基于天基测角信息的空间非合作目标跟踪算法及相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间目标监视是国家空间战略信息获取的重要途径,而基于天基测角信息的空间非合作目标跟踪定轨技术是实现我国天基空间目标监视系统亟需突破的关键技术。论文以天基空间目标监视系统为主要研究背景,以参数估计理论、连续同伦方法、非线性系统可观性理论、非线性滤波理论、联邦滤波理论及抗差估计理论为理论基础,重点研究了基于天基测角信息的初轨确定、跟踪滤波、联合定轨、抗差自适应跟踪定轨及目标编目维护等关键技术。本文采用仿真实验与数学推理相结合的研究思路,保证了模型和算法的正确性,初步解决了空间目标天基仅测角跟踪中的若干关键问题。论文的主要研究成果如下:
     研究了基于天基测角信息的短弧初轨确定方法。(1)提出了短弧初轨计算中两种迭代初值选取方法:考虑J 2项摄动的简单迭代法和基于经典高斯法的信赖域法。(2)提出了基于连续同伦算法的天基仅测角短弧初轨确定方法,该方法在Laplace改进法基础上,采用了考虑轨道摄动影响的单位矢量法,利用连续同伦算法求解天基仅测角条件方程组,实现了单星观测与双星立体观测两种跟踪方式下的初定轨。
     研究了天基仅测角跟踪系统的可观测性分析方法。(1)依据以微分几何为基础的非线性控制系统可观性理论,结合系统的状态方程和测量方程,提出了天基仅测角跟踪的可观测性分析方法,证明了近圆轨道上运行的单个观测平台对空间目标仅测角跟踪是可观测的。(2)为了描述系统可观测性的强弱程度,引入跟踪滤波误差下限与系统可观测度,结合仿真结果分析了系统可观测度的影响因素。
     研究了分布式卫星对空间目标的联合定轨技术。(1)提出了基于平方根UKF的编队双星对空间目标的联合定轨方法,将地面站对编队双星的观测数据、星间测量数据及编队双星对空间目标的测角数据融合起来进行联合定轨,整网确定出编队双星和空间目标的状态。(2)提出了基于分布式Sigma-Points信息滤波的广义联邦SPIF算法,将Carlson联邦滤波扩展到主滤波器与局部滤波器维数不同的情况,并采用“条件重置”原则进行状态重置。仿真实验表明,该算法可以提高多滤波器系统的数据处理效率和容错性,可应用于多星对空间目标的联合定轨。
     研究了基于抗差自适应滤波的跟踪滤波算法。(1)针对状态方程扰动和观测异常会严重影响EKF滤波性能的问题,提出了抗差自适应EKF算法,采用将观测噪声协方差阵在线估计和自适应因子相结合的方式,从整体上平衡观测数据和状态预报对系统状态估计的贡献。(2)针对实际的跟踪滤波过程中噪声统计特性时变会导致传统UKF滤波精度下降甚至发散的问题,提出了基于极大验后估计的抗差自适应UKF算法,研究将时变噪声统计特性在线估计和抗差自适应因子相结合,有效抑制了粗差的影响,提高了滤波精度和稳定性;并参考传统UKF稳定性分析方法和Cramer-Rao下限理论,以数学推理方式对该算法进行了滤波性能分析。
     提出了面向天基仅测角跟踪应用的双行轨道根数生成方法。(1)针对空间目标的双行轨道根数(TLE)拟合过程可能出现奇点的问题,在TLE和SGP4模型的基础上,提出了基于无奇异轨道根数的TLE拟合算法。(2)考虑到天基观测平台的数据处理能力有限,通过引入带有自适应遗忘因子的递推最小二乘算法,提出了面向天基仅测角跟踪应用的TLE生成方法。仿真实验表明,该方法迭代收敛速度较快,长弧段轨道预报精度稳定,可应用于近地空间目标的监视跟踪。
     本文系统研究了基于天基测角信息的空间非合作目标跟踪算法及相关技术,在该领域取得了一些探索性研究成果,为今后进一步开展研究和实验奠定了理论基础,同时也对我国空间目标天基监视技术有一定的参考价值。
The surveillance of space objects is the important approach to obtain national space stratagem information. The space-based bearings-only tracking and orbit determination technology for non-cooperative space target (NCST) is a critical technology for realizing and establishing our space-based surveillance system. In this dissertation, we stress on researching the initial orbit determination, tracking filter, combined orbit determination, robustly adaptive tracking, and space objects catalog maintenance and so on. We make full use of some mathematical tools including parameter estimation theory, homotopy continuation theory, observability theory of nonlinear control system, nonlinear filter theory, federated filter theory, and robust estimation theory to carry out the research on the key technologies. This dissertation adopts the combination of simulation test verification and mathematics reasoning as the research strategy so as to insure the correctness of models and algorithms researched above. Some key problems have been solved basically for the space-based bearings-only tracking technology of space objects in this dissertation. The main works are as follows:
     The technologies of short-arc initial orbit determination (IOD) with space-based bearings-only measurements. (1)Two methods of initial iteration values selection in short-arc IOD are proposed that are the simple iteration algorithm considering the J 2 perturbation and the trust region algorithm based on the conventional Gauss method. (2)Based on the improved Laplace method and the unit-vector-method of perturbation orbit, the homotopy continuation theory is introduced into the short-arc IOD method. Then the initial orbit of the NCST with the single satellite observation and two-satellite formation observation can be determined by the presented method.
     The observability analysis method of the space-based bearings-only tracking system. (1)According to the state equations and measurement equations of the space-based bearings-only tracking system, the observability analysis method is proposed based on the observability theory of nonlinear control system. And the observability of the single satellite with near circle orbit to NCST bearings-only tracking system is proved. (2)The CRLB theory and system observability degree are introduced to describe the relative strength of the system observability, and the influencing factors of the system observability degree are analyzed with simulation results.
     The technologies of distributed satellites to NCST combined orbit determination. (1)Based on fusion of ground-based observations, inter-satellite measurements and NCST bearings-only measurements, the integrated real-time orbit determination with SR-UKF algorithm is proposed. (2)The generalized federated SPIF algorithm is presented based on distributed sigma-points information filtering, and the method is designed to solve the problem that the master filter dimension does not equal the local filter dimension. Then the information sharing principle with“condition resetting”is used to ameliorate the efficiency of data-processing and fault tolerance.
     The robustly adaptive filter algorithm of the space-based bearings-only tracking system. (1)Considering the EKF declines in performance when the kinematic state disturbing and measurement outliers,the robustly adaptive EKF algorithm is proposed, and the algorithm combines the noise statistic estimator and adaptive factors to balance the contributions of observation data and predicted state. (2)Aiming at the traditional UKF declines in accuracy and further diverges when the prior noise statistic is unknown and time-varying,the robustly adaptive filter algorithm is proposed based on maximum a posterior estimation. Then the time-varying noise statistic estimator and adaptive robust factors are combined to restrain the influence of abnormal value effectively, on the other hand, enhance the filter precision and stability. And the performance analysis of the presented algorithm is done based on the stability analysis method of traditional UKF and the CRLB theory.
     The new two-line elements (TLE) fitting method applied to the space-based bearing-only tracking system. (1)Due to the singularity existence in the iterative approximation procedure, the TLE sampling fitting method is put forward according to the non-singular transformation of orbital elements. (2)The new TLE fitting method introduces the adaptive forgetting factor recursive least-squares algorithm to improve the efficiency of data-processing. Numerical simulations indicate that the method can enhance the iterative rapidity of convergence and the accuracy of forecasting orbit, especially for near-earth space objects.
     This dissertation investigates systemically the space-based bearings-only tracking algorithms and related techniques. The exploratory research achievements of this dissertation would avail to pave the way for further researches and experiments, and also have certain reference values for our space-based surveillance techniques.
引文
[1] Foster, B. L. Orbit Determination for a Microsatellite Rendezvous with a Non-cooperative Target[D]. Air Force Inst. of Tech. Wright-patterson AFB Master's Thesis, 2003.
    [2] Dyjak, C. P., Harrison, D. C. Space-Based Visible Surveillance Experiment[J]. SPIE Surveillance Technologies, 1991, 1479:42~56.
    [3] Earl M. A. IRIDIUM 33 and COSMOS 2251 : An Historic Collision [EB/OL ]. http://www.castor2.ca/08-Papers/collision.pdf,2009-02-18.
    [4] Klinkrad, Heiner. Space Debris - Models and Risk Analysis[M]. New-York: Springer, 2006.
    [5] Meshishnek, M. J. Overview of the Space Debris Environment[R]. Space and Missile Systems Center Air Force Materiel Command. 1995,1-28.
    [6]佛显超,范宏深.空间跟踪与监视系统探测能力分析[J].探测与控制学报, 2009, 31(增刊):49~53.
    [7]苏宪程,于小红,刘震鑫.美国空间态势感知发展分析[J].装备指挥技术学院学报, 2010, 21(2):42~46.
    [8]尤政,赵岳生.国外太空态势感知系统发展与展望[J].中国航天, 2009, (9):40~44.
    [9]美2颗太空监视卫星成功引导标准3拦截中程导弹[EB/OL].凤凰网军事快讯,2011-04-16.
    [10] Flohrer, T., Schildknecht, T. Performance Estimation for GEO Space Surveillance[J]. Advances in Space Research, 2005, (35):1226~1235.
    [11] Space Security 2008[EB/OL]. http://www.spacesecurity.org/SSI2008Media/Release.pdf,2009-02-26.
    [12]刘永征,刘学斌.美国空间态势感知能力研究[J].航天电子对抗, 2009, 25(3):1~3.
    [13] Petrick, B. L. Improving Space Surveillance with Space-Based Visible Sensor[R]. ADA400541, 2001.
    [14]王兆魁.分布式卫星动力学建模与控制研究[D].国防科技大学博士学位论文, 2006.
    [15] Mark, E. D. Future Space Based Radar Technology Needs for Surveillance[C]. AIAA/ICAS International Air and Space Symposium and Exposition. Dayton,Ohio, 2003:1~9.
    [16]马志昊.天基空间监视雷达星座设计与任务规划研究[D].国防科技大学博士学位论文, 2007.
    [17]李强.单星对卫星目标的被动定轨与跟踪关键技术研究[D].国防科学技术大学博士学位论文, 2007.
    [18]徐世友,陈曾平.基于动态规划的PCL系统中微弱回波信号检测技术[J].信号处理, 2007, 23(4A):468~471.
    [19]乔凯,王治乐,从明煜.空间目标天基与地基监视系统对比分析[J].光学技术, 2006, (5):744~746.
    [20]陶建义.基于外辐射源的无源雷达技术[J].现代电子, 2002, 80(3):5~9.
    [21]朱庆明,吴曼青.一种新型无源探测与跟踪雷达系统——“沉默哨兵”[J].现代电子, 2000, 70(1):1~4.
    [22] Shiyou, X., Zengping, C. Feasibility Analysis of DBS Signal for Air/space Surveillance[C]. Proceedings of 2006 CIE International Conference on Radar,Shanghai, China, October, 2006, session A4: 1347-1350.
    [23] Becker, K. Three-Dimensional Target Motion Analysis Using Angles and Frequency Measurements [J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1):284~301.
    [24] Ho, K. C., Chan, Y. T. An Asymptotically Unbiased Estimator for Bearings-Only and Doppler-Bearing Target Motion Analysis[J]. IEEE Transactions on Signal Processing, 2006, 54(3):809~822.
    [25] Stone, M. L., Gerald, P. B. Radars for the Detection and Tracking of Ballistic Missiles, Satellites, and Planets[J]. MIT Lincoln Laboratory Journal, 2000, 12(2):217~244.
    [26] Anonymous. Air Force Space Battlelab. Space Surveillance Network Optical Augmentation[R].1999.
    [27] Walter. Space Surveillance Network Optical Augmentation[R]. Air Force Space Battlelab, 1999.
    [28] Sharma, J., Wiseman, A. J., Zollinger, G. Improving Space Surveillance with Space-Based Visible Sensor[J]. Lincoln Laboratory Journal, 2001, 13(2):223~236.
    [29] Gen, H. M. Space Surveillance[R]. Air Force Space Command, 2001.1-52.
    [30]总装备部航天装备总体研究发展中心.国外空间监视系统现状及发展(一)[J].军事航天参考,2008年第2期.
    [31]总装备部航天装备总体研究发展中心.国外空间监视系统现状及发展(二)[J].军事航天参考,2008年第3期.
    [32]曹秀云.美国空间监视系统的新发展[J].中国航天, 2010, (4):32~35.
    [33] Sabol, C. A Role for Improved Angular Observations in Geosynchronous Orbit Determination [R]. Air Force Research Laboratory, 1998.
    [34]美研制出多波段合成孔径雷达[EB/OL].英国《简氏防务周刊》网站,2011-02-18.
    [35] Voronezh--Type Radar Site Put on Combat Duty in Southern Russia[EB/OL].俄罗斯RIA Novosti通讯社,2008-02-26,
    [36]俄罗斯将建独立太空系统监视全球导弹发射[EB/OL].中国工程技术信息网防务快讯, 2008-02-04,
    [37]侯丹.美国空军成功发射首颗天基太空监视系统卫星(SBSS)[R].国防科技信息网,2010-09-28.
    [38]夏禹.美国将发射首颗"天基空间监视系统"卫星[J].国际太空, 2010, (8):6~10.
    [39]李焱,康开华.美国空间监视系统最新发展及趋势分析[J].航天器工程, 2008, 17(2):76~82.
    [40]浦甲伦,崔乃刚,郭继峰.天基红外预警卫星系统及其探测能力分析[J].现代防御技术, 2008, 36:68~72.
    [41]王延春,张迪.对美国天基红外系统的研究分析[J].电子技术, 2008, 45:57~58.
    [42]美STSS验证卫星展示探测并追踪卫星的能力[EB/OL].今日航天网快讯,2010-09-14.
    [43]邢继娟,李伟,申之明等.天基红外预警系统跟踪分析及仿真研究[J].军事运筹与系统工程, 2008, 22(1):52~55.
    [44]侯丹.俄罗斯军用卫星(二):光学侦察卫星[R].中国航天工程咨询中心,2009-10-08.
    [45]欧洲防务局启动多国天基成像系统计划[EB/OL].法国《航宇防务》网站,2009-03-05.
    [46]欧洲将增强空间碎片监视能力以降低卫星碰撞概率[EB/OL].美国航天新闻网站快讯,2010-04-21.
    [47] Schumacher, P. Prospects for Improving the Space Catalog[C]. AIAA Space Programs and Technologies Conference, September, Huntsville, AL, AIAA 96-4290,1996,24-26.
    [48] United States General Accounting Office. Space Surveillance[R]. Report to National Security and International Affairs Division, B-275848, December 1,1997.
    [49]袁振涛,胡卫东,郁文贤.“电子篱笆"型空间监视雷达测向数据关联算法[J].宇航学报, 2009, 30(5):1972~1978.
    [50] Hoots, F. R., Roehrich, R. L. Models for Propagation of NORAD Element Sets-project Space-track Report No.3[R].Aerospace Defense Command, United States Air Force, Dec 1980.
    [51] Victor, P. O. Covariance Estimation and Autocorrelation of NORAD Two-line Element Sets[D]. Air Force Institute of Technology Air University, Degree of Mater of Science, 2006.
    [52] Byougn, S. L. NORAD TLE Conversion from Osculating Orbital Elements[J]. Journal of the Astronautical Sciences, 2002, 19(4):395~402.
    [53] Oliver, M., Eberhard, G. Real-time Estimation of SGP4 Orbital Elements from GPS Navigation Data[C]. International Symposium Space Flight Dynamics. Biarritz, France, 2000, 6:6~30.
    [54]李骏.空间目标天基光学监视跟踪关键技术研究[D].国防科技大学博士学位论文, 2009.
    [55]胡坤娇,罗健.我国空间监视地基雷达系统分析[J].雷达科学与技术, 2008, 6(2):87~101.
    [56]嫦娥一号卫星测控首次引入VLBI天文测量手段[EB/OL].http://www.gznet.com/news/content_61324.htm,2007-11-23.
    [57]紫金山天文台将建“天眼”监测太空垃圾[EB/OL].搜狐网,2009-9-22.
    [58]潘晓刚.空间目标定轨的模型与参数估计方法研究及应用[D].国防科技大学博士学位论文, 2009.
    [59] Jayant, S., S., G. H., Curt-von, B. Toward Operational Space-Based Space Surveillance[J]. Lincoln Laboratory Journal, 2002, 13(2):309~334.
    [60]张玉祥.人造卫星测轨方法[M].国防工业出版社, 2007.
    [61]刘磊.基于天基监视的空间目标测向初轨确定研究[D].国防科技大学博士学位论文, 2009.
    [62]刘林,胡松杰,王歆.航天动力学引论[M].南京大学出版社, 2006.
    [63]贾沛璋,吴连大.初轨计算的参考矢量法[J].天文学报, 1997, 38(4):353~358.
    [64]贾沛璋,吴连大.初轨的稳健估计算法[J].天文学报, 2000, 41(2):123~128.
    [65]潘晓刚,李济生,段晓君等.天基空间目标监视与跟踪系统轨道确定技术研究[J].自然科学进展, 2008, 80(11):1226~1239.
    [66]甘庆波.一种基于星间方向观测的初轨计算方法[J].宇航学报, 2007, 28(3):619~622.
    [67]戎鹏志,陆本魁.一种改进型的Laplace轨道计算方法[J].天文学报, 1991, 32(1):62~72.
    [68]贾沛璋,吴连大.已知e或a的先验值的初轨迭代算法[J].紫金山天文台台刊, 1999, 18(1):18~25.
    [69]李骏,安玮,周一宇. SBV对GEO短弧初轨确定误差分析[J].航天控制, 2008, 26(4):21~25.
    [70]潘晓刚,赵德勇,王炯琦等.利用双星定位系统和雷达高度计的航天器初轨确定算法[J].导弹与航天运载技术, 2006, (3):7~12.
    [71] Vitarius, P. J., Hahs, D., Gregory, D. A. A Keplerian Approach to Angles-Only Orbit Determination [J]. Proc SPIE, 2006, (7):6220~6220.
    [72]李骏,安玮,周一宇.天基光学超短弧段测量的约束域分析方法[J].信号处理, 2009, 25(6):911~915.
    [73]刘磊,郗晓宁,陈海萍.一种天基测向初轨确定方法[J].国防科技大学学报, 2009, 31(1):11~15.
    [74] James, R. W. Optimal Orbit Determination[M]. Analytical Graphics. Inc. , 2002.
    [75]张金槐.线性模型参数估计及其改进[M].长沙:国防科技大学出版社, 1999.
    [76] Kalman, R. E. New Methods in Wiener Filtering Theory[C]. Proceedings of the First Symposium on Engineering Applications of Random Function Theory and Probability, John Wiley & Sons, New York. 1963.
    [77] Bucy, R. S., Joseph, P. D. Filtering for Stochastic Processes with Applications[M]. New York: Guidance Interscience Publishers, John Wiley & Sons 1968.
    [78] Aidala, V. J. Kalman Filter Behavior in Bearing-Only Tracking Applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, 15(1):29~39.
    [79]占荣辉.基于空频域信息的单站被动目标跟踪算法研究[D].国防科技大学博士学位论文, 2007.
    [80]占荣辉,王玲,万建伟.稳健的单站无源目标跟踪算法研究[J].信号处理, 2007, 23(3):464~468.
    [81]张树春,胡广大,刘思华.关于UKF方法的新探索及其在目标跟踪方面的应用[J].控制理论与应用, 2006, 23(4):569~574.
    [82]苏卡尼.非合作式双基雷达中的非线性定位算法和数据融合技术[D].电子科技大学硕士学位论文, 2006.
    [83] Steven, M. K. Fundamentals of Statistical Signal Processing Volume I: Estimation Theory[M]. Pearson Education, Inc, 1993.
    [84]杨争斌.对机动目标的单站无源定位跟踪关键技术研究[D].国防科技大学博士学位论文, 2007.
    [85] Aidala, V. J., Nardona, S. C. Biased Estimation Properties of the Pseudolinear Tracking Filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1982, 18(4):432~441.
    [86] Aidala, V. J., Hammel, S. E. Utilization of Modified Polar Coordinates for Bearings-only Tracking[J]. IEEE Transaction on Automatic Control, 1983, 28(3):283~294.
    [87] Song, L. T., Speyer, J. A. Stochastic Analysis of a Modified Gain Extend Kalman Filter with Application to Estimation with Bearings Only Measurements[J]. IEEETransaction on Automatic Control, 1985, 30(10):940~949.
    [88] Fagin, S. L. Comments On "a Method for Improving Extended Kalman Filter Performance for Angle-Only Passive Ranging"[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3):1148~1150.
    [89]郭福成,李宗华,孙仲康.无源定位跟踪中修正协方差扩展卡尔曼滤波算法[J].电子与信息学报, 2004, 26(6):917~922.
    [90] Campbell, L. A., Cook, J. W. Experiences in Implementation and Use of the Square-root Information Filter[C]. The 27th Conference on Decision and Control, Austin, Texas. 1998.
    [91] Dyer, M. Extension of Square-root Filtering to Include Process Noise[J]. Journal of Optimization Theory and Applications, 1969, 3(6):444~459.
    [92]潘泉,杨峰,叶亮等.一类非线性滤波器-UKF综述[J].控制与决策, 2005, 20(5):481~489.
    [93] Gordon, N. J., Salmon, D. J., Smith, A. F. M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J]. IEEE Proceedings-Radar & Signal Processing, 1993, 140(2):107~113.
    [94] Julier, S. J., Uhlmann, J. K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE, 2004, 92(3):401~422.
    [95] Julier, S. J., Uhlmann, J. K., Durrant-Whyte, H. F. A New Approach for Filtering Nonlinear Systems[J]. Proceedings of American Control Conference, 1995, 3:1628~1632.
    [96] Wan, E. A., Van der Merwe, R. The Unscented Kalman Filter for Nonlinear Estimation[C]. Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing, Communication and Control (AS-SPCC), IEEE. Lake Louise, 2000.
    [97] Kotecha, J. H., Djuric, P. M. Gaussian Particle Filtering[J]. , 2003, 51(10): 2592-2601.[J]. IEEE Transactions on Signal Processing, 2003, 51(10):2592~2601.
    [98] Abdallah, F., Gning, A., Bonnifait, P. Box Particle Filtering for Nonlinear State Estimation Using Interval Analysis[J]. Automatica, 2008, 44:807~815.
    [99]李慧茹,李志刚.通过卫星双向双频观测对电离层时延的测定[J].时间频率学报, 2005, 28(1):29~36.
    [100] Gill, E., Montenbruck, O. Comparison of FPS-based Orbit Determinatin Strategies[C]. 18th International Symposium on Space Flight Dynamics, Germany, 2004:1-6.
    [101] Anonymous. Doll, C.E., Oza, D.H., Lorah, J.M. et al. Accurate Orbit Determination Strategies for Topex/Poseidon Using TDRSS[R]. AIAA-95-3243-CP: 647-655.
    [102] Pieter, V., Boudewijn, A. Orbit Determination of TOPEX/PO SEIDON and TDRSS Satellites Using TDRSS and BRTS Tracking[J]. Advance in Space Research, 1997, 19(11):1641~1644.
    [103] Zhu, S., Reigber, C., K?nig, R. Integrated Adjustment of CHAMP[J]. GRACE and GPS Data, 2004, 78(1):103~108.
    [104] Zhu, S., Reigber, C., Massmann, F. H. Combination of Multi-satellite Techniques at the Observation Level[C]. Proceedings of the IERS workshop on Combination Research and Global Geophysical Fluids, Germany, 2002:84~86.
    [105]赵齐乐,刘经南,葛茂荣等.用PANDA对GPS和CHAMP卫星精密定轨[J].大地测量与地球动力学, 2005, 25(2):114~122.
    [106]赵德勇.卫星联合定轨的参数化信息融合技术及应用[D].国防科技大学博士学位论文, 2007.
    [107]王正明,朱炬波.弹道跟踪数据的节省参数模型及应用[J].中国科学E辑, 1999, 29(2):146~154.
    [108] Lobbia, R., Kent, M. Data Fusion of Decentralized Local Tracker Outputs[J]. IEEE Transaction on AES, 1994, 30(3):787~799.
    [109] Manyika, J., Durrant-Whyte, H. Data Fusion and Sensor Management: A Decentralized Information Theoretic Approach[M]. Prentice Hall, 1994.
    [110] Coates, M. J. Distributed Particle Filtering for Sensor Networks[C]. Information Processing in Sensor Networks, Berkeley, California, Apr. 2004.
    [111]何友,关欣,王国宏.多传感器信息融合研究进展与展望[J].宇航学报, 2005, 26(4):524~530.
    [112] Choi, K. R., John, R., Byron, T. Jason-1 Orbit Improvement by Combining GPS with SLR/DORIS[R].University of Texas.2002.
    [113] Zelensky N.P., B. B. D., Wang Y.M., etal. Jason-1 POD with SLR and DORIS Tracking[R]. University of Texas.2002.
    [114] Rim, H. J., Schutz, B. E. Geoscience Laser Altimeter System Precision Orbit Determiantion[R].The University of Texas. 2002, 57~65.
    [115]蔡艳芳,方群等.基于信息融合的SINS/ESMPS/ST组合导航系统研究[J].弹箭与制导学报, 2006, 26(2):25~32.
    [116]李丹,刘建业,熊智等.应用联邦自适应UKF的卫星多传感器数据融合[J].应用科学学报, 2009, 27(4):359~364.
    [117]胡松杰,陈力,刘林.双星定位系统在中低轨卫星定轨中的应用[J].天文学报, 2002, 43(2):293~301.
    [118]杨元喜.抗差估计理论及其在大地测量中的应用[D].中科院测量与地球物理研究所博士学位论文, 1991.
    [119]杨元喜.自适应动态导航定位[M].北京:测绘出版社, 2006.
    [120] Huber, P. J. Robust Statistics[M]. New York: Wiley, 1981.
    [121] Hampel, F. R., Ronchetti, E. M. The Approach Based on Influence Function[M]. Robust Statistics, 1986.
    [122] Genton, M. G., Ma, Y. Robustness Properties of Dispersion Estimators[J]. Statistics and Probability Letters, 1999, 44:343~350.
    [123] Davis, R. A. Gauss-Newton and M-estimation for ARMA Processes with Infinite Variance[J]. Stochastic Processes and Their Applications, 1996, 63:75~95.
    [124]杨元喜,何海波,徐天河.论动态自适应滤波[J].测绘学报, 2001, 30(4):293~298.
    [125] Constantin, P., Jacob, B. A Robust Variable Forgetting Factor Recursive Least-Squares Algorithm for System Identification[J]. IEEE Signal Processing Letters, 2008, 15:597~600.
    [126]陈希孺,赵林城.线性模型中的M方法[M].上海:上海科技出版社, 1996.
    [127]周江文,黄幼才,杨元喜等.抗差最小二乘法[M].武汉:华中理工大学出版社, 1997.
    [128]杨元喜.等加权原理——参数平差模型的抗差最小二乘解[J].测绘通报, 1994, (6):33~35.
    [129]徐天河,杨元喜.抗差Tikhonov正则化方法及其应用[J].武汉大学学报(信息科学版), 2003, 28(6):719~722.
    [130] Hannah, M. J. Error Detection and Correction in Digital Terrain Models[J].Photogrammetric Engineering and Remote Sensing, 1981, 47:63~69.
    [131] Yang, Y. X., Wen, Y. L. Synthetically Adaptive Robust Filtering for Satellite Orbit Determination[J]. Science in China Ser D Earth Sciences, 2004, 47(7):585~592.
    [132]文援兰.航天器精密轨道抗差估计理论与应用研究[D].中国人民解放军信息工程大学博士学位论文, 2001.
    [133]秦显平,杨元喜.抗差方差分量估计在卫星定轨中的应用[J].大地测量与地球动力学, 2003, 23(4):40~43.
    [134] Patrick, M. Least Squares Solutions in Statistical Orbit Determination Using Singular Value Decomposition[R]. Naval Postgraduate School. California,1999,1-3.
    [135]王雄才.基于数字卫星信号的无源雷达关键技术研究[D].南京理工大学硕士学位论文, 2004.
    [136]李硕.利用外辐射源探测目标若干问题研究[D].北京理工大学博士学位论文, 2002.
    [137]王俊,张守宏,保铮.基于外照射源的无源相干雷达系统及其关键问题[J].电波科学学报, 2005, 20(3):381~385.
    [138]周一宇,李骏,安玮.天基光学空间目标监视信息处理技术分析[J].光电工程, 2008, 35(4):43~48.
    [139]谭莹.天基空间目标探测技术探讨[J].空间电子技术, 2006, (3):5~9.
    [140]张科科,周峰,傅丹鹰.天基空间目标监视可见光遥感器研究[J].航天返回与遥感, 2005, 26(4):10~14.
    [141]刘林.航天器轨道理论[M].北京:国防工业出版社, 2000.
    [142]刘林.天体力学方法[M].南京:南京大学出版社, 1998.
    [143]王宁.利用非合作信号无源雷达技术的研究[D].南京理工大学硕士学位论文, 2008.
    [144]王森根,王俊.基于外辐射源的分布式无源雷达成像算法[J].西安电子科技大学学报(自然科学版), 2006, 33(6):907~910.
    [145]李济生.人造地球卫星精密轨道确定[M].北京:解放军出版社, 1995.
    [146]叶其孝,沈永欢.实用数学手册(第2版)[M].北京:科学出版社, 2006.
    [147] Dwight, E. A. Computing NORAD Mean Orbital Elements from A State Vector[D]. Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 1994.
    [148]夏南银,张守信,穆鸿飞.航天测控系统[M].北京:国防工业出版社, 2002.
    [149]刘林.人造地球卫星轨道力学[M].高等教育出版社, 1992.
    [150]刘利生,吴斌,杨萍.航天器精确定轨与自校准技术[M].北京:国防工业出版社, 2005.
    [151]魏克让.空间数据的误差处理[M].北京:科学出版社, 2003.
    [152]苗赢,孙兆伟.星载GPS测量数据预处理方法研究[J].航空学报, 2010, 31(3):602~607.
    [153]张守信.外弹道测量与卫星轨道测量基础[M].北京:国防工业出版社, 1992.
    [154]吉桐伯.地平式光测跟星系统天顶盲区及跟踪算法研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文, 2004.
    [155] Lu, B. K., Ma, J. Y., Xia, Y. et al. A Method of Initial Orbit Determination for Long Arc Data[J]. Acta Astmn Sin, 2004, (28):88~93.
    [156] Wiese, D., Sabol, C. Low Earth Orbit Prediction Accuracy Assessment Using Optical Data[C] 2005:AAS,05-139.
    [157]陈务深,马静远,掌静等.基于矢量斜分解系数的近似状态转移矩阵及在轨道确定中的应用[J].中国科学(G辑), 2009, 39(11):1164~1670.
    [158] Cai, Z. W. Research on Autonomous Orbit Determination of Navