偏振复用系统中解复用技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信业务的急速增长,系统容量的提升势在必行。偏振复用技术利用光在单模光纤中传输的偏振特性,将传输波长的两个独立且相互正交的偏振态作为独立信道分别传输两路信号,成倍提高了系统容量、增加了频谱利用率。该技术可在已铺设光纤网络的基础上极大的提升系统容量,实现快速、低成本的系统升级。由于两个偏振态在传输过程中会受到偏振模色散、偏振相关损耗以及输入信号非正交等因素的影响,使得偏振态发生变化形成相互之间的串扰。因此,对于偏振复用技术而言,在接收端实现信号的解复用是该技术亟待解决的难题。依据偏振复用的技术原理,针对偏振复用系统的特点,研究和寻找有效的偏振解复用方法是本文的主要工作。
     本文在前人的基础上进一步研究了偏振解复用技术。建立了偏振复用系统的仿真模型。首先研究了基于恒模算法(CMA)实现偏振解复用的方法,针对偏振复用系统传输矩阵的特点,改进了递归最小二乘恒模算法(RLS-CMA)并对该算法的解复用效果进行了分析。为了得到更稳定的基于CMA的解复用算法,本文首次采用基于正交三角分解(QR-decomposition)的RLS-CMA算法(QR-RLS-CMA)对偏振混合信号解复用,该算法对初始值的选取不敏感,具有更高的稳定性。还研究了基于独立成分分析(ICA)实现偏振解复用的方法,针对偏振复用系统的特点,首次采用复数域内基于负熵最大化的不动点算法对偏振混合信号进行解复用,该算法只需调整非线性函数便可实现不同调制格式信号的解复用,该方法不需要求解信道矩阵的逆从而降低了系统硬件实现的复杂度。本文的具体工作主要包含以下内容:
     首先,根据偏振复用技术的基本原理,利用Optisystem 9.0光纤通信系统仿真软件搭建了偏振复用系统的仿真模型。通过MATLAB编程实现了系统所需的信号处理模块,对系统各组成部分的结构和原理进行了详细介绍。分析了偏振模色散和偏振相关损耗的成因,研究了偏振复用系统中信号串扰产生的原因。从理论上分析了偏振解复用的原理,得出了解复用的实质就是求解分离矩阵(传输矩阵的逆矩阵)的结论,为后续解复用算法的实现做了充分的准备。
     其次,利用CMA实现偏振解复用。对基于随机梯度下降的恒模算法(SGD-CMA)、RLS-CMA算法和QR-RLS-CMA算法进行了数学推导,并以表格的形式给出了这些算法的主要步骤以及变量初值的设定。针对偏振复用系统传输矩阵的特点,改进了RLS-CMA算法,首次使用QR-RLS-CMA算法进行解复用。利用星座图和眼图分析了这三种算法的解复用效果,并对它们的收敛性能进行研究,通过分析得到了QR-RLS-CMA算法稳定性最强的结论。
     再次,利用ICA实现偏振解复用。介绍了复数ICA的基本概念和估计准则,分析了复数ICA解复用技术在偏振复用系统中的可行性。使用MATLAB开发出了适用于偏振复用系统的基于负熵最大化的不动点算法(T-CMN),并以表格的形式给出了渐进正则化T-CMN算法和对称正则化T-CMN算法的主要步骤。对对称正则化T-CMN算法的解复用效果进行了仿真,从多个方面与基于张量的ICA算法相比较,结果显示对称正则化T-CMN算法不需要求解信道矩阵的逆从而降低了系统复杂度。利用眼图分析了T-CMN算法的解复用效果,结果显示T-CMN算法的解复用效果较好。
     最后,利用Viterbi-Viterbi算法对解复用后的信号进行相位估计,还原出QPSK调制的源信号,然后通过门限判决的方法得到接收比特序列,利用误码率测试模块将接收比特序列与发送比特序列直接比较得到系统误码率,经测量系统无误码。
With the growth of people’s demand for communication services, enhancing system capacity is imperative. Using the polarization property of optics transmitted in a single mode fiber, Polarization multiplexing (PM) technique aims at creating two independent communication channels over the transmission wavelength by using the independent and mutually orthogonal polarization, which can double the capacity of optical fiber communication system and increase spectrum efficiency. This technique can upgrade system rapidly and economically on the existing optical network. The two polarizations can be affected by polarization mode dispersion, polarization dependent loss etc., which will cause crosstalk between each other. The most important problem to be solved in polarization multiplexing system is eliminating the crosstalk between the received signals, which can be called polarization de-multiplexing. According to the principle of polarization multiplexing technology and characteristics of polarization multiplexing system, the major work of this paper is studying and finding a suitable method for polarization de-multiplexing. This paper has done a lot of further work of polarization multiplexing technology on the basis of previous research. In order to verify the validity of polarization de-multiplexing algorithm, we establish the simulation model of polarization multiplexing system. First of all, we research on the polarization de-multiplexing method carried out by using constant modulus algorithm (CMA).
