光子纠缠态制备、应用及演化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子纠缠是一种奇异的非局域关联,在量子物理中起着基础性的作用。它不仅是理解量子力学非局域性的着眼点而且是量子信息处理的重要资源。另一方面,由于环境噪声不可避免的干扰,纠缠会很容易地被破坏。而且人们发现纠缠在演化过程中也会出现一些特殊的性质。比如两粒子间的纠缠在独立的热库中演化时会在有限的演化时间内完全消失,这与单粒子相干性指数衰减完全不同。因此本人将纠缠态的制备、应用和演化作为博士论文的研究课题。同时,我们还利用量子信息的方法对一些量子力学的基本问题进行实验探讨。本论文所取得的成果主要有:
     1、我们实验上利用单次自发参量下转换过程直接制备得到高可见度的四光子纠缠态,并且应用这个四光子纠缠态来完成一个四体量子通讯复杂度方案。
     由于我们的实验方案没有用到干涉装置并且下转换光子的走离效应可以完全补偿,因此四光子纠缠态的可见度可以高达(95.53±0.45)%。在利用此纠缠态来降低四体通讯复杂度的方案中,我们得到的成功概率为(81.54±1.38)%远远超过了经典极限50%。这个四光子纠缠态还可以用来实现无消相干子空间的量子信息处理及其他量子信息方案。
     2、我们实验实现了1→2最优量子普适克隆和无辅助比特的1→3最优量子相位协变克隆。
     在我们的实验中这两种克隆过程可以方便地进行转换并且所用到的Hong-Ou-Mandel型干涉装置也可以用到其他量子信息处理过程。
     3、我们实验上通过对在消相干环境中演化的光子偏振态进行测量,得到量子态相干性的恢复。
     测量导致量子相干性恢复的实验结果加深了我们对量子测量的理解。这种方法可以推广到其他两能级体系。实验中所采用的测量装置还可以用来实现量子纠缠的恢复和Leggett-Garg型不等式的违背。
     4、我们实验实现了Leggett-Garg型不等式的违背,并利用它来区分量子演化过程和经典演化过程。我们还在实验上比较了两类Leggett-Garg型不等式的违背情况。违背Leggett-Garg型不等式排除了经典实在理论对量了系统的描述,从另一个角度支持量子力学的描述。当这些Leggett-Garg型不等式被运用到在噪声信道中演化的量子体系时,它们可以作为区分量子演化过程和经典演化过程的判据。通过改变入射态,我们比较了两类Leggett-Garg型不等式,找到较严格的一类。我们所使用的方法可以推广到更大的体系,这对宏观量子干涉现象的观测有着重要的启发意义。
     5、我们实验研究了纠缠在非马尔科夫环境中演化时的塌缩和恢复现象。在初始入射态为部分纠缠态的情况下,我们甚至观测到纠缠在突然死亡后的恢复现象。利用光学的spin-echo技术,我们实现控制纠缠在突然死亡后的恢复时间。最后我们实验实现利用最大纠缠态刻画不同量子信道中纠缠的动力学演化情况,验证了纠缠演化的因式分解公式。
     与不可逆的马尔科夫环境相比,纠缠在有记忆作用的非马尔科夫环境下的演化更加基本。我们所观测到的纠缠塌缩和恢复现象(甚至是突然死亡后的恢复)有助于更好地理解纠缠的动力学演化。并且这一恢复现象能够延长纠缠的使用时间,在量子信息处理过程中有着实际的应用。我们所使用的光学spin-echo技术能够有效地控制纠缠的恢复时间,将在构造量子网络方面发挥重要作用。纠缠在量子信道中演化的因式分解公式简化了纠缠演化的描述,有利于设计更多抗消相干基于纠缠的量子信息方案。
Quantum entanglement,a kind of counterintuitive nonlocal correlation,is fundamental in quantum physics both for its essential role in understanding the nonlocality of quantum mechanics and its practical application in quantum information processing. At the same time,entanglement will become degraded due to the unavoidable interaction with the environment.Moreover,the evolution of entanglement may possess some distinct properties.It has been shown that entanglement between two particles evolved in independent reservoirs may disappear completely at a finite time in spite of the asymptotical coherence decay of single particle.This thesis mainly concerns the preparation,application and evolution of entangled states.We also make discussions on some fundamental problems of quantum mechanics with the technology of quantum information.The main results of the dissertation are as follow:
     1.We prepare a four-photon polarization-entangled state with high visibility directly from a single down-conversion source and finish a four-party quantum communication complexity scenario by using the obtained entangled state.
     Due to the interference-free experimental setup and the complete compensation of the walk-off effect in the birefringent crystals,the visibility of the prepared four photons state can reach as high as(95.53±0.45)%.The success probability for us to get the correct result in the four-party communication complexity scenario is(81.54±1.38)%, which greatly surpass the classical limit of 50%.This four-photon state can also be used to fulfill decoherence-free quantum information processing and other advanced quantum communication schemes.
     2.We experimentally realize the 1→2 optimal universal quantum cloning and the ancilla-free 1→3 optimal phase-covariant quantum cloning.
     In our experiment,these two kinds of cloning can be exchanged readily and the two Hong-Ou-Mandel-type interference setups may also be used to implement other quantum information processing.
     3.We experimentally demonstrate that measurement can recover the quantum coherence of a single photon polarization state evolved in a dephasing environment.
