Raman光谱技术及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文的主要工作是关于Raman光声光谱(Photoacoustic Raman Spectroscopy,PARS)技术和与Raman共振相关的四波混频——Raman诱导Kerr效应偏振光谱(Raman Induced Kerr Effect,RIKE)技术及其应用所进行的研究;同时也涉及受激Raman增益光谱(Stimulated Raman Gain Spectroscopy,SRGS)和相干反Stokes Raman散射(Coherent Anti-Stokes Raman Scattering,CARS)光谱技术的少量工作。技术方面包括实验方案构想,装置组建,操作把握,结果评估,误差分析等,工作中有所创新。在此基础上,作为应用,对若干分子的Raman光谱和Raman退偏比进行了测量和研究,并取得了具有重要价值的成果。
     1.Raman光声光谱技术
     这是论文中技术工作的重点。Raman光声光谱(PARS)是一项具有高灵敏度,能真实记录介质Raman光谱且易于考察偏振效应的光谱技术,最早见于Barrett和Berry等人的报道,以后陆续有若干作者的工作发表。在我们实验室建立PARS光谱实验装置属于一项技术引进。我们的贡献在于,在装置构建中,改变了以往作者所采用的主泵浦光束与Stokes光束同向进入光声池的方式。这样,我们毋需同向泵浦方式所必需的双色镜片,从而免去双色镜片所带来的限制和不便——例如小Raman位移的限制和改变泵浦光偏振方向需要进行透射率(或反射率)修正等。应该说,反向泵浦方式的应用,是我们对Raman光声光谱技术发展的一项贡献。实验表明,我们的装置能够灵敏地给出精确可靠的结果,且操作简便。
     2.Raman诱导Kerr效应(RIKE)偏振光谱技术
     RIKE是一种基于Raman共振的四波混羲技术,由于不存在相位匹配问题而较其它四波混频技术易于把握。另一方面,RIKE输出信号光可通过检偏器去除入射光本底,因而较受激Raman增益光谱(SRGS)灵敏。我们在实验安排上仍采用两光束反向泵浦的方式,这样不仅可以完全排除CARS事件的干扰,同时可以单独测量Stokes光而不用考虑主泵浦光的滤除。以CH_4分子v_1模为测
The work in this dissertation is mainly about techniques and applications of PARS (Photoacoustic Raman Spectroscopy) and RIKE (Raman Induced Kerr Effect), and also concerning on techniques of SRGS (Stimulated Raman Gain Spectroscopy) and CARS (Coherent Anti-Stokes Raman Scattering).
    1. Photoacoustic Raman Spectroscopy (PARS) technique
    The PARS is a very sensitive spectral technique which can truly record the Raman spectrum of medium, and is favorable to observe the polarization effect of Raman spectrum. This technique was first reported by Barrett and Berry, and later adopted by some other authors. In our PARS experimental set-up, the employed two laser beams (one is called as main pump beam, and the other is called as Stokes beam ) counterpropagate into the sample cell, unlike the general arrangement where the two laser beams are combined by a 45°-setting diachronic mirror and propagate in the same direction. Such counterpropagating arrangement leaves out the diachronic mirror which is prerequisite in copropagation, and accordingly eliminates the limitation and inconvenience that are brought by the diachronic mirror, such as the small Raman shift and polarization measurement so on. Therefore, the application of counterpropagation to PARS is a contribution of us. Our experimental results show that counterpropagating set-up can also give the accurate and reliable data sensitively and easy to be operated.
    2. Raman Induced Kerr Effect (RIKE) technique
    RIKE is a technique based on Raman-resonant Four Wave Mixing(FWX). Compared to other FWX techniques, RIKE is easier carried out due to non-existence of phase-matching. On the other hand, because the signal can be achieved by eliminating the background of incident Stokes beam with a polarizer, RIKE is more sensitive than SRGS. For RIKE, the counterpropagating arrangement is also a good choice not only because it can absolutely remove the interference of CARS, but also because it can monitor only Stokes beam without consideration of filtering pump
引文
[1] Long,D.A.著,顾本源等译,《Raman光谱学》,科学出版社,1983.
    [2] 潘家来,《激光Raman光谱在有机化学中的应用》,北京化学工业出版社,1986.
    [3] Owyoung, A. Chem. Phys. Lett., 1978, 59, 156.
    [4] Esherick, P.; Owyoung, A.; Patterson, C. W. J. Phys. Chem. 1983, 87, 602.
    [5] Esherick, P.; Owyoung, A; J. Opt. Soc. Am. B, 1987, 4, 41.
    [6] 刘颂豪,郝光生.《强光光学及其应用》,科学出版社,1995.