     The Recursive Least Squares constant modulus algorithm (RLS-CMA) is modified based on feature of transmission matrix in polarization multiplexing system, and then we show the de-multiplexing results of this algorithm. In order to get a more robust de-multiplexing algorithm based on the CMA, it is the first time to use RLS-CMA algorithm based on QR decomposition (QR-RLS-CMA) as the de-multiplexing algorithm in polarization multiplexing system. This algorithm is not sensitive about initial values, furthermore it has strong robustness. Moreover, we research on the polarization de-multiplexing method carried out by using independent component analysis (ICA). According to characteristics of polarization multiplexing system, a fixed-point algorithm based on complex maximization of negentropy is used as the de-multiplexing method in polarization multiplexing system for the first time. This algorithm can realize de-multiplexing of different modulation format just by adjusting nonlinear function. It doesn’t need solving inverse of channel matrix, which can significantly reduce complexity while guaranteeing the de-multiplexing performance. The works in this paper are as follows:
     Firstly, a simulation model of the polarization multiplexing system based on the principle of polarization multiplexing technology has been established by using Optisystem 9.0 fiber communication software. The signal processing module requiring for de-multiplexing is realized by MATLAB programming. Each part of the system has been introduced in detail. The origins of polarization mode dispersion and polarization dependent loss have been analyzed; in addition, the causes of crosstalk have been researched. As the principle of polarization de-multiplexing has been analyzed from the theoretical, we get the conclusion that the essence of de-multiplexing is solving the separating matrix.
     Secondly, polarization de-multiplexing is carried out by using CMA. We focus on the Stochastic Gradient Descent constant modulus algorithm (SGD-CMA), RLS-CMA algorithm and QR-RLS-CMA algorithm, giving the mathematical deduction of these algorithms. The main steps and initial value of these algorithms have been given in table. The RLS-CMA algorithm is modified based on feature of transmission matrix in polarization multiplexing system, and QR-RLS-CMA algorithm used as the de-multiplexing method in polarization multiplexing system at the first time. De-multiplexing results of these algorithms have been analyzed by using constellations diagram and eye diagram, comparing the convergence among these algorithms, and then we get the conclusion that QR-RLS-CMA algorithm has the best performance among these algorithms.
     Thirdly, polarization de-multiplexing is carried out by using ICA. The basic conception of complex ICA and the estimation principle are introduced in detail, and then the feasibility of the de-multiplexing of polarization multiplexing system with complex ICA is analyzed. The fixed-point algorithm based on complex maximization of negentropy (T-CMN) is developed by MATLAB programming. The main steps of deflationary regularization T-CMN algorithm and symmetric regularization T-CMN algorithm are given in table, and then we show the de-multiplexing results of symmetric regularization T-CMN algorithm by simulation. The symmetric regularization T-CMN algorithm and tensor based ICA algorithm have been compared in several aspects, the results shows that symmetric regularization T-CMN algorithm doesn’t need solving inverse of channel matrix, which can significantly reduce complexity while guaranteeing the de-multiplexing performance. Comparing de-multiplexing performance between CMA and T-CMN algorithm by using eye diagram, the result shows that T-CMN algorithm has better robustness.
     Finally, we use Viterbi-Viterbi algorithm to estimate signal phase to recover the original signal, and then we get the received bit sequence by using threshold judgment. System bit error ratio can be tested through bit error test module by comparing the bit sequence between transmitted bits and received bits. After measurement of bit error rate, the result shows that this system is error-free.
引文
[1]贾东方等译.光纤光学(第四版)[M].北京:人民邮电出版社,2004.
    [2]Brandon, E., Blondel, J.P., Grandpierre G.., et al. 461-km WDM 8×2.5 Gb/s repeaterless transmissions using launch signal power in excess of 1W[J]. IEEE Photon. Technol. Lett., 1998,10 (1):168-170.