     The experimental result that measurement can induced quantum coherence recovery gives us a deep understanding of quantum measurement.This method can be extended to other two-level quantum systems.The measurement setup is also useful to demonstrate entanglement recovery and the violation of the Leggett-Garg inequality.
     4.We experimentally realize the violation of Leggett-Garg-type inequalities which are also used to distinguish the quantum evolution process and classical evolution process.We also experimentally compare the conditions of violation of two kinds of Leggett-Garg-type inequalities.
     The experimental maximal violation of Leggett-Garg-type inequalities excludes the classical reality description of quantum systems and support the quantum description in a different way.When these Leggett-Garg-type inequalities are applied to quantum systems evolved in noise environment,they can be used as the criterion to distinguish the quantum evolution process and classical evolution process.By changing input states,we compare two Leggett-Garg-type inequalities and find the tighter one. The method we used can be extend to other lager quantum systems and is important in the realization of macroscopic quantum coherence.
     5.We experimentally investigate the collapse and revival of entanglement in a non-Markovian environment.We even observe the revival of entanglement after it suffers from sudden death when the input state is the partially entangled state. With the application of a spin-echo like technology,we can readily control the time when the revival from sudden death occurs.Finally,we experimentally characterize the entanglement dynamics in different quantum channels by using maximally entangled states and verify the factorization law of entanglement dynamics.
     Different from irreversible evolution in a Markovian environment,entanglement dynamics in a non-Markovian noise with memory effect appears to be more fundamental. The observed entanglement collapse and revival(even revival from sudden death) gives us a deep understand of entanglement.The revival phenomenon has potential application in quantum information processing since it extends the usage time of entanglement. What is more,by using the spin-echo technology,we can readily control the time when the entanglement revival occurs,which will play an important role on the construction of the quantum network.The factorization law greatly simplify the description of the entanglement dynamics and will lead to the discovery of more robust entanglement-based quantum information processing protocols.
引文
[1]Zeilinger,A.The quantum centennial-One hundred years ago,a simple concept changed our world view forever.Nature 408,639-641(2000).
    [2]张永德.量子信息物理原理(科学出版社,2005).
    [3]Nielsen,M.and Chuang,I.Quamtum Cpmputation and Quantum Information(Cambridge Univ.Press,Cambridge,UK,2000).
    [4]Einstein,A.,Podolsky,B.and Rosen,N.Can quantum-mechanical description of physical reality be considered complete? Phys.Rev.47,777-780(1935).
    [5]Bohr,N.Can quantum-mechanical description of physical reality be considered complete?Phys.Rev.48,696-702(1935).
    [6]Schr(?)dinger,E.Die gegenwartige situation in der quantenmechanik.Naturwissenschaften 23,807-812,823-828,844-849(1935).
    [7]Bennett,C.H.,Brassard,G.,Cr(?)peau,C.,et al.Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels.Phys.Rev.Lett.70,1895-1899(1993).
    [8]Bouwmeester,D.,Pan,J.W.,Mattle,K.,et al.Experimental quantum teleportation.Nature 390,575-579(1997).
    [9]Bennett,C.H.and DiVincenzo,D.P.Quantum information and computation.Nature 404,247-255(2000).
    [10]Mattle,K.,Weinfurter,H.,Kwiat,P.G.,et al.Dense coding in experimental quantum communication.Phys.Rev.Lett.76,4656-4659(1996).
    [11]Barreiro,J.T.,Wei,T.C.and Kwiat,P.G.Beating the channel capacity limit for linear photonic superdense coding.Nature Phys.4,282-286(2008).
    [12]Bennett,C.H.and Brassard,G.Quantum cryptography:Public key distribution and coin tossing.Proceedings of the IEEE International Conference on Computers,Systems,and Signal Processing,Bangalore.175-179(1984).
    [13]Ekert,A.Quantum cryptography based on Bell's theorem.Phys.Rev.Lett.67,661-663(1991).
    [14]Gisin,No,Ribordy,G.,Tittel,W.,etal.Quantum cryptography.Rev.Mod.Phys.74,145-195(2002).
    [15]Shot,P.W.Algorithms for quantum computation:discrete logarithms and factoring.Proceedings of the 35th Annual Symposium on Foundations of Computer Science.124-134(1994).
    [16]Magiq,http://www.magiqtech.com/magiq/home.html.
    [17]Id quantique,www.idquantique.com/company/overview.htm.
    [18]Wheeler,J.A.In Marlow,A.R.(ed.) Mathematical foundations of quantum theory,9-48(Academic Press,New York,1978).
    [19]Aspelmeyer,M.and Zeilinger,A.A quantum renaissance.Phys.World 21,22-28 (2008).
    [20]Clarke,J.and Wihelm,F.K.Superconducting quantum bits.Nature 453,1031-1042 (2008).
    [21]Jacques,V.,Wu,E.,Grosshans,R,et al.Experimental realization of Wheeler's delayed-choice gedanken experiment.Science 315,966-968 (2007).
    [22]Preskill,J.Lecture Notes on Quantum Computation chapter 2 (http://www.theory.caltech.edu/people/preskill/ph229/,1998).
    [23]Zurek,W.H.Decoherence,einselection,and the quantum origins of the classical.Rev.Mod.Phys.75,715-775 (2003).
    [24]Schlosshauer,M.Decoherence,the measurement problem,and interpretations of quantum mechanics.Rev.Mod.Phys.76,1267-1305 (2005).
