基于数字相干接收的射频光前端关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从距离数十米或数千米远的远端天线单元将宽带、大动态的射频信号高性能传输到中心站,在商业和国防军事上均有很大的应用价值。射频光前端技术将射频信号调制成光信号并利用光纤传输到接收处理单元,并在接收端利用光电探测器还原射频信号。此外,射频光前端系统还可以利用光的方法实现射频信号从接近直流到毫米波段的超宽带频率下变换,以便后续的数字信号处理。与传统同轴电缆的射频链路相比,模拟的射频光前端系统具有宽带、低传输损耗和抗电磁干扰等技术优势,可广泛应用在民用通信、国防军事和航空航天等领域。高性能射频光前端系统研究的挑战在于如何高稳定性地抑制系统产生的噪声和非线性失真,实现大的系统动态范围。论文对基于数字相干接收的射频前端关键技术进行了研究,论文主要的创新工作如下:
     一、提出了基于单一相位调制器的高线性数字相干射频光前端改进型方案,以改善原有双平行调制器方案的技术缺陷。该方案利用铌酸锂相位调制器电光系数各向异性的特点,使用单一相位调制器完成原有双平行调制器结构的功能,并利用单一相位调制器TE和TM模两个正交的传输主轴实现零差拍链路,从而避免双平行调制器结构的延迟匹配问题。实验结果表明,辅助以线性化数字信号处理技术,该射频光前端系统的无杂散动态范围从112dB·Hz2/3提高到了123.8dB·Hz2/3,并且系统结构简单,性能稳定。
     二、尽管上述方案利用单一相位调制器大大减小了双平行调制器结构的延迟匹配问题,然而该方案仍需利用后续数字锁相环技术消除残留激光相位噪声,没有根本解决问题。由此,论文进一步提出了基于“偏振调制器—双平行偏振分束器”结构的数字相干射频光前端方案。该方案利用偏振调制器和偏振控制器的串联结构实现从偏振调制到差模强度解调的转化,并且通过两平行光路偏振态的调节来等效实现调制器偏振点的调节以得到正交的I/Q两路信号。由于该方案实现了从偏振调制到强度解调的转变,激光器相位噪声不再对解调信号产生扰动。实验结果表明,辅助以线性化数字处理技术,系统三阶交调失真功率得到了40dB的抑制,系统的无杂散动态范围达到了124dB·Hz2/3,并且性能稳定,无需外围辅助设备来消除激光相位噪声的影响。
     三、基于上述偏振调制器的射频光前端技术,进一步提出了具有全光超宽带下变换处理能力的射频光前端系统。该系统包含两串联的偏振调制器,分别用于远端射频信号的接收和中心站高功率本振信号的加载。接收信号和本振信号在光电探测过程中实现差频,从而得到所需下变频信号。连接级联调制器后的是双平行偏振控制器和偏振分束器组成的正交信号解调模块。实验结果表明,辅助以线性化数字信号处理技术,该下变频链路在Ku频段的无杂散动态范围从102.7dB·Hz2/3提高到了112dB·Hz2/3,并且在宽频带范围内系统工作性能稳定。
Transport of high dynamic range, broadband RF signals from a remotely located antenna over several tens of meters or several thousands of meters is required for a variety of commercial and military applications. In this so-called RF photonic front-end an RF signal is converted into an optical signal, distributed via an optical fiber and subsequently restored to the electrical format at the recipient's end using a photodetector. On the other hand, in RF photonic front-end systems, RF signals cab be down-convert to lower intermediate frequency (IF) in optical manner where it can be more easily digitized and processed using a signal processor. The major advantage of all optical frequency down-conversion is that the electrooptic modulator response bandwidth can extend from near dc to millimeter-wave frequencies in a single device. Compared to conventional electronic links operating over coaxial cable, RF photonic front-end can provide significant advantages in the areas of bandwidth, propagation loss, and immunity against electromagnetic interference. These unique advantages of RF photonic front-end have resulted in diverse applications, such as telecommunications, military or defense systems, and aeronautics&astronautics. The major challenge of high performance RF photonic front-end is find ways to relizing high stability noise reduction and nonlinear distortion suppression. In this dissertation, several techniques to optimize the performance of DSP based RF photonics coherent receiver are intensively investigated. The main works of this dissertation are summarized as follows:
     Firstly, we proposed an improved DSP based linear RF photonic front-end based on a single phase modulator (PM). The fundamental principle of our approach lies in a single device that can simultaneously play the role of two phase modulators connected in parallel, which is realized using the anisotropic electrooptic coefficient of lithium niobate. The use of both orthogonal TE and TM modes of PM allows the homodyne interferometer link to be implemented with a single modulator, which reducing the matching requirements of dual modulator scheme. Experimental results show that the DSP-based linearized system increases the output third-order intermodulation intercept point (OIP3) from7.75dBm to25.25dBm and improves the Spurious Free Dynamic Range (SFDR) from112dB·Hz2/3to123.8dB·Hz2/3. Moreover, a simple and stable system can be achieved.