    [3]Zhu,B., Nelson, Leng, L., et al. Transmission of 1.6Tb/s (40×42.7 Gb/s) over transoceanic distance with terrestrial 100-km amplifier spans[C]. OFC 2003, FN: 742-743.
    [4]Greg Raybon, Peter J.Winzer. 100 Gbit/s Challenges and Solutions[C]. In OFC/NFOEC America, 2008, OTuG11-OTuG135.
    [5]Daikoku,M., Otani,T., Suzuki,M. 160Gb/s four WDM quasi-linear transmitssion over 225-km NZ-DSF with 75-km spacing[J]. IEEE Photon. Technol. Lett., 2003, 15(8):1165-1167.
    [6]Morgado J.A.P., Cartaxo A.V. T. Dispersion supported transmission technique: comparision of performance in anomalous and normal propagation regimes[J]. IEEE Pro-Optoeletron, 2001, 148(2):107-116.
    [7]Kim, H., Gnauck A.H. Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio[J]. IEEE Photonics Technology Letters, 2002, 14(3):298-300.
    [8]Koyama, F., Iga, K. Frequency chirping in external modulation[J]. Lightwave Technology, 1998, 6(1):87-93.
    [9]Cartledge and J.C. Combining self-phase modulation and optimum modulation conditions to improve the performance of 10-Gb/s ttransmission systems using MQW Mach-Zehnder modulators[J]. Lightwave Technology, 2000, 18(5):647- 655.
    [10]Hui, R., Demarest, K.R., Allen C.T. Cross-phase modulation in multispan WDM optical fiber systems[J]. Lightwave Technology, 1999, 17(6):1018-102.
    [11]X.Steve Yao, L.-S.Yan, B.Zhang, et al. All-optic scheme for automatic polarization division demultiplexing[J]. Optics Express, 2007, 53(12):7407-7414.
    [12]A.H. Gnauck, G. Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E.C. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma. 25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals[J]. J. Lightw.Technol., Jan. 2008. 26(1):79-84.
    [13]N. E.Hecher, E.Gottwald, K.Kotten, et al. Automated polarization control demonstrated in a 1.28Tbit/s (16×2×40Gbit/s) polarization multiplexed DWDM fieldtrial[C]. ECOC, 2001, (1):86-87.
    [14]Cho. Pak S., Harston Geof, et al. Investigation of 2-b/s/Hz 40-Gb/s DWDM Transmission Over 4×100 km SMF-28 Fiber Using RZ-DQPSK and Polarization Multiplexing[J]. IEEE Photonics Technology Letters, 2004, 16(2):656-658.
    [15]D.Sandel, R.Noe, V.Mirvoda, S.Hinz and F.Wust. 84 fs PMD detection sensitivity in2x40Gbit/s RZ polarization multiplex transmission experiment[J]. Electronics Letters, 2001, 37(19):1178-1179.
    [16]F.Heismann, P.Hansen, S.Korotky, et al. Automatic polarization demultiplexer for polarization-multiplexed transmission systems[J]. Electronics Letters, 1993, 29(22):1965-1966.
    [17]R.Noe, S.Hinz, D.Sandel, et al. Crosstalk detection schemes for polarization division multiplex transmission [J]. Journal of Lightwave Technology, 2001, 19(10):1469-1475.
    [18]S.Hinz, D.Sandel, R.Noe, et al. Optical NRZ 2x10 Gbit/s polarizationdivision multiplex transmission with endless polarization control driven by correlation signals[J]. Electronics Letters, 2000, 36(16):1402-1403.
    [19]J. Renaudier, G. Charlet, M. Salsi, et al. Linear fiber impairments mitigation of 40-Gbit/s polarization-multiplexed QPSK by digital processing in a coherent receiver[J]. J. Lightwave Technology, 2008, 26(1): 36-42.
    [20]L. E. Nelson, S.L. Woodward, S. Foo, et al. Performance of a 46-Gbps dual-polarizaton QPSK transceiver with real-time coherent equalization over high PMD fiber[J]. J. Lightwave Technolog, 2009, 27(3):158-167.
    [21]C. Laperle, B. Villeneuve, Z. Zhang, et al. WDM performance and PMD tolerance of a coherent 10-Gbit/s dual-polarization QPSK transceiver[J]. J. Lightwave Technolog, 2008, 26(1),168-175.
    [22]Stephen G. E vangelides Jr., Linn F. Mollenauer, James P. Gordon, and Neal S. Bergano. Polarization Multiplexing with Solitons[J]. Journal of Lightwave Technolog, 1992, 10(1):28-35.
