斯拉曼散射(CARS)光谱技术是一种典型的三阶非线性光谱技术,在分子振动能级结构、分子振动弛豫研究等方面有着广泛的应用。因此,对CARS光谱技术的研究显得尤为重要。
     在目前的国内外时间分辨CARS研究中,大部分以多脉冲CARS的研究为主。多脉冲CARS需要调节探测光的时间延迟得到时间分辨光谱,探测时间相对较长,并且对激光系统和待测样品的稳定性要求较高。而单脉冲时间分辨CARS可通过一次探测获得振动能级结构的动态信息,实现单次测量。
     本文基于多脉冲时间分辨CARS光谱技术理论,对单脉冲时间分辨CARS光谱技术进行了系统的分析。通过对三束入射飞秒光脉冲的空间结构设计,得到入射光脉冲在不同空间位置的脉冲时序、不同时刻光斑信号在样品平面的空间分布及空间坐标与脉冲间时间延迟的变换关系。在实验中,我们利用单脉冲时间分辨CARS技术对激光染料IR780基态上
     的振动能级结构进行了探测,探测到若干低振动态的拉曼振动模式。为验证单脉冲时间分辨CARS光谱技术的正确性,我们搭建了常用的光子回波技术实验平台探测同一薄膜样品,并与单脉冲CARS方法获得的实验结果进行比较分析,两种方法获得的实验结果在误差允许范围内基本一致,从而验证了单脉冲时间分辨CARS方法的正确性和可行性,实现了对分子振动能级结构的快速探测。
In recent yeas, with the progress and perfection of ultrafast laser pulse technology, ultrafast time-resolved spectroscopy technology has been widely used to research the ultrafast reaction kinetics of photophysical and photochemical, thus it lets people well understand the ultrafast process in very short time. Coherent anti-Stokes Raman scattering spectroscopy technology is a typical third-order nonlinear spectroscopy technology, and it widely applies to research molecular’s vibrational energy level’s structure and vibrational relaxation. Thus, CARS spectroscopy technology’s research is particularly important.
     In the current, study of time-resolved CARS, most researchs are based on multi-pulses CARS. Multi- pulses CARS needs to adjust the delay time of probe pulse to obtain time-resolved spectroscopy, and relatively long detection time. Thus, it is requirement on laser system and molecular long term stability. But single-shot time-resolved CARS maybe obtain to dynamic information of vibrational energy level’s structure by a measurement, and achieving one measurement.
     Based on theory of multi- pulses time-resolved CARS spectroscopy technology, and done systematic analysis to single-shot time-resolved CARS spectroscopy technology. Through designing the spatial structure of three input femto-second pulses, we get to the timing of three input pulses in the different spatial location、spatial distribution of facula signal at sample plane when the different moments and transformation relation between spatial coordinates and pulses’delay time.
     In our experiment, we measure ground state’s vibrational energy level’s structure of laser dye IR780, and getting some low-lying vibrational modes. In order that verifying single-shot time-resolved CARS technology, we build experiment device of photon echo, and measure the same sample. At the same time, the result between two measurements is consistent in the error. Accordingly, we prove that the single-shot time-resolved CARS is right and feasible. And it achieves our purpose that rapid detects the molecular’s vibrational energy level’s structure fleetly.
引文
1.周炳琨,高以智,陈倜嵘等.激光原理.国防工业出版社, 2007:19~20
    2.孟献丰,陆春华,倪亚茹等.激光技术的应用与防护.红外与激光工程.2005, 34(2):136~141
    3. D. E. Spence, P. N. Kean, and W. Sibbett. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser. Optics Letters. 1991, 16:42~45
    4.石顺祥,陈国夫,赵卫等.非线性光学.西安电子科技大学出版社, 2003:405~411
    5.钱士雄,王恭明.非线性光学—原理与进展.复旦大学出版社, 2001:487~495
    6.罗晓娜,刘金合,唐建宇.飞秒激光加工及其应用.新技术新工艺. 2008,(2):48~50
    7. A. D. Cohen, C. Helgen, C. G. Bochet, et al. The Mechanism of Photoinduced Acylation of Amines by N-Acyl-5,7-dinitroindoline as Determined by Time-Resolved Infrared Spectroscopy. Organic Letters. 2005, 7(14):2845~2847
    8. A. G. Merzlikine, S. V. Voskresensky, E. O. Danilov, et al. Observations of Different Triplet Conformations in Time-Resolved Infrared Spectra of Alkyl Phenylglyoxylates. Journal of the American Chemical Society. 2003, 124(49):14532~14534
    9. S. Cianetti, M. Negrerie, M. H. Vos, et al. Photodissociation of Heme Distal Methionine in Ferrous Cytochrome c Revealed by Subpicosecond Time-Resolved Resonance Raman Spectroscopy. Journal of the American Chemical Society. 2004, 126(43):13932~13933
    10. P. Y. Chan, W. M. Kwok, S. K. Lam, et al. Time-Resolved Resonance Raman Observation of the 2-Fluorenylnitrenium Ion Reaction with Guanosine to Form a C8 Intermediate. Journal of the American Chemical Society. 2005, 127(23): 8246~8247
    11. D. S. Moore, S. D. McGrane. Comparative infrared and Raman spectroscopy of energetic polymers. Journal of Molecular Structure. 2003, 661:561~566
    12. H. Kano, H. Hamaguchi. Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber. Applied Physics Letters. 2004, 85(19):4298~4230
    13. T. Siebert, M. Schmitt, S. Grafe, et al. Ground state vibrational wave-packet and recovery dynamics studied by time-resolved CARS and pump-CARS spectroscopy. Journal of Raman Spectroscopy. 2006, 37:397~403
    14. I. Ribet, B. Scherrer, P. Bouchardy, et al. Supersonic flow diagnostics by single-shot time-domain coherent anti-Stokes Raman scattering. Journal of Raman Spectroscopy. 2000, 31:689~696
    15. K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, et al. Single-shot high-resolution dual-broadband CARS interferometric lineshape spectroscopy. Journal of Raman Spectroscopy. 2005, 36:134~138
    16. V. I. Fabelinsky, V. V. Smirnov, O. M. Stelmakh, et al. New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames. Journal of Raman Spectroscopy. 2007,38:989~993
    17. D. V. Murphy, M. B. Long and R. K. Chang. Spatially resolved coherent anti-Stokes Raman spectroscopy from a line across a CH4 jet. Optics Letters. 1979, 4(6):167~169
    18. N. Dudovich, D. Oron and Y. Siberberg. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature. 2002, 418(8):512~514
    19. T. Lang, M. Motzkus. Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry. Journal of the Optical Society of America B-Optical Physics. 2002, 19(2):340~343
    20. A. N. Naumov, A. M. Zheltikov. Frequency-time and time-space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams. Journal of Raman Spectroscopy. 2001, 32:960~970
    21. A. N. Naumov, A. M. Zheltikov. Frequency-time and time-space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump-probe techniques. Applied Physics B-Lasers and Optics. 2003, 77:369~376
    22. D. Pestov, X. Wang, G. O. Ariunbold, et al. Single-shot detection of bacterial endospores via coherent Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105(2):422~427
    23.张振荣,刘晶儒,黄梅生等.单脉冲BOXCARS技术在瞬态燃烧场测温中的应用.强激光与粒子束. 2003, 15(12):1171~1173
    24. C. Rulliere. Femtosecond Laser Pulses Principles and Experiments. Springer, 2005:241~243
    25. P. A. Franken, A. E. Hill, C. W. Peters, et al. Generation of Optical Harmonics. Physical Review Letters. 1961, 7(4):118~119
    26. M. Bass, P. A. Franken, A. E. Hill, et al. Optical Mixing. Physical Review Letters. 1962, 8(1):18~19
    27. P. D. Maker, R. W. Terhune. Study of optical effects due to an induced polarization third order in the electric field strength. Physical Review A. 1965,
    137:801~818
    28. J. J. Wynne. Dispersion of the Nonlinear Optical Susceptibilityχ( 3) in n-InSb in a Magnectic Field. Physical Review B. 1972, 6(2):534~545