    [7] Raman, C. V.; Krishman, K. S. Nature, 1928, 121, 501.
    [8] Raman, C. V. Nature, 1928,121,619.
    [9] Barrett, J. J.; Berry, M. J. Appl. Phys. Lett, 1979, 34, 144.
    [10] West, G. A.; Siebert, D. R.; Barrett, J. J. J. Appl. Phys., 1980, 51(5), 2833.
    [11] Owyoung, A. 《Laser Spectroscopy》, Springger, Berlin, 1979.
    [12] Esherick, P.; Owyoung, A.; Pliva, J. J. Chem. Phys., 1985, 83, 3311.
    [13] Ebata, T.; Hamakado, M.; Moriyama, S.; Morioka, Y.; Ito, M.; Chem. Phys. Lett, 1992, 199, 33.
    [14] 沈元壤著,《非线性光学原理》,科学出版社,1987.
    [15] Eesley, G. L. Coherent Raman spectroscopy, Oxford : Programon Press, 1981.
    [16] Yuratich, A.; Hanna, D. C. Mol. Phys., 1977, 33, 671.
    [17] Bell, A. G. Am. J. Sci., 1880, 20, 305.
    [18] K.reuzer, L. B.; Patel, C. K. N. Science, 1971, 173, 45.
    [19] Rosencwaig, A. Photoacoustic & Photoacoustic Spectroscopy , John Wiley & Sons,1980.王耀俊等译,光声学和光声谱学,科学出版社,1986.
    [20] Patel, C. K. N.;Tam, A. C. Appl. Phys. Lett, 1979, 34, 760.
    [21] Rotger, M.; Lavorel, B.; Chaux, R. J. Raman. Spectrosc., 1992, 3,303.
    [22] Mslchior, A.; Bar, I.; Rosenwaks, S. J. Phys. Chem. A, 1998, 102, 7273.
    [23] Siebert, D. R.; West, G. A.; Barrett, J. J.Appl. Opt., 1980, 19, 53.
    [24] Brown, S. S.; Berghout, H. L.; Crim, F. F. J. Chem. Phys. 1997, 106, 5805.
    [25] West, G. A.; Barrett, J. J.; Siebert, D. R.; Rev. Sci. lnstrum. ,1983, 54(7), 797.
    [26] West, G. A.; Barrett, J. J.; Opt. Lett., 1979, 4, 395.
    [27] HERRANZ, J.; STOICHEFF, B. P. J. Mol. Spectrosc., 1963, 10, 448
    [28] Hecht, K. T. J. Mol. Spectrosc. 1966, 21,380
    [29] CHAMPION, J. P.; BERGER, H. J. Physique, 1975, 36, 135
    [30] Lavorel, B.; Loup,R. S.; Pierre, G.; Berger, H. J. Phys. (Paris)Lett, 1984, 45,295
    [31] Esherick, P. ; Owyoung, A. J. Mol. Spectrosc., 1982, 92, 162
    [32] Nester, J. R. J. Chem. Phys. 1978, 69, 1778
    [33] Borysow, J.; Golnabi, H.; Taylor, R. H.; Keto, J. M. Appl. Optics., 1992, 31, 2814
    [34] Heiman, D.; Hellwarth, R. W.; Levenson, M. D.; Martin, G. Phys.Rev.Lett., 1976, 36, 189
    [35] Wyrme, K. J. Chem. Phys. 2005, 122, 244503
    [36] Superfine, R.; Huang, J. Y.; Shen, Y. R. Phys Rev Lett, 1991, 66, 1066.
    [37] Saito, Y.; Hamaguchi, H.; Chem. Phys. Lett, 2001, 339, 351
    [38] Koster, J.;Popp, J.; Schlucher, S. J. Raman. Spectrosco., 2006, 37, 384
    [39] Zhuang, X.; Miranda, P. B.; Kim, D.; Shen, Y. R. Phys. Rev. B, 1999, 59, 12632
    [40] Zhang, D.; Gotow, J.; Eisenthal, K. B. J. Phys. Chem., 1994, 98, 13729
    [41] Saito, Y.; Ishibashi, T.; Hamaguchi, H. J. Raman. Specrosc., 2000, 31, 725
    [42] Long, D. A. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley & Son Ltd, 2002
    [43] Holzer, W.; Duff, Y. L. J. Chem. Phys. 1973, 58 (2), 642
    [44] Ziegler, L. D.; Chung, Y. C.; Wang, P.; Zhang, Y. P.; J. Chem. Phys. 1989, 90, 4125
    [45] Wang, P. G.; Ziegler, L. G.; J. Phys. Chem. 1993, 97, 3139
    [46] 赫兹堡,G.著《分子光谱与分子结构》第二卷,科学出版社,1986.
    [47] Tejeda, G.; Mate, B.; Montero, S. J. Chem. Phys. 1995, 103,568
    [48] Monstero, S.; J, Chem. Phys. 1983, 79, 4091
    [49] Penney, C. M.; Goldman, L. M.; Lapp, M. Nature (London) Phys. Sci. 1972, 235, 110
    [50] Weber, A.; Raman Spectroscopy of Gases and Liquid; Spring-Verlag:Berlin, Heidelberg, New York, 1979
    [51] Kiefer, W.; Topp, J. A. Appl. Spectrosc 1974, 28, 26
    