    [23]Sandel David, Wust. Frank, et al. Standard (NRZ 1×40 Gb/s, 210 km) and polarization multiplex (CS-RZ, 2×40 Gb/s, 212 km) transmissions with PMD compensation[J]. IEEE Photonics Technology Letters, 2002, 14(8):1181-1183.
    [24]C.Wree, N.Hecher, E.Gottwald, et al. High spectral efficiency 1.6b/s/Hz transmission (8×40Gb/s with a 25GHz grid) over 200km SSMF using RZ-DQPSK and polarization multiplexing[J]. IEEE Photon. Technol. Let. 2003, 15(9):1303-1305.
    [25]W. Shieh, X. Yi, et al. Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems[J]. Optics Express, 2007, 15(16): 9936-9947.
    [26]S. J. Savory, G. Gavioli, R. I. Killey, P. Bayvel. Transmission of 42.8Gbit/s Polarization Multiplexed NRZ-QPSK over 6400km of Standard Fiber with no Optical Dispersion Compensation[C]. Proc. OFC 2007, paper OTuA1.
    [27]Andreas Leven, Noriaki Kaneda, Young-Kai Chen. A real-time CMA-based 10Gb/s polarization demultiplexing coherent receiver implemented in an FPGA[C]. Proc. OFC 2008, paper OTuO2.
    [28]Constantinos S. Petrou, Athanasios Vgenis, et al. Quadrature imbalancecompensation for PDM QPSK coherent optical systems[J]. IEEE Photonics Technology Letters, 2009, 21(24):1876-1878.
    [29]Bogdan Szafraniec, Bernd Nebendahl, Todd Marshall. Polarization demultiplexing in Stokes space[J]. Optics express, 2010, 18(17):17928-17939.
    [30]Xiaobo xie, Yaman, Fatih et al. Polarization Demultiplexing by Independent Component Analysis[J]. IEEE Photonics Technology Letters, 22(11):805-807.
    [31]Pontus Johannisson, Henk Wymeersch, et al. Convergence Comparison of CMA and ICA for Blind Polarization Demultiplexing of QPSK and 16-QAM Signals[C]. ECOC, 2010, paper Th.9.A.3: 1-3.
    [32]李清宇,简水生.偏振复用光纤通信系统的研究[J] .北方交通大学学报,1986, 3:1-7.
    [33]马晓辉,万春明,史全林等.基于偏振复用技术的激光二极管光纤耦合方法[J] .中国激光,2007, 34(10):1343-1346
    [34]韩淋,刘媛媛,王翠鸾等.大功率半导体列阵激光器的偏振复用技术研究[J] .半导体光电,2008, 29(6):831-834.
    [35]王铁城,刘铁根,万木森等.偏振复用系统中解复用端的偏振控制算法[J] .光学与光电技术,2008,6(6):9-12.
    [36]Zinan Wang, Chongjin Xie, Xiaomin Ren. PMD and PDL impairments in polarization division multiplexing signals with direct detection[J]. Optics Express, 2009, 17(10):7993-8004.
    [37]冯勇闻,张汉一.偏振复用差分相移键控信号的数字相干解调与偏振复用算法研究[J] .光学学报,2010,30(5):1268-1273.
    [38]赵梓森.单模光纤通信系统原理(第一版)[M] .北京:人民邮电出版社,1988.
    [39]廖廷彪.偏振光学(第一版) [M] .北京:科学出版社,2003.
    [40]李玉权,崔敏.光波导理论与技术[M].北京:人民邮电出版社,2002.
    [41]Chen Lin,Zhang Xiaoguang,Zhang Ru et al. The Influences of Polarization Mode Dispersion on Multi-channel Optical Communication System[J]. Acta Photonica Sinica, 2004, 33(4):443-447.
    [42]Xi Qin, Yong Chen, Ji-hong Cao.et al. Influence of Dispersion Compensation Schemes on Phase Noise of Phase Modulation System[J]. Chinese Journal of Lasers, 2007, 34(1):62-66.
    [43]S.Chandrasekhar, X.Liu, A.Konczykowska et al. Direct Detection of 107-Gb/s Polarization-Multiplexed RZ-DQPSK Without Optical Polarization Demultiplexing[J]. IEEE Photonics Technology Letters, 2008, 20(22):1878-1880.
    [44]C.Charlet, J. Renaudier, M. Salsi, et al. Efficient mitigation of fiber impairments in an ultra-long hual transmission of 40Gbit/s polarization-multiplexed data by digital processing in a coherent receiver[C]. Proc. OFC 2007,, paper PDP17.
    [45]Liang Chen,Ou Chen,Saeed Hadjifaradji and Xiaoyi Bao. Polarization-modedispersion measurement in a system with polarization-dependent loss or gain[J]. IEEE Photonics Technology Letters, 2004, 16:206-208.
    [46]Xu Kun, Minghua Chen, Zhensheng Jia, et al. Measurement methods and statistics of polarization mode dispersion in optical transmission systems with polarization dependent loss[C]. Proc. SPIE, 2001, 4579:202-207.
    [47]R.Noé,S.Hinz,D.Sandel,el at. Crosstalk Detection Schemes for Polarization Division Multiplex Transmission[J]. Journal of Lightwave Technology, 2001, 19(10):1469-1475.
    [48]Ho-Chul Ji, J.H.Lee, Hoon Kim, el at. Effect of PDL-induced coherent crosstalkon polarization division multiplexed direct-detection systems[J]. Optics Express, 2009, 17(3):1169-1177.
    [49]Mark Shtaif. Performance degradation in coherent polarization multiplexed systems as a result of polarization dependent loss[J]. Optics Express, 2008, 16(18):13918-13932.
    [50]S. Tsukamoto, Y. Ishikawa, and K. Kikuchi. Optical homodyne receiver comprising phase and polarization diversities with digital signal processing[C]. European Conference on Optical Communication (ECOC 2006), 2006:55-56.
    [51]J. N. Damask. Polarization Optics in Telecommunications (1st ed). New York: Springer 2004.
    [52]Kenneth V. Cartwright and Edit J. Kaminsky. A Simple Improvement to the Viterbi and Viterbi Monomial-Based Phase Estimators[C]. IEEE GLOBECOM 2006 proceedings, 2006:1-6.
    [53]A. J. Viterbi and A. M. Viterbi. Nonlinear estimation of PSKmodulated carrier phase with application to burst digital transmission[J]. IEEE Trans. Inform. Theory, 1983, IT-29:543-551.
    [54]Johnson R.Jr, Schniter P., et al. Blind equalization using the constant modulus criterion: a review[J]. Proceedings of the IEEE, 1998:1927-1950.
    [55]D.N.Godard. Self-recovering equalization and carrier tracking in two-dimensional data communication systems[J]. IEEE Trans.Comm., 1980, COM-28:1867-1875.
    [56]J.R.Treichler and B.G.Agee. A new approach to multipath correction of constant modulus signals[J]. IEEE Trans. Acoust. Speech and Sig. Proc., 1983, ASSP-31:459-472.
    [57]S. Chen, B. L. Luk,et al. Fuzzy-logic tuned constant modulus algorithm and soft decision-directed scheme for blind equalization[J]. Digital Signal Processing, 2010, 20(3):846-859.
    [58]A.M Nassar and W.E. Nahal. New blind equalization technique for Constant Modulus Algorithm[C]. CQR 2010 IEEE International Workshop Technical Commmittee, 2010:1-6.
    [59]Yan Meng,Ming-li You, et al. The linearly constrained lscma for blind multi-user detection[J]. Wireless Personal Communications, 2010, 53(2):19-209.
    [60]S. A. fares, T.A. Denidni, et al. Fractional-delay sequential blind beamforming forwireless multipath communications in confined areas[J]. Wireless Communications, 7(2):629-638.
    [61]J.R.Treichler and B.G.Agee. A new approach to multipath correction of constant modulus signals[J]. IEEE Trans. Acoust. Speech and Sig. Proc., 1983, ASSP-31:459-472.
    [62]H. Zhang, Z. Tao, L. Liu, et al. Polarization demultiplexing based on independent component analysis in optical coherent receivers[C]. in European Conference on Optical Communication (ECOC), 2008, 1:41–42.
    [63]Sayed, A. H. and Kailath, T., A state-space approach to adaptive RLS filtering[J], IEEE Signal Proc.Magazine, 1994, 11(3):18-60
    [64]Y. Chen, T. Le-Ngoc, B. Champagne, and X. Changjiang. Recursive least squares constant modulus algorithm for blind adaptive array[J]. IEEE Trans. Signal Process., 2004, 52(5):1452–1456.
    [65]Moustakides, G.V. Study of the transient phase of the forgetting factor RLS[J]. IEEE Trans. Signal Pros., 1997, 45:2468-2476.
    [66]Dennis R. Morgan. An adaptive RLS MIMO Equalizer Algorithm for HSDPA[C]. Signals, Systems and Computers, 2006. ACSSC’06. Fortieth Asilomar Conference. 2006, 1016-1021.
    [67]Y.Zhou, S.C.Chan. a new family of approximate QR-LS algorithms for adaptive filtering[J]. IEEE Statistical Signal Processing, 2005, 71-75.
    [68]S. Haykin. Adaptive Filter Theory(Fourth Edition) [M]. Prentice Hall , 2001.
    [69]P.A.Regalia. numerical stability properties of a QR-based fast least squares algorithm[J]. IEEE trans. On signal processing, 1993, 41:2096-2109.
    [70]A.A.Rontogianis and S.Theodoridis. New fast QR-lattice least squares adaptive algorithms[J]. IEEE Trans. On signal processing, 1998, 46:2113-2121.
    [71]Jutten C. Caulcul neuromimetique et traitement du signal. Analyse en composantes independents[D]. INP-USM, Grenoble, Ph.D.thesis, 1987.
    [72]Cardoso J.F, Laheld B.H. Equivariant adaptive source separation[J]. IEEE Trans. Signal processing, 1996, 44(10):3017-3030.
    [73]A.J. van der Veen. Algebraic methods for deterministic blind beamforming[J]. in Proceedings of the IEEE, 1998, 86:1987–2008.
    [74]K. Raju, T. Ristaniemi, Karhunen, and E. Oja. Suppression of bit-pulsed jammer signals in DS-CDMA array system using independent component analysis[C]. in Proc. IEEE Int. Symposium on Circuits and Systems (ISCAS), 2002, 1:189–192.
    [75]K. Waheed and F. Salem. Blind information-theoretic multiuser detection algorithms for DS-CDMA and WCDMA downlink systems[J]. IEEE Trans. Neural Networks, 2005, 16(4):937–948.
    [76]V. D. Calhoun and T. Adal?. Unmixing fMRI with independent component analysis[J]. IEEE Engineering in Medicine and Biology Magazine, 2006, 25:79–90.
    [77]D. Huang and J. Mi. A new constrained independent component analysis method[J]. IEEE Trans. on Neural Networks, 2007,18(5):1532–1535.
    [78]K. Kwak and W. Pedrycz. Face recognition using an enhanced independent component analysis approach[J]. IEEE Trans. on Neural Networks, 2007, 18(2):530–541.
    [79]E. Chaumette, P. Cornon, and D. Muller. ICA-based technique for radiating sources estimation: application to airport surveillance[C]. in IEE Proceedings-F, 1993, 140: 395–401.
    [80]F. Neeser and J. Massey. Proper complex random processes with applications to information theory[J]. IEEE Trans. Inf. Theory, 1993, 39(4):1293–1302.
    [81]A. van den Bos. Estimation of complex parameters[J]. in System Identification (SYSID), 1994, 3:495–499.
    [82]A. van den Bos. Complex gradient and Hessian[C]. in IEE Proc. Image Signal Processing, 1994, 141:380–382.
    [83]M. Novey and T. Adal?. Complex ICA by negentropy maximization[J]. IEEE Trans. on Neural Networks, 2008, 19:596–609.
    [84]A. van den Bos. The multivariate complex normal distribution—a generalization[J]. IEEE Trans. Information Theory, 1995, 41(2):537–539.
    [85]P. Comon. Independent component analysis– a new concept?[J]. Signal Processing, 1994, 36:287–314.
    [86]E. Moreau and O. Macchi. Complex self-adaptive algorithms for source separation based on higher order contrasts[C]. in Proc. VII European Signal Processing Conference (EUSIPCO'94), 1994, II:1157-1160.
    [87]F.D. Neeser and J.L. Massey. Proper complex random processes with applications to information theory[J]. IEEE Trans. Inf. Theory, 1993, 39:1293–1302.
    [88]A. Hyv¨arinen and E. Oja. Independent component analysis by general non-linear hebbian-like learning rules[J]. Signal Processing, 1998, 64:301–313.
    [89]T. M. Cover and J. A. Thomas. Elements of Information theory[M]. Wiley, 1991.
    [90]M. Novey and T. Adal?. Complex ICA by negentropy maximization[J]. IEEE Trans. on Neural Networks, 2008, 19:596–609.
    [91]A. Hyv¨arinen. One-unit contrast functions for independent component analysis: a statistical analysis[J]. in Proc. NNSP, 1997, 388–397.
    [92]P. Huber. Robust Statistics[M]. Wiley, 1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700