    29. K. Richard, P. Ewart. High-resolution infrared polarization spectroscopy and degenerate four wave mixing spectroscopy of methane. Applied. Physics B. 2009, 94(4):715~723
    30. A. Scaria, J. Liebers, U. Kleinekathofer, et al. Probing the contributions of hot vibrational states using pump-degenerate four-wave mixing. Chemical Physics Letters. 2009, 470:39~43
    31.虞海平,金耀根,周萍等.硅甲烷CARS光谱的研究.光学学报. 1988, 8(9):776~782
    32. S. Roy, D. Richardson, P. J. Kinnius, et al. Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2. Applied Physics Letters. 2009, 94(14):144101
    33. Y. Q. Yang, Z. Y. Sun, S. F. Wang, et al. Fast Spectroscopy of Laser-Initiated Nanoenergetic Materials. Journal of Chemical Physics. 2003, 107(19):485~493
    34. S. Roy, P. J. Kinnius, R. P. Lucht, et al. Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy. Optics Communications. 2008, 281(2):319~325
    35. J. Bühler, Y. Prior. Back-scattering CARS diagnostics on CVD diamond. Diamond and Related Material. 1999, 8(2):673~676
    36. I. Pinkas, G. Knopp, and Y. Prior. Preparation and monitoring of high-ground-state vibrational wavepackets by femtosecond coherent anti-Stokes Raman scattering. Journal of Chemical Physics. 2001, 115(1):236~244
    37. G. Knopp, I. Pinkas and Y. Prior. Two-dimensional time-delayed coherent anti-Stokes Raman spectroscopy and wavepacket dynamics of high ground-state vibrations. Journal of Raman Spectroscopy. 2000, 31(1):51~58
    38. J. A. Giordmaine. Mixing of light beams in crystals. Physical Review Letters. 1962, 8(1):19~21
    39. Q. M. Ali, P. K. Palanisamy. Optical phase conjugation by degenerate four-wave mixing in basic green 1 dye-doped gelatin film using He-Ne laser. Optics and Laser technology. 2007, 39(6):1262~1268
    40. A. Miniewicz, S. Bartkiewicz, J. Parka. Optical phase conjugation in dye-doped nematic liquid crystal. Optics Communications. 1998, 149:89~95
    41. A. Lezama, G. C. Cardoso, and J. W. R. Tabosa. Polarization dependence of four-wave mixing in a degenerate two-level system. Physical Review A. 2000, 63(1):013805-1~013805-7
    42. Y. P. Zhang, A. W. Brown, and M. Xiao. Matched ultraslow propagation ofhighly efficient four-wave mixing in a closely cycled double-ladder system. Physical Review A. 2006, 74(5):053813-1~053813-10
    43. F. P. Strohkendl, R. J. Larsen, L. R. Dalton, et al. Femtosecond nearly degenerate four-wave mixing in C60 films between 0.55 and 0.70μm .Chemical Physics Letters. 2000, 331(5):354~358
    44. R. M. Macfarlane, Y. Sun, P. B. Sellin, et al. Optical decoherence times and spectral diffusion in an Er-doped optical fiber measured by two-pulse echoes, stimulated photon echoes, and spectral hole burning. Journal of Luminescence. 2007, 127:61~64
    45. L. V. Dao, C. Lincoln, M. Lowe, et al. Spectrally resolved femtosecond two-color three-pulse photon echoes: Study of ground and excited state dynamic in molecules. Journal of Chemical Physics. 2004, 120(18):8434~8442
    46. J. P. R. Wells, E. D. van Hattum, P. J. Phillips, et al. Degenerate four wave mixing spectroscopy of oxygen vibrations in amorphous silicon. Journal of Luminescence. 2004, 108:173~176
    47. T. Mancal and G. R. Fleming. Probing electronic coupling in excitonically coupled heterodimer complexes by two-color three-pulse photon echoes. Journal of Chemical Physics. 2004, 121(21):10556~10565
    48. B. S. Prall, D. Y. Parkinson and G. R. Fleming. Probing correlated spectral motion: Two-color photon echo study of Nile blue. Journal of Chemical Physics. 2005, 123(5):054515-1~054515-13
    49. Y. Wu, X. X. Yang. Carrier-envelope phase-dependent atomic coherence and quantum beats. Physical Review A. 2007, 76(1):013832-1~013832-4
    50. K. Heyne, N. Huse, E. T. J. Nibbering, et al. Coherent vibrational dynamics of intermolecular hydrogen bonds in acetic acid dimers studied by ultrafast mid-infrared spectroscopy. Journal of Physics-Condensed Matter. 2003, 15(1):129~136
    51. W. A. Hugel, M. Wegener, Q. T. Vu, et al. Differences between quantum kinetic photon beats and Raman beats. Physics Review B. 2002, 66(15):153203-1~153203-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700