    [25]Yu,T.and Eberly,J.H.Sudden death of entanglement.Science 323,598-601 (2009).
    [26]Bell,J.S.On the Einstein-Podolsky-Rosen paradox.Physics 1,195-200 (1964).
    [27]Clauser,J.F. Horne,M.A.,Shimony,A.,et al.Proposed experiment to test local hidden-variable theories.Phys.Rev.Lett.23,880-884 (1969).
    [28]Freedman,S.J.and Clauser,J.F.Experimental test of local hidden-variable theories.Phys.Rev.Lett.28,938-941 (1972).
    [29]Aspect,A.,Dalibard,J.and Roger,G.Experimental test of Bell's inequalities using time-varying analyzers.Phys.Rev.Lett.49,1804-1807 (1982).
    [30]Weihs,G.,Jennewein,T.,Simon,C.,et al.Violation of Bell's inequality under strict Einstein locality conditions.Phys.Rev.Lett.81,5039-5043 (1998).
    [31]Rowe,M.A.,Kielpinski,D.,Meyer,V,et al.Experimental violation of a Bell's inequality with efficient detection.Nature 409,791-794 (2001).
    [32]Salart,D.,Baas,A.,Branciard,C,et al.Testing the speed of 'spooky action at a distance'.Nature 454,861-864 (2008).
    [33]Leggett,A.J.Nonlocal hidden-variable theories and quantum mechanics:An incompatibility theorem.Found.Phys.33,1469-1493 (2003).
    [34]Groblacher,S.,Paterek,T.,Kaltenbaek,R.,et al.An experimental test of non-local realism.Nature 446,871-875(2007).
    [35]Branciard,C.,Brunner,N.,Gisin,N.,et al. Testing quantum correlations versus single-particle properties within leggett's model and beyond.Nature phys.4,681-685 (2008).
    [36]Shor,P.W.Scheme for reducing decoherence in quantum computer memory.Phys.Rev.A52,R2493-R2496 (1995).
    [37]Steane,A.Quantum computing.Rep.prog.phys.61,117-173 (1998).
    [38]Raussendorf,R.and Briegel,H.J.A one-way quantum computer.Phys.Rev.Lett.86,5188-5191 (2001).
    [39]Gottesman,D.and Chuang,I.L.Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations.Nature 402,390-393 (1999).
    [40]Xu,J.S.,Li,C.F.and Guo,G.C.Generation of a high-visibility four-photon entangled state and realization of a four-party quantum communication complexity scenario.Phys.Rev.A74,052311(2006).
    [41]Cleve,R.and Buhrman,H.Substituting quantum entanglement for communication.Phys.Rev.A56,1201-1204(1997).
    [42]Xue,P.,Huang,Y.-F.,Zhang,Y.-S.,et al.Reducing the communication complexity with quantum entanglement.Phys.Rev.A 64,032304 (2001).
    [43]Xue,P.,Li,C.-F.,Zhang,Y.-S.,et al.Three-party quantum communication complexity via entangled tripartite pure states.J.Opt.B 3,219-222 (2001).
    [44]Riebe,M.,Haffner,H.,Roos,C.F.,et al.Deterministic quantum teleportation with atoms.Nature 429,734-737 (2004).
    [45]Barrett,M.D.,Chiaverini,J.,Schaetz,T.,et al.Deterministic quantum teleportation of atomic qubits.Nature 429,737-739 (2004).
    [46]zhang,Q.,Goebel,A.,Wagenknecht,C.,et al.Experimental quantum teleportation of a two-qubit composite system.Nature phys.2,678-682 (2006).
    [47]Harris,S.E.,Oshman,M.K.and Byer,R.L.Observation of tunable optical parametric fluorescence.Phys.Rev.Lett.18,732-734 (1967).
    [48]Magde,D.and Mahr,H.Study in ammonium dihydrogen phosphate of spontaneous parametric interaction tunable from 4400 to 16 000 (?).Phys.Rev.Lett.18,905-907 (1967).
    [49]Hong,C.K.,Ou,Z.-Y.and Mandel,L.Measurement of subpicosecond time intervals between two photons by interference.Phys.Rev.Lett.59,2044-2046 (1987).
    [50]Shih,Y.H.and Alley,C.O.New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion.Phys.Rev.Lett.61,2921-2924(1988).
    [51]Rarity,J.G.and Tapster,P.R.Experimental violation of Bell's inequality based on phase and momentum.Phys.Rev.Lett.64,2495-2498 (1990).
    [52]Kiess,T.E.,Shih,Y.H.,Sergienko,A.V.,et al.Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-Ⅱ parametric down-conversion.Phys.Rev.Lett. 71,3893-3897(1993).
    [53]Shih,Y.H.and Sergienko,A.V.Two-photon anti-correlation in a Hanbury Brown-Twiss type experiment.Phys.Len.A 186,29-34(1994).
    [54]Shih,Y.H.,Sergienko,A.V.,Rubin,M.H.,et al.Two-photon entanglement in type-Ⅱparametric down-conversion.Phys.Rev.A 50,23-28(1994).
    [55]Kwiat,P.G.,Waks,E.,White,A.G.,et al.Ultrabright source of polarization-entangled photons.Phys.Rev.A 60,R773-R776(1999).
    [56]Kwiat,P.G.,Mattle,K.,Weinfurther,H.,et al.New high-intensity source of polarizationentangled photon pairs.Phys.Rev.Lett.75,4337-4341(1995).
    [57]Niu,X.L.,Huang,Y.E,Xiang,G.Y.,et al.Beamlike high-brightness source of polarizationentangled photon pairs.Opt.Lett.33,968-970(2008).
    [58]Bouwmeester,D.,Pan,J.-W.,Daniell,M.,et al.Quantum secret sharing.Phys.Rev.Lett.82,1345-1349(1999).
    [59]Pan,J.-W.,Daniell,M.,Gasparoni,G.,et al.Experimental demonstration of four-photon entanglement and high-fidelity teleportation.Phys.Rev.Lett.86,4435-4438(2001).
    [60]Lu,C.-Y.,Zhou,X.Q.,Guhne,O.,et al.Experimental entanglement of six photons in graph states.Nature Phys.3,91-95(2007).
    [61]Zhao,Z.,Chert,Y.A.,Zhang,A.N.,et aL Experimental demonstration of five-photon entanglement and open-destination teleportation.Nature 430,54-58(2004).
    [62]Wieczorek,W.,Krischek,R.,Kiesel,N.,et al.Experimental entanglement of a six-photon symmetric dicke state,arXiv:0903.2213(2009).
    [63]Prevedel,R.,Cronenberg,G.,Tame,M.S.,et al.Experimental realization of dicke states of up to six qubits for multiparty quantum networking,arXiv:0903.2212(2009).
    [64]亚里夫著,刘颂豪等译.量子电子学(上海科学技术出版社,1983).
    [65]钱士雄,王恭明编著.非线性光学.原理与进展(复旦大学出版社,2001).
    [66]黄运锋.博士学位论文,p23-24(2003).
    [67]Pittman,T.B.,Jacobs,B.C.and Franson,J.D.Heralding single photonsfrom pulsed parametric down-conversion.Opt.Commun.246,545-550(2005).
    [68]Kurtsiefer,C.,Oberparleiter,M.and Weinfurter,H.Generation of correlated photon pairs in type-ⅱ parametric down conversion—revisited.J.Mod.Opt.48,1997-2007(2001).
    [69]Takeuchi,S.Beamlike twin-photon generation by use of type Ⅱ parametric downcoversion.Opt.Lett.26,843-845(2001).
    [70]Takeuchi,S.,Kim,J.,Yamamoto,Y.,et al.Development of a high-quantum-efficiency single-photon counting system.Appl.Phys.Lett.74,1063-1065(1999).
    [71]Greenberger,D.M.,Horne,M.A.and Zeilinger,A.In Kafatos,M.(ed.) Bell's theorem,quantum theory,and conceptions of the universe (Kluwer Academic.Dordrecht,1989).
    [72]Hillery,M.,Buzek,V.and Berthiaume,A.Quantum secret sharing.Phys.Rev.A 59,1829-1834(1999).
    [73]Trojek,P.and Weinfurter,H. Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths.Appl.Phys.Lett.92,211103 (2008).
    [74]Kwiat,P.G.,Berglund,A.J.,Altepeter,J.B.,et al.Experimental verification of decoherence-free subspaces.Science 290,498 (2000).
    [75]Berglund,A.J.Quantum coherence and control in one-and two-photon optical systems.preprint arXiv:quant-ph/0010001 (2000).
    [76]Almeida,M.P.,de Melo,F.,Hor-Meyll,M.,et al.Environment-induced sudden death of entanglement.Science 316,579-582 (2007).
    [77]Xu,J.-S.,Li,C.-F.,Gong,M.,et al. Measurement induced quantum coherence recovery.New J.Phys.11,043010 (2009).
    [78]Yu,T.and Eberly,J.H.Phonon decoherence of quantum entanglement:Robust and fragile states.Phys.Rev.B 66,193306 (2002).
    [79]Simon,C.and Kempe,J.Robustness of multiparty entanglement.Phys.Rev.A 65,052327(2002).
    [80]D(u|¨)r,W.and Briegel,H.-J.Stability of macroscopic entanglement under decoherence.Phys.Rev.Lett.92,180403 (2004).
    [81]Mintert,F.,Carvalho,A.,Kus,M.,et al.Measures and dynamics of entangled states.Physics Reports 415,207-259 (2005).
    [82]Yu,T.and Eberly,J.H.Finite-time disentanglement via spontaneous emission.Phys.Rev.Lett.93,140404 (2004).
    [83]Yu,T.and Eberly,J.H.Quantum open system theory:Bipartite aspects.Phys.Rev.Lett.97,140403 (2006).
    [84]Dodd,P.J.and Halliwell,J.J.Disentanglement and decoherence by open system dynamics.Phys.Rev.A 69,052105 (2004).
    [85]Zukowski,M.,Zeilinger,A.and Weinfurter,H.Entangling photons radiated by independent pulsed sources.Ann.N.Y.Acad.Sci.755,91-102 (1995).
    [86]Rajagopal,A.K.and Rendell,R.Decoherence,correlation,and entanglement in a pair of coupled quantum dissipative oscillators.Phys.Rev.A 63,022116 (2001).
    [87]Di(?)si,L.In Benatti,F.and Floreanini,R.(eds.) Irreversible Quantum Dynamics,157-164(Springer,Berlin,2003).
    [88]Daffer,S.,Wodkiewicz,K.and Mclver,J.K.Quantum markov channels for qubits.Phys.Rev.A 67,062312 (2003).
    [89]Gong,Y.-X.,Zhang,Y.-S.,Dong,Y.-L.,et al.Dependence of the decoherence of polarization states in phase-damping channels on the frequency spectrum envelope of photons.Phys.Rev.A 78,042103 (2008).
    [90]Tolkunov,D.,Privman,V.and Aravind,P.K.Decoherence of a measure of entanglement.Phys.Rev.A 71,060308 (2005).
    [91]Paz,J.P.and Roncaglia,A.J.Dynamics of the entanglement between two oscillators in the same environment.Phys.Rev.Lett.100,220401 (2008).
    [92]Chou,C.-H.,Yu,T.and Hu,B.L.Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment.Phys.Rev.E77,011112 (2008).
    [93]Lopez,C.E.,Romero,G.,Lastra,F.,et al.Sudden birth versus sudden death of entanglement in multipartite systems.Phys.Rev.Lett.101,080503 (2008).
    [94]Cormick,C.and Paz,J.P.Decoherence of bell states by local interactions with a dynamic spin environment.Phys.Rev.A 78,012357 (2008).
    [95]Lai,C.-Y.,Hung,J.-T.,Mou,C.-Y.,et al.Induced decoherence and entanglement by interacting quantum spin baths.Phys.Rev.B 77,205419 (2008).
    [96]Abliz,A.,Gao,H.J.,Xie,X.C,et al.Entanglement control in an anisotropic two-qubit heisenberg xyz model with external magnetic fields.Phys.Rev.A 74,052105 (2006).
    [97]Laurat,J.,Choi,K.S.,Deng,H.,et al.Heralded entanglement between atomic ensembles:Preparation,decoherence,and scaling.Phys.Rev.Lett.99,180504 (2007).
    [98]Xu,J.-S.,Li,C.-F.,Gong,M.,et al.Experimental entanglement collapse and revival.Submitted,arXiv:0903.5233 (2009).
    [99]Xu,J.-S.,Li,C.-F.,Shi,C.-H.,et al.Controllable revival of the sudden death entanglement.to be submitted (2009).
    [100]Konrad,T.,de Melo,F.,Tiersch,M.,et al.Heralded entanglement between atomic ensembles:preparation,decoherence,and scaling.Nature Phys.99,4 (2008).
    [101]Xu,J.-S.,Li,C.-F.,Xu,X.-Y.,et al.Experimental characterization of entanglement dynamics in noisy channels,to be submitted (2009).
    [102]Greenberger,D.M.,Horne,M.A.,Shimony,A.,et al.Bell's theorem without inequalities.Am.J.Phys.58,1131-1143 (1990).
    [103]Pan,J.-W.,Chen,Z.-B.,Zukowski,M.,et al.Multi-photon entanglement and interferometry.arXiv:0805.2853 (2008).
    [104]Zhao,Z.,Yang,T.,Chen,Y.-A.,et al.Experimental Violation of Local Realism by Four-Photon Greenberger-Horne-Zeilinger Entanglement.Phys.Rev.Lett.91,180401 (2003).
    [105]Wieczorek,W.,Schmid,C.,Kiesel,N.,et al.Experimental observation of an entire family of four-photon entangled states.Phys.Rev.Lett.101,010503 (2008).
    [106]Eibl,M.,Gaertner,S.,Bourennane,M.,et al.Experimental observation of four-photon entanglement from parametric down-conversion.Phys.Rev.Lett.90,200403 (2003).
    [107]Bourennane,M.,Eibl,M.,Gaertner,S.,et al.Decoherence-free quantum information processing with four-photon entangled states.Phys.Rev.Lett.92,107901 (2004).
    [108]Weinfurter,H.and Zukowski,M.Four-photon entanglement from down-conversion.Phys.Rev.A 64,010102 (2001).
    [109]Yao,A.C.-C.On some complexity questions in distributive computing.Proceedings of Eleventh ACM Symposium on Theory of Computing 209-213 (1979).
    [110]Kushilevitz,E.and Nisan,N.Communication complexity (Cambridge University Press,Cambridge,1996).
    [111]Brukner,u.,Zukowski,M.,Pan,J.-W.,et al.Bell's inequalities and quantum communication complexity.Phys.Rev.Lett.92,127901 (2004).
    [112]Yao,A.C.-C.Quantum circuit complexity.Proceedings of Thirty-fourth IEEE Symposium on Foundations of Computer Science 352-361 (1993).
    [113]Buhrman,H.,Cleve,R.and Wigderson,A.Quantum vs.classical communication and computation.Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing 63-68 (1998).
    [114]Raz,R.Exponential separation of quantum and classical communication complexity.Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing 358-367(1999).
    [115]Galv(?)o,E.F. Feasible quantum communication complexity protocol.Phys.Rev.A 65,012318(2001).
    [116]Trojek,P.,Schmid,C.,Bourennane,M.,et al.Experimental quantum communication complexity.Phys.Rev.A 72,050305 (2005).
    [117]Cabello,A.Communication complexity as a principle of quantum mechanics.Found.Phys.36,512-525(2006).
    [118]Wootters,W.K.and Zurek,W.H.A single quantum cannot be cloned.Nature 299,802-803(1982).
    [119]Zou,X.-B.,Li,K.and Guo,G.-C.Linear optical scheme for implementing the universal and phase-covariant quantum cloning machines.Phys.Lett.A 366,36-41 (2007).
    [120]Xu,J.-S.,Li,C.-F.,Chen,L.,et al.Experimental realization of the optimal universal and phase-covariant quantum cloning machines.Phys.Rev.A 78,032322 (2008).
    [121]Wootters,W.K.and Zurek,W.H.The no-cloning theorem.Phys.Today 62,76-77 (2009).
    [122]黄运锋.博士学位论文,p43(2003).
    [123]Scarani,V.,Iblisdir,S.,Gisin,N.,et al.Quantum cloning.Rev.Mod.Phys.77,1225-1256(2005).
    [124]Buick,V.and Hillery,M.Quantum copying:Beyond the no-cloning theorem.Phys.Rev.A 54,1844-1852(1996).
    [125]Gisin,N.and Massar,S.Optimal quantum cloning machines.Phys.Rev.Lett.79,2153-2156(1997).
    [126]Bruβ,D.,Divincenzo,D.P.,Ekert,A.,et al.Optimal universal and state-dependent quantum cloning.Phys.Rev.A 57,2368-2378(1998).
    [127]Bruβ,D.,Cinchetti,M.,Mauro D'Ariano,G.,et al.Phase-covariant quantum cloning.Phys.Rev.A 62,012302(2000).
    [128]Fan,H.,Mastsumoto,K.,Wang,X.-B.,et al.Quantum cloning machines for equatorial qubits.Phys.Rev.A 65,012304(2001).
    [129]Duan,L.-M.and Guo,G.-C.Strategies and networks for state-dependent quantum cloning.Phys.Rev.Lett.80,4999-5002(1998).
    [130]Duan,L.-M.and Guo,G.-C.A probabilistic cloning machine for replicating two nonorthogonal states.Phys.Lett.A 243,261-264(1998).
    [131]D'Ariano,G.M.and Yuen,H.P.Impossibility of measuring the wave function of a single quantum system.Phys.Rev.Lett.76,2832-2835(1996).
    [132]薛鹏.博士学位论文,p13(2004).
    [133]Zhang,C.-W.,Wang,Z.-Y.,Li,C.-F.,et al.Realizing probabilistic identification and cloning of quantum states via universal quantum logic gates.Phys.Rev.A 61,0623 I0(2000).
    [134]Bennett,C.H.Quantum cryptography using any two nonorthogonal states.Phys.Rev.Lett.68,3121-3124(1992).
    [135]Lamas-Linares,A.,Simon,C.,Howell,J.C.,et al.Experimental quantum cloning of single photons.Science 296,712-714(2002).
    [136]De Martini,E,Bu(?)ek,V.,Sciarrino,E,et al.Experimental realization of the quantum universal not gate.Nature 419,815-818(2002).
    [137]Fasel,S.,Gisin,N.,Ribordy,G.,et al.Quantum cloning with an optical fiber amplifier.Phys.Rev.Lett.89,107901(2002).
    [138]Ricci,M.,Sciarrino,F.,Sias,C.,et al.Teleportation scheme implementing the universal optimal quantum cloning machine and the universal not gate.Phys.Rev.Lett.92,047901(2004).
    [139]Irvine,W.T.M.,Linares,A.L.,de Dood,M.J.A.,et al.Optimal quantum cloning on a beam splitter.Phys.Rev.Lett.92,047902(2004).
    [140]Huang,Y.-F.,Li,Wo-L.,Li,C.-F.,et al.Optical realization of universal quantum cloning.Phys.Rev.A 64,012315(2001).
    [141]Ali Khan,I.and Howell,J.C.Hong-ou-mandel cloning:Quantum copying without an ancilla.Phys.Rev.A 70,010303(R)(2004).
    [142](?)ernoch,A.,Bartu(?)kov(?),L.,Soubusta,J.,et al.Experimental phase-covariant cloning of polarization states of single photons.Phys.Rev.A 74,042327(2006).
    [143]Sciarfino,F.and De Martini,F.Experimental phase-covariant cloning of polarization states of single photons.Phys.Rev.A 72,062313(2005).
    [144]Cerf,N.J.and Fiurasek,J.Optical quantum cloning-a review.Prog.Opt.49,455-545(2006).
    [145]Von Neumann,J.Mathematical foundations of quantum mechanics(Princeton,NJ:Princeton University Press,1955).
    [146]Wheeler,J.A.and Zurek,W.H.(eds.).Quantum theory and measurement(Princeton Univ.Press,Princeton,NJ,1983).
    [147]Knill,E.,Laflamme,R.and Milburn,G.J.A scheme for efficient quantum computation with linear optics.Nature 409,46-52(2001).
    [148]Korotkov,A.N.and Jordan,A.N.Undoing a weak quantum measurement of a solid-state qubit.Phys.Rev.Lett.97,166805(2006).
    [149]Katz,N.,Neeley,M.,Ansmann,M.,et al.Reversal of the weak measurement of a quantum state in a superconducting phase qubit.Phys.Rev.Lett.101,200401(2008).
    [150]Auffeves,A.,Maioli,P.,Meunier,T.,et al.Entanglement of a mesoscopic field with an atom induced by photon graininess in a cavity.Phys.Rev.Len.91,230405(2003).
    [151]Brendel,J.,Gisin,N.,Tittel,W.,et al.Pulsed energy-time entangled twin-photon source for quantum communication.Phys.Rev.Lett.82,2594-2597(1999).
    [152]Misra,B.and Sudarshan,E.C.G.The zeno's paradox in quantum theory.J.Math.Phys.18,756(1977).
    [153]Home,D.and Whitaker,M.A.B.A conceptual analysis of quantum zeno;paradox,measurement,and experiment.Ann.Phys.258,237-285(1997).
    [154]Nakanishi,T.,Yamane,K.and Kitano,M.Absorption-free optical control of spin systems:The quantum zeno effect in optical pumping.Phys.Rev.A 65,013404(2001).
    [155]Luis,A.Zeno and anti-zeno effects in two-level systems.Phys.Rev.A 67,062113(2003).
    [156]Viola,L.and Lloyd,S.Dynamical suppression of decoherence in two-state quantum systems.Phys.Rev.A 58,2733-2744(1998).
    [157]Viola,L.,Knill,E.and Lloyd,S.Dynamical decoupling of open quantum systems.Phys.Rev.Lett.82,2417-2421 (1999).
    [158]Viola,L.,Knill,E.and Lloyd,S.Dynamical generation of noiseless quantum subsystems.Phys.Rev.Lett.85,3520-3523 (2000).
    [159]Zanardi,P.Symmetrizing evolutions.Phys.Lett.A 258,77-82 (1999).
    [160]Vitali,D.and Tombesi,P. Heating and decoherence suppression using decoupling techniques.Phys.Rev.A 65,012305 (2001).
    [161]Byrd,M.S.and Lidar,D.A.Empirical determination of dynamical decoupling operations.Phys.Rev.A 67,012324 (2003).
    [162]Schulman,L.S.Continuous and pulsed observations in the quantum zeno effect.Phys.Rev.A 57,1509-1515(1998).
    [163]Beige,A.,Braun,D.,Tregenna,B.,et al.Quantum computing using dissipation to remain in a decoherence-free subspace.Phys.Rev.Lett.85,1762-1765 (2000).
    [164]Facchi,P.and Pascazio,S.Quantum zeno subspaces.Phys.Rev.Lett.89,080401 (2002).
    [165]Facchi,P.,Lidar,D.A.and Pascazio,S.Unification of dynamical decoupling and the quantum zeno effect.Phys.Rev.A 69,032314 (2004).
    [166]Facchi,P.,Tasaki,S.,Pascazio,S.,et al.Control of decoherence:Analysis and comparison of three different strategies.Phys.Rev.A 71,022302 (2005).
    [167]Damodarakurup,S.,Lucamarini,M.,Giuseppe,G.D.,et al. Experimental inhibition of decoherence on flying qubits via bang-bang control.Preprint arXiv:08II.2654v1 (2008).
    [168]Meunier,T,Gleyzes,S.,Maioli,P.,et al.Rabi oscillations revival induced by time reversal:A test of mesoscopic quantum coherence.Phys.Rev.Lett.94,010401 (2005).
    [169]Yao,W., Liu,R.B.and Sham,L.J.Restoring coherence lost to a slow interacting mesoscopic spin bath.Phys.Rev.Lett.98,077602 (2007).
    [170]Witzel,W.M.,De Sousa,R.and Das Sarma,S.Quantum theory of spectral-diffusion-induced electron spin decoherence.Phys.Rev.B 72,161306(R) (2005).
    [171]De Zela,F.Single-qubit tests of Bell-like inequalities.Phys.Rev.A 76,042119 (2007).
    [172]Leggett,A.J.and Garg,A.Quantum mechanics versus macroscopic realism:Is the flux there when nobody looks? Phys.Rev.Lett 54,857-860 (1985).
    [173]Xu,J.-S.,Li,C.-F.,Zou,X.-B.,et al.Measuring the evolution process with the leggett-garg-type inequality:from quantum to classical,to be submitted (2009).
    [174]Xu,J.-S.,Li,C.-F.,Zou,X.-B.,et al.Experimentally compare two leggett-garg-type inequalities,to be submitted (2009).
    [175]Zurek,W.H. Decoherence and the transition from quantum to classical. arXiv.quant- ph/0306072 (2003).
    [176]Leggett,T.New life for Schrodinger's cat.Phys.World 13,23-24 (2000).
    [177]Ballentine,L.E.Realism and quantum flux tunneling.Phys.Rev.Lett.59,1493-1495 (1987).
    [178]Leggett,A.J.and Garg,A.Comment on realism and quantum flux tunneling.Phys.Rev.Lett.59,1621 (1987).
    [179]Peres,A.Quantum limitations on measurement of magnetic flux.Phys.Rev.Lett.61,2019-2021 (1988).
    [180]Leggett,A.J.and Garg,A.Comment on quantum limitations on measurement of magnetic flux.Phys.Rev.Lett.63,2159 (1989).
    [181]Tesche,C.D.Can a noninvasive measurement of magnetic flux be performed with superconducting circuits? Phys.Rev.Lett.64,2358-2361 (1990).
    [182]Huelga,S.F.,Marashall,T.W.and Santos,E.Proposed test for realist theories using rydberg atoms coupled to a high-q resonator.Phys.Rev.A 52,R2497-R2500 (1995).
    [183]Huelga,S.F.,Marashall,T.W.and Santos,E.Temporal Bell-type inequalities for two-level Rydberg atoms coupled to a high-Q resonator.Phys.Rev.A 54,1798-1807 (1996).