    [52] Wood, R. W.; Collins, G. Phys. Rev. 1932,42, 386
    
    [43] Halford, J. O.; Anderson, L. C.; Kissin, G. H. J. Chem. Phys. 1937, 5, 927
    
    [54] Snyder, R. G.; Aljibury, A. L.; Strauss, H. L.; Casal, H. L.; Gough, K. M.; Murphy,W. F. J. Chem. Phys. 1984, 81, 5352
    
    [55] Spiker, R. C.; Levin, I. W. Biochim. Biophys. Acta, 1975, 388, 361
    [56] Larsson, K.; Rand, B. P. Biochim. Biophys. Acta, 1973,326, 245
    [57] Bulhin, B. J.; Krishnan, N. J. Am. Chem. Soc., 1971, 93, 5998.
    [58] Gruenloh, C. J.; Florio, G. M.; Carney, J. R.; Hagemeister, F. C.; Zwier, T. S. J. Phys. Chem. A. 1999,103,496
    
    [59] Zhang, Z. H.; Pakoulev, A.; Dlott, D. D. Science, 2002,296,2201
    [60] Cheng, J. X.; Pautot, S.; Weitz, D. A.; Xie, X. S. PNAS, 2003,100,9826
    [61] Stanners, C. D., Du, Q.; Chin, R. P.; Cremer, P.; Somorjai, D. A.; Shen. Y. R. Chem. Phys. Lett., 1995,232,407
    [62] Lu, R.; Gan, w.; Wu, B. H.; Zhang, Z.; Guo, Y., Wang, H. F. J. Phys. Chem. B. 2005,109,14118
    
    [63] Saiz, L.; Padro, J. A. J. Phys. Chem. B. 1997,101,78
    [64] Laene, R.; Rauscher, C. Chem. Phys. Lett. 1997,274,63
    [65] Sung, J.; Park, K.; Kim, D. J. Phys. Chem. B 2005,109,18507
    [66] Perchard, J. P.; Josien, M. L. J. Chim. Phys. 1968,65,1834
    [67] Perchard, J. P.; Josien, M. L. J. Chim. Phys. 1968, 65,1856
    [68] Colles, M. J.; Griffiths, J. E.;J. Chem. Phys. 1972, 56, 3384
    [69] Kamogawa, K.; Kaminaka, S.; Kitagawa, T. J. Phys. Chem. 1987, 91,222
    [70] Bonang, C. C.; Anderson, D. J.; Cameron, S. M.; Kelly, P. B. J. Chem. Phys. 1993, 99,6254
    
    [71] Abbate, S.; Zerbl, G.; Wunder, S. L. J. Phys. Chem 1982, 86,3140
    [72] Amrein, A.; Hollenstein, H.; Quack, M.; Zenobi, R; Segall, J.; Zare, R. N. J. Chem. Phys. 1989,90,3944
    [73] Atamas, N. A.; Yaremko, A. M.; Seeger, T.; Leipertz, A.; Bienko, A.; Latajka, Z.; Ratajczak, H.; Barnes, A. J. J. Mol. Struct. 2004, 708,189
    [74] Snyder, R. G.; Scherer, J. R.; J. Chem. Phys. 1979, 71, 3221
    
    [75] Atamas, N. A.; Yaremko, A. M.; Bulavin, L. A.; Pogorelov, V. E.; Berski, S.; Latajka, Z.; Ratajczak, H.; Abkowicz-Bienko, A. J. Mol. Struct. 2002, 605, 187
    [76] Gan, W.; Zhang, Z.; Feng, R. R.; Wang, H. F. Chem. Phys.Lett. 2006,423,261
    [77] Wunder, S. L.; Bell, W.; Zerbi, G.; J.Chem.Phys. 1986, 85, 3827
    [78] McIntosh, A. L.; Gallegos, A. M.; Lucchese, R. R.; Bevan, J. W. J. Mol. Struct. 1997,413,167
    
    [79] Zerbi, G.; Abbate, S. Chem. Phys. Lett. 1981. 80,455
    [80] Macphail, R. A.; Synder, R. G.; Strauss, H. L. J. Chem. Phys. 1982, 77, 1118
    [81] Asbury, J. B.; Steinel, T.; Fayer, M. D.; J. Phys. Chem. B. 2004,108, 6544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700