     Secondly, Although The above scheme uses a single PM to minimize the matching requirements of dual modulator scheme, it requires digital phase-locked loop to remove the remains optical phase noise. we proposed a high linear DSP-based RF photonic link based on polarization modulator (PolM) and dual-parallel polarization beam splitter (PBS). The fundamental principle of our approach is that when a PBS is placed at the output of the PolM, the polarization modulation is converted to differential mode intensity demodulation. By choosing via tuning the polarization controller (PC) in each channel, each is optically biased to produce the desired in-phase/quadrature (I/Q) demodulated signal. Thanks to the polarization-modulation to intensity-modulation conversion, the fluctuations of optical phase noise have no impact on the coherent I/Q demodulated signals. Experimental results show that the DSP-based linearization leads to suppression of the third-order intermodulation (IMD3) by more than40dB, and improves the third-order limited spurious free dynamic range of the link to124dB in a1Hz bandwidth. Moreover, there is no need peripheral equipment to minimize laser phase noise effects.
     Thirdly, we progress the proposed architecture to demonstrate a linear down-conversion from microwave frequency to intermediate frequency. Here we show that by using two cascaded polarization modulators, one driven by a microwave input signal and the other by a strong microwave local oscillator tone, a down-converted signal can be produced at the difference frequency. Two parallel PC and PBS is connected to the output of receiver PolM to realize I/Q intensity demodulation. We further show that by simply merging the coherent demodulation with DSP, the dynamic range of the system is significantly improved from102.7dB·Hz2/3to112dB·Hz2/3within Ku band. Most importantly, the performance of linear demodulation is flat across the entire test operational bandwidth.
引文
[1]M. I. Skolnik,《雷达手册》,电子工业出版社,2000年.
    [2]丁鹭飞,《雷达原理(第3版)》,电子工业出版社,2002年.
    [3]A. J. and K. J. Williams, "Microwave photonics," Journal of Lightwave Technology, vol.24, no.12, pp.4628-4641,2006.
    [4]J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature Photonics, vol.1, pp.319-330,2007.
    [5]R. C. Williamson and R. D. Esman, "RF photonics," Journal of Lightwave Technology, vol.26, no.9, pp.1145-1153,2008.
    [6]L. Goldberg, H. F. Taylor, J. F.Weller, and D. M. Bloom, "Microwave signal generation with injection locked laser diodes," Electron. Lett., vol.19, no.13, pp. 491-493,1983.
    [7]U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, and B. Broberg, "A wideband heterodyne optical phaselocked loop for generation of 3-18 GHz microwave carriers," IEEE Photon. Technol. Lett., vol.4, no.8, pp.936-938,1992.
    [8]X. Chen, Z. Deng, and J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Microw. Theory Tech., vol.54, no.2, pp.804-809,2006.
    [9]J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, "Synthesis of fiber-optic delay line filters," J. Lightw. Technol., vol.13, no.10, pp. 2003-2012,1995.
    [10]J. Marti, V. Polo, F. Ramos, and D. Moodie, "Photonics tunable microwave filters employing electro-absorption modulators and wideband chirped fiber gratings,' Electron. Lett., vol.35, no.4, pp.305-306,1999.
    [11]K. H. Lee, W. Y. Choi, S. Choi, and K. Oh, "A novel tunable fiber-optic microwave filter using multimode DCF," IEEE Photon. Technol. Lett., vol.15, no. 7, pp.969-971,2003.
    [12]J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightw. Technol., vol.24, no.1, pp.201-229,2006.
    [13]G Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave-optical mixing in LiNbO3 modulators," IEEE Trans. Micro. Theory Tech. vol.41, no.12, pp. 2383-2391,1993.
    [14]R. Helkey, J. C. Twichell, and C. Cox, III, "A down-conversion optical link with RF gain," J. Lightwave Technol. Vol.15, no.6, pp.956-961,1997.
    [15]Adil Karim and Jason Devenport, "High dynamic range microwave photonic links for RF signal transport and RF-IF conversion, " J. Lightwave Technol. Vol. 26, no.15, pp.2718-2724,2008.
    [16]T. R. Clark and M. L. Dennis, "Linear microwave downconverting RF-to-bits link," in Proc. Int. Meeting Microw. Photon.,2008 Asia-Pacific Microw. Photon. Conf. MWP/APMP 2008., pp.12-14,2008.
    [17]Y. Li, R. Wang, J. Klamkin, L. A. Johansson, P. Herczfeld, and J. E. Bowers, "Quadratic electrooptic effect for frequency down-conversion," IEEE Trans. Microw. Theory Tech., vol.58, no.3, pp.665-673, Mar.2010.
    [18]V R. Pagan, B. M. Haas, and T. E. Murphy, " Linearized electrooptic microwave downconversion using phase modulation and optical filtering," Opt. Express vol. 19, no.2, pp.883-895,2011.
    [19]H. F. Taylor, "An optical analog-to-digital converter-design and analysis," IEEE J. Quantum Electron., vol.15, no.4, pp.210-216,1979.
    [20]B. Jalali and Y. M. Xie, "Optical folding-flash analog-to-digital converter with analog encoding," Opt. Lett., vol.20, no.18, pp.1901-1903,1995.
    [21]J. Stigwall and S. Galt, "Interferometric analog-to-digital conversion scheme,' IEEE Photon. Technol. Lett., vol.17, no.2, pp.468-470, Feb.2005.
    [22]G. C.Valley, "Photonic analog-to-digital converters," Opt. Express, vol.15, no.5, pp.1955-1982,2007.
    [23]W. Li, H. Zhang, Q.Wu, Z. Zhang, and M. Yao, "All-optical analog-todigital conversion based on polarization-differential interference and phase modulation,' IEEE Photon. Technol. Lett., vol.19, no.8, pp.625-627,2007.
    [24]A. Molony, C. Edge, and I. Bennion, "Fibre grating time delay element for phased array antennas," Electron. Lett., vol.31, no.17, pp.1485-1486,1995.
    [25]I. Frigyes and A. J. Seeds, "Optically generated true-time delay in phased-array antennas," IEEE Trans. Microw. Theory Tech., vol.43, no.9, pp.2378-2386, 1995.
    [26]H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, "Photonic beamformer for phased array antennas using a fiber grating prism," IEEE Photon. Technol. Lett., vol.9, no.2, pp.241-243,1997.
    [27]Y. Wang, S. C. Tjin, J. Yao, J. P. Yao, L. He, and K. A. Ngoi, "Wavelength- switching fiber laser for optically controlled phased-array antenna," Opt. Comm., vol.211, no.1-6, pp.147-151,2002.
    [28]B. M. Jung, J. D. Shin, and B. G. Kim, "Optical true time-delay for two-dimensional X-band phased array antennas," IEEE Photon. Technol. Lett., vol.19, pp.877-879,2007.
    [29]C. H. Cox, Analog Optical Links:Theory and Practice. Cambridge, U.K. Cambridge Univ. Press,2004.
    [30]M. L. Farwell, W. S. C. Chang, and D. R. Huber, "Increased linear dynamic range by low biasing the Mach-Zehnder modulator," IEEE Photon. Technol. Lett., vol. 5, no.7, pp.779-782,1993.
    [31]A. Karim and J. Devenport, "Noise figure reduction in externally modulated analog fiber-optic links," IEEE Photon. Technol. Lett., vol.19, pp.312-314, 2007.
    [32]A. Karim and J. Devenport, "Low noise figure microwave photonic link," in IEEE MTT-S Int. Microwave Symp. Dig., pp.1519-1522,2007.
    [33]G.L. Abbas, V.W.S.Chan.T.K.Y, A Dual Detector Optical Hetrodyne Receiver for Local Oscialltor Noise Suppression. J. Lightwave Technol., vol.3, no.5, pp. 1110-1122,1985.
    [34]Y. Shen, B. Hraimel, X. Zhang, Glenn E. R. Cowan, K. Wu, and T. Liu, "A Novel Analog Broadband RF Predistortion Circuit to Linearize Electro-Absorption Modulators in Multiband OFDM Radio-Over-Fiber Systems," J. Lightw. Technol., vol.58, pp.3327-3335,2010.
    [35]S. K. Korotky and R. M. DE Ridder, "Dual Parallel Modulation Schemes for Low-Distortion Analog Optical Transmission," IEEE J. Sel. Areas. Commun., vol. 8, no.7, pp.1377-1381,1990.
    [36]G. Zhu, W. Liu, and H. R. Fetterman, "A broadband linearized coherent analog fiber optic link employing dual parallel mach-zehnder modulators," IEEE Photon. Technol. Lett. Vol.21, no.21, pp.1627-1629,2009.
    [37]S. Kim, W. Liu, Q. Pei, L. R. Dalton, and Harold R. Fetterman, "Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator," Optics Express, vol.19, no.8, pp.7865-7871,2011.
    [38]B. Masella, B. Hraimel, and X. Zhang, "Enhanced Spurious-Free Dynamic Range Using Mixed Polarization in Optical Single Sideband Mach-Zehnder Modulator," J. Lightwave Technol., vol.27, no.15, pp.3034-3041,2009.
    [39]B. Hraimel, X. Zhang, W. Jiang, K. Wu, T. Liu, T. Xu, Q. Nie, and K. Xu, "Experimental Demonstration of Mixed-Polarization to Linearize Electro-Absorption Modulators in Radio-Over-Fiber Links," IEEE Photon. Technol. Lett., vol.23, pp.230-232, Feb.2011.
    [40]T. R. Clark and M. L. Dennis, "Coherent optical phase-modulation link," IEEE Photon. Technol. Lett., vol.19, no.16, pp.1206-1208,2007.
    [41]T. R. Clark and M. L. Dennis, "Linear microwave downconverting RF-to-bits link," in Proc. Int. Meeting Microw. Photon.,2008 Asia-Pacific Microw. Photon. Conf. MWP/APMP,12-14,2008.
    [42]S. R. O'Connor, M. L. Dennis, and T. R. Clark, "Optimal biasing of a self-homodyne optically-coherent RF receiver," IEEE Photon. J. vol,2, no.1, pp. 1-7,2010.
    [43]T. R. Clark, S. R. O'Connor, and M. L. Dennis, "A Phase-Modulation I/Q-Demodulation Microwave-to-Digital Photonic Link," IEEE Trans. Microw. Theory Tech., vol.58, no.11, pp.3039-3058,2010.
    [44]J. O'Reilly and P. Lane, "Remote delivery of video services using mm-waves and optics," J. Lightw. Technol., vol.12, no.2, pp.369-375,1994.
    [45]M. Fujise, "Radio over fiber transmission technology for ITS and mobile communications," IEICE Trans. Fundamentals, vol. E84-A, no.8, pp.1808-1814, 2001.
    [46]D. Wake, "Radio over fiber systems for mobile applications" in Radio over fiber technologies for mobile communications networks", edited by H. Al-Raweshidy, and S. Komaki. Artech House, Inc, USA,2002.
    [47]A. Kim, Y. Hun Joo, and Y. Kim, "60 GHz wireless communication systems with radio-over-fiber links for indoor wireless LANs," IEEE Transactions on Consumer Electronics, vol.50, no.2, pp.517-520,2004.
    [48]H. Bong, K. Emmelmann, M. Rathke, et al, "A radio over fiber network architecture for road vehicle communication systems," in Proc. Vehicular Technology Conference, vol.5, pp.2920-2924, Jun.2005.
    [49]刘锦贤, 《超高频激光器与线性光纤系统》,科学出版社,2011年.
    [50]S. Montebugnoli, M. Boschi, F. Perini, P. Faccin, G. Brunori, and E. Pirazzini, "Large antenna array remoting using radio-over-fiber techniques for radio astronomical application," Microw. Opt. Technol. Lett., vol.46, no.1, pp.48-54, 2005.
    [51]P. Bolli, F. Perini, S. Montebugnoli, G Pelosi, and S. Poppi, "Basic Element for Square Kilometer Array Training (BEST):Evaluation of the antenna noise temperature," IEEE Antennas Propag. Mag., vol.50, no.2, pp.58-65,2008.
    [52]R. Spencer, L. Hu, B. Smith, M. Bentley, I. Morison, B. Anderson, D. Moodie, M. Robertson, and D. Nesset, "The use of optical fibres in radio astronomy," J.Mod. Opt., vol.47, no.11, pp.2015-2020,2000.
    [53]R. Beresford, "ASKAP photonic requirements," in Proc. IEEE Int. Topica Meeting Microwave Photonics (MWP), Oct.2008, pp.62-65.
    [54]W. Shi eh, G. Lutes, S. Yao, L. Maleki, and J. Garnica, "Performance of a 12-Kilometer Photonic Link for X-Band Antenna Remoting in NASA's Deep Space Network," Telecommunications and Mission Operations Progress Report, vol. 138, pp.1-8,1999.
    [55]J. Payne and W. Shillue, "Photonic techniques for local oscillator generation and distribution in millimeter-wave radio astronomy," in Proc. IEEE Int. TopicalMeetingMicrowave Photonics (MWP), Oct.2002, pp.9-12,2002.
    [56]S. T. Winnall, A. C. Lindsay, M. W. Austin, J Canning and A. Mitchell, "A Microwave Channeliser and Spectroscope Based on an Integrated Optical Bragg-Grating Fabry-Perot and Integrated Hybrid Fresnel Lens System", IEEE Trans. Microwave Theory Tech., vol.54, no.2, Part 2, pp.868-872,2006.
    [1]C. H. Cox, Analog Optical Links:Theory and Practice. Cambridge, U.K. Cambridge Univ. Press,2004.
    [2]徐坤,李建强,《面向宽带无线接入的光载无线系统》,电子工业出版社,2009年。
    [3]C. H. Cox, Ⅲ, G. E. Betts, and L. M. Johnson, "An analytic and experimental comparison of direct and external modulation in analog fiber-optic links," IEEE Transactions on Microwave Theory and Techniques, vol.38, no.5, pp.501-509, 1990.
    [4]C. Cox, E. Ackerman, R. Helkey, and G. Betts, "Techniques and performance of intensity-modulation, direct-detection analog optical links," IEEE Transactions on Microwave Theory and Techniques, vol.45, no.8, pp.1375-1383,1997.
    [5]C. H. Cox, Ⅲ, E. I. Ackerman, G. E. Betts, and J. L. Prince, "Limits on the performance of RF-over-fiber links and their impact on device design," IEEE Trans. Microw. Theory Tech., vol.54, no.2, pp.906-919,2006.
    [6]C. H. Cox and E. I. Ackerman. "Microwave photonics:Past, present and future,' in Proc. IEEE Int. Topical Meeting Microwave Photonics (MWP), Oct.2008, pp. 9-11.
    [7]M. L. Farwell, W. S. C. Chang, and D. R. Huber, "Increased linear dynamic range by low biasing the Mach-Zehnder modulator," IEEE Photon. Technol. Lett., vol. 5, no.7, pp.779-782,1993.
    [8]A. Karim and J. Devenport, "Noise figure reduction in externally modulated analog fiber-optic links," IEEE Photon. Technol. Lett., vol.19, pp.312-314, 2007.
    [9]A. Karim and J. Devenport, "Low noise figure microwave photonic link," in IEEE MTT-S Int. Microwave Symp. Dig., pp.1519-1522,2007.
    [10]Adil Karim and Jason Devenport, "High dynamic range microwave photonic links for RF signal transport and RF-IF conversion, " J. Lightwave Technol. Vol. 26, no.15, pp.2718-2724,2008.
    [11]G.L. Abbas, V.W.S.Chan.T.K.Y, A Dual Detector Optical Hetrodyne Receiver for Local Oscialltor Noise Suppression. J. Lightwave Technol., vol.3, no.5, pp. 1110-1122,1985.
    [12]Y. Shen, B. Hraimel, X. Zhang, Glenn E. R. Cowan, K. Wu, and T. Liu, "A Novel Analog Broadband RF Predistortion Circuit to Linearize Electro-Absorption Modulators in Multiband OFDM Radio-Over-Fiber Systems," J. Lightw. Technol., vol.58, pp.3327-3335,2010.
    [13]S. K. Korotky and R. M. DE Ridder, "Dual Parallel Modulation Schemes for Low-Distortion Analog Optical Transmission," IEEE J. Sel. Areas. Commun., vol. 8, no.7, pp.1377-1381,1990.
    [14]G. Zhu, W. Liu, and H. R. Fetterman, "A broadband linearized coherent analog fiber optic link employing dual parallel mach-zehnder modulators," IEEE Photon. Technol. Lett. Vol.21, no.21, pp.1627-1629,2009.
    [15]S. Kim, W. Liu, Q. Pei, L. R. Dalton, and Harold R. Fetterman, "Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator," Optics Express, vol.19, no.8, pp.7865-7871,2011.
    [1]M. J. LaGasse and S. Thaniyavarn, "Bias-free high-dynamic-range phase-modulated fiber-optic link," IEEE Photon. Technol. Lett., vol.9, no.5, pp. 681-683, May 1997.
    [2]F. Bucholtz, V. J. Urick, and K. J. Williams, "Performance of analog photonic links employing phase modulation," presented at the OSA COTA Conf, Whistler, BC, Canada, Jun.2006, Paper CFA6.
    [3]V. J. Urick, F. Bucholtz, P. S. Devgan, J. D. McKinney, and K. J. Williams, "Phase modulation with interferometric detection as an alternative to intensity modulation with direct detection for analog-photonic links," IEEE Trans. Microw. Theory Tech., vol.55, no.9, pp.1978-1985,2007.
    [4]V. Tavassoli, J. Zhang, and T. E. Darcie, "A single-fiber analog optical link with differential phase demodulation and intensity noise suppression," in IEEE Microw. Photon. Top. Meeting, Victoria, BC, Canada, Oct.2007, pp.229-232.
    [5]R. W. Tkach and A. R. Chraplyvy, "Phase noise and linewidth in an InGaAsP DFB laser," J. Lightw. Technol., vol. LT-4, no.11, pp.1711-1716,1986.
    [6]M. R. Salehi and B. Cabon, "Theoretical and experimental analysis of influence of phase-to-intensity noise conversion in interferometric systems," J. Lightw. Technol., vol.22, no.6, pp.1510-1518,2004.
    [7]J. D. McKinney, K. Colladay, and K. J. Williams, "Linearization of Phase-Modulated Analog Optical Links Employing Interferometric Demodulation," J. Lightw. Technol., vol.27, pp.1210-1220,2009.
    [8]R. F. Kalman, J. C. Fan, and L. G. Kazovsky, "Dynamic range of coherent analog fiber-optic links," J. Lightw. Technol., vol.12, no.7, pp.1263-1277,1994.
    [9]H.-F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. Coldren, "SFDR improvement of a coherent receiver using feedback," in OSA Topical Meeting Coherent Optical Technologies and Applications Tech. Dig., Whistler, BC, Canada,28-30,2006, Paper CFA3.
    [10]G. E. Betts, W. Krzewick, S. Wu, and P. K. L. Yu, "Experimental demonstration of linear phase detection," IEEE Photon. Technol. Lett., vol.19, no.13, pp. 993-995,2007.
    [11]D. Zibar, L. A. Johansson, H. F. Chou, A. Ramaswamy, M. Rodwell, and J. E. Bowers, "Dynamic range enhancement of a novel phaselocked coherent optical phase ddemodulator," Opt. Exp., vol.15, no.1, pp.33-44,2007.
    [12]D. Zibar, L. A. Johansson, H. F. Chou, A. Ramaswamy, and J. E. Bowers, "Time domain analysis of a novel phase-locked coherent optical demodulator," in Proc. IEEE Conf. Coherent Opt. Technol. Applicat. (COTA), Whistler, Canada,2006, paper JWB11.
    [13]D. Zibar, L. A. Johansson, H. F. Chou, A. Ramaswamy, M. Rodwell, and J. E. Bowers, "Investigation of a novel optical phase demodulator based on sampling phase-locked loop," in Proc. IEEE Int. Topical Meeting Microw. Photon., Grenoble, France,2006, paper P1.
    [14]David M.Pozar,《微波工程(第3版)》,电子工业出版社,2010年。
    [1]H. F. Chou, A. Ramaswamy, D. Zibar, L. A. Johansson, J. E. Bowers, M. Rodwell, and L. Coldren, "SFDR improvement of a coherent receiver using feedback," in OS A Topical Meeting Coherent Optical Technologies and Applications Tech. Dig., Whistler, BC, Canada,28-30,2006, Paper CFA3.
    [2]G. E. Betts, W. Krzewick, S. Wu, and P. K. L. Yu, "Experimental demonstration of linear phase detection," IEEE Photon. Technol. Lett., vol.19, no.1 3, pp. 993-995,2007.
    [3]D. Zibar, L. A. Johansson, H. F. Chou, A. Ramaswamy, M. Rodwell, and J. E. Bowers, "Dynamic range enhancement of a novel phaselocked coherent optical phase ddemodulator," Opt. Exp., vol.15, no.1, pp.33-44,2007.
    [4]D. Zibar, L. A. Johansson, H. F. Chou, A. Ramaswamy, and J. E. Bowers, "Time domain analysis of a novel phase-locked coherent optical demodulator," in Proc. IEEE Conf. Coherent Opt. Technol. Applicat. (COTA), Whistler, Canada,2006, paper JWB11.
    [5]D. Zibar, L. A. Johansson, H. F. Chou, A. Ramaswamy, M. Rodwell, and J. E. Bowers, "Investigation of a novel optical phase demodulator based on sampling phase-locked loop," in Proc. IEEE Int. Topical Meeting Microw. Photon., Grenoble, France,2006, paper P1.
    [6]T. R. Clark and M. L. Dennis, "Coherent optical phase modulation link," Photon. Technol. Lett., vol.19, pp.1206-1208,2007.
    [7]T. R. Clark and M. L. Dennis, "Linear microwave downconverting RF-to-bits link," in Proc. Int. Meeting Microw. Photon.,2008 Asia-Pacific Microw. Photon. Conf. MWP/APMP 2008., Sep.-Oct.9-3,2008, pp.12-14.
    [8]S. R. O'Connor, M. L. Dennis, and T. R. Clark, "Optimal biasing of a self-homodyne optically-coherent RF receiver," IEEE Photon. J., vol.2, no.1, pp. 1-7,2010.
    [9]T. R. Clark, S. R. O'Connor, and M. L. Dennis, "A phase-modulation I/Q-demodulation Microwave-to-Digital photonic link," IEEE Trans. Microw. Theory Tech. vol.58, no.11, pp.3039-3058,2010.
    [10]D. Zibar, I. T. Monroy, C. Peucheret, L. A. Johansson, J. E. Bowers and P. Jeppesen, "DSP based Coherent Receiver for Phase-Modulated Radio-over-Fiber Optical Links", in Proc. Opt. Fiber Commun. Conf.,2008.
    [11]D. Zibar, X. Yu, C. Peucheret, P. Jeppesen, and I. T. Monroy, "Digital coherent receiver for phase modulated radio-over-fibre optical links," IEEE Photon. Technol. Lett., vol.21, no.3, pp.155-157,2009.
    [12]A. Caballero, D. Zibar, and I. T. Monroy, "Digital coherent detection of multi-gigabit 16-QAM signals at 40 GHz carrier frequency using photonic downconversion," in Proc. Eur. Conf. Optical Communications,2009, pp.58-59, Paper PD3.3.
    [13]B. M. Jung, J. D. Shin, and B. G. Kim, "Experimental 2.5-Gb/s QPSK WDM Phase-Modulated Radio-Over-Fiber Link With Digital Demodulation by a k-Means Algorithm," IEEE Photon. Technol. Lett., vol.22, no.5, pp.335-337, 2010.
    [14]D. Zibar, R. Sambaraju, R. Alemany, A. Caballero, J. Herrera, and I. T. Monroy, "Radio-frequency transparent demodulation for broadband hybrid wireless-optical links," IEEE Photon. Technol. Lett., vol.22, no.11, pp.784-786, Jun.2010.
    [15]A. Caballero, D. Zibar, and I. T.Monroy, "Digital coherent detection of multi-gigabit 40 GHz carrier frequency radio-over-fibre signals using photonic down-conversion," Electron. Lett., vol.46, no.1, pp.57-58, Jan.2010.
    [16]D. Zibar, R. Sambaraju, A. Caballero, J. Herrera, and I. T. Monroy,"Carrier recovery and equalization for photonic-wireless links with capacities up to 40 Gb/s in 75-110 GHz band," in Proc. Opt. Fiber Commun. Conf,2011, pp.1-3.
    [17]A. Caballero, D. Zibar, R. Sambaraju, and I. T. Monroy, "Engineering rules for optical generation and detection of high speed wireless millimeter-wave band signals," in Proc.37th Eur. Conf. Exhib. Opt. Commun.,2011, pp.1-3.
    [1]J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairbum, A. Reid, and P. Ghanipour,"40 GHz electro-optic polarization modulator for fiber optic communication systems," in Proc. SPIE, Photonics North 2004, vol.5577, pp.133-143,2004.
    [2]J. D. Bull, T. E. Darcie, J. Zhang, H. Kato, and N, A. F. Jaeger, "Broadband Class-AB Microwave-Photonic Link Using Polarization Modulation," IEEE Photon. Technol. Lett., vol.18, pp.1073-1075,2007.
    [3]D. Zibar, I. T. Monroy, C. Peucheret, L. A. Johansson, J. E. Bowers and P. Jeppesen, "DSP based Coherent Receiver for Phase-Modulated Radio-over-Fiber Optical Links", in Proc. Opt. Fiber Commun. Conf.,2008.
    [4]D. Zibar, X. Yu, C. Peucheret, P. Jeppesen, and I. T. Monroy, "Digital coherent receiver for phase modulated radio-over-fibre optical links," IEEE Photon. Technol. Lett., vol.21, no.3, pp.155-157,2009.
    [5]A. Caballero, D. Zibar, and I. T. Monroy, "Digital coherent detection of multi-gigabit 16-QAM signals at 40 GHz carrier frequency using photonic downconversion," in Proc. Eur. Conf. Optical Communications,2009, pp.58-59, Paper PD3.3.
    [6]B. M. Jung, J. D. Shin, and B. G. Kim, "Experimental 2.5-Gb/s QPSK WDM Phase-Modulated Radio-Over-Fiber Link With Digital Demodulation by a k-Means Algorithm," IEEE Photon. Technol. Lett., vol.22, no.5, pp.335-337, 2010.
    [7]D. Zibar, R. Sambaraju, R. Alemany, A. Caballero, J. Herrera, and I. T. Monroy, "Radio-frequency transparent demodulation for broadband hybrid wireless-optical links," IEEE Photon. Technol. Lett., vol.22, no.11, pp.784-786, Jun.2010.
    [8]A. Caballero, D. Zibar, and I. T.Monroy, "Digital coherent detection of multi-gigabit 40 GHz carrier frequency radio-over-fibre signals using photonic down-conversion," Electron. Lett., vol.46, no.1, pp.57-58, Jan.2010.
    [9]D. Zibar, R. Sambaraju, A. Caballero, J. Herrera, and I. T. Monroy,"Carrier recovery and equalization for photonic-wireless links with capacities up to 40 Gb/s in 75-110 GHz band," in Proc. Opt. Fiber Commun. Conf.,2011, pp.1-3.
    [10]A. Caballero, D. Zibar, R. Sambaraju, and I. T. Monroy, "Engineering rules for optical generation and detection of high speed wireless millimeter-wave band signals," in Proc.37th Eur. Conf. Exhib. Opt. Commun.,2011, pp.1-3.
    [11]J. Kurzweil, An Introduction to Digital Communication. Hoboken, NJ:Wiley, 2000.
    [1]G K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "A LiNbO3 microwave-optoelectronic mixer with linear performance," in IEEE MTT-S Dig. 1055-1058,1993.
    [2]G. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, "Microwave-optical mixing in LiNbO3 modulators," IEEE Trans. Micro. Theory Tech.41,2383-2391 (1993). 5. R. Helkey, J. C. Twichell, and C. Cox, III, "A down-conversion optical link with RF gain," J. Lightwave Technol. vol.15, no.12, pp.956-961,1997.
    [3]G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, and R. D. Esman, "A low-loss downconverting analog fiber-optic link," IEEE Trans. Micro. Theory Tech. vol.43, no.9, pp.2318-2323,1995.
    [4]C. K. Sun, R. J. Orazi, and S. A. Pappert, "Efficient microwave frequency conversion using photonic link signal mixing," IEEE Photon. Technol. Lett. Vol. 8, no. 1.pp.154-156,1996.
    [5]J. P. Yao, G. Maury, Y. L. Guennec, and B. Cabon, "All-Optical subcarrier frequency conversion using an electrooptic phase modulator," IEEE Photon. Technol. Lett. Vol.17, no.1, pp.2427-2429,2005.
    [6]Adil Karim and Jason Devenport, "High dynamic range microwave photonic links for RF signal transport and RF-IF conversion, " J. Lightwave Technol. vol. 26, no.15, pp.2718-2724,2008.
    [7]R. Wang, A. Bhardwaj, and Y. F. Li, "Efficient RF frequency Down-Conversion using coupled quantum-well optical phase modulator," IEEE Photon. Technol. Lett. Vol.23, no.10, pp.645-647 2011.
    [8]V. R. Pagan, B. M. Haas, and T. E. Murphy, " Linearized electrooptic microwave downconversion using phase modulation and optical filtering," Opt. Express vol. 19, no.2,883-895,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700