    [184]Wigner,E.P.On hidden variables and quantum mechanical probabilities.Am.J.Phys.38,1005-1009(1970).
    [185]Kofler,J.and Brukner,(?).Conditions for quantum violation of macroscopic realism.Phys.Rev.Lett.101,090403 (2008).
    [186]Kok,P.,Munro,W.J.,Nemoto,K.,et al.Linear optical quantum computing with photonic qubits.Rev.Mod.Phys.79,135 (2007).
    [187]Cerf,N.J.,Adami,A.and Kwiat,P.G.Optical simulation of quantum logic.Phys.Rev.A57,R1477-R1480(1998).
    [188]Kwiat,P.G.,Mitchell,J.R.,Schwindt,P.D.D.,et al.Graver's search algorithm:an optical approach.J.Mod.Phys.47,257-266 (2000).
    [189]Huelga,S.F.,Marashall,T.W.and Santos,E.Observation of quantum coherence by means of temporal Bell-type inequalities.Europhys.Lett.38,249-254 (1997).
    [190]Roszak,K.and Machnikowski,P. Complete disentanglement by partial pure dephasing.Phys.Rev.A 73,022313 (2006).
    [191]Ikram,M.,li Li,F.and Zubairy,M.S.Disentanglement in a two-qubit system subjected to dissipation environments.Phys.Rev.A 75,062336 (2007).
    [192]Liu,K.-L.and Goan,H.-S.Non-markovian entanglement dynamics of quantum continuous variable systems in thermal environments.Phys.Rev.A 76,022312 (2007).
    [193]Al-Qasimi,A.and James,D.F.V.Sudden death of entanglement at finite temperature.Phys. Rev.A 77,012117 (2008).
    [194]Gorin,T.,Pineda,C.and Seligman,T.H.Decoherence of an n-qubit quantum memory.Phys.Rev.Lett.99,240405 (2007).
    [195]Pineda,C.,Gorin,T.and Seligman,T.H.Decoherence of two-qubit systems:a random matrix description.New J.Phys.9,106 (2007).
    [196]Ban,M.Decoherence of continuous variable quantum information in non-markovian channels.J.Phys.A 39,1927-1943 (2006).
    [197]Bellomo,B.,Lo Franco,R.and Compagno,G.Non-markovian effects on the dynamics of entanglement.Phys.Rev.Lett.99,160502 (2007).
    [198]Yonac,M.,Yu,T.and Eberly,J.H.Sudden death of entanglement of two jaynes-cummings atoms.J.Phys.B 39,S621-S625 (2006).
    [199]Bellomo,B.,Lo Franco,R.and Compagno,G.Entanglement dynamics of two independent qubits in environments with and without memory.Phys.Rev.A 77,032342 (2008).
    [200]Wootters,W.K.Entanglement of formation of an arbitrary state of two qubits.Phys.Rev.Lett.80,2245-2248 (1998).
    [201]Werner,R.F.Quantum states with einstein-podolsky-rosen correlations admitting a hidden-variable model.Phys.Rev.A 40,4277-4281 (1989).
    [202]James,D.F.V.,Kwiat,P.G.,Munro,W.J.,et al.Measurement of qubits.Phys.Rev.A 64,052312(2001).
    [203]Hahn,E.L.Spin echoes.Phys.Rev.80,580-594 (1950).
    [204]Petta,J.R.,Johnson,A.C,Taylor,J.M.,et al.Coherent manipulation of coupled electron spins in semiconductor quantum dots.Science 309,2180-2184 (2005).
    [205]Morton,J.J.L.,Tyryshkin,A.M.,Ardavan,A.,et al.Bang-bang control of fullerene qubits using ultrafast phase gates.Nature Phys.2,40-43 (2006).
    [206]Kimble,H.J.The quantum internet.Nature 453,1023-1030 (2008).
    [207]Mintert,F.,Carvalho,A.R.R.,Kus,M.,et al.Measures and dynamics of entangled states.Phys.Rep.415,207-259 (2005).
    [208]Zyczkowski,K.,Horodecki,P.,Horodecki,M.,et al.Dynamics of quantum entanglement.Phys.Rev.A 65,012101 (2001).
    [209]Roos,C.F.,Lancaster,G.P.T.,Riebe,M.,et al.Bell states of atoms with ultralong lifetimes and their tomographic state analysis.Phys.Rev.Lett.92,220402 (2004).
    [210]Cavalho,A.R.R.,Mintert,F.and Buchleitner,A.Decoherence and multipartite entanglement.Phys.Rev.Lett.93,230501 (2004).
    [211]Santos,M.F.,Milman,P.,Davidovich,L.,et al.Direct measurement of finite-time disentan- glement induced by a reservoir.Phys.Rev.A 73,040305(R) (2006).
    [212]Dur,W.and Briegel,H.-J.Stability of macroscopic entanglement under decoherence.Phys.Rev.Lett.92,180403(2004).
    [213]Carvalho,A.R.R.,Busse,M.,Brodier,O.,et al. Optimal dynamical characterization of entanglement.Phys.Rev.Lett.98,190501 (2007).
    [214]Smith,G.and Yard,J.Quantum communication with zero-capacity channels.Science 321,1812-1815(2008).
    [215]Hastings,M.B.Superadditivity of communication capacity using entangled inputs.Nature Phys.5,255-257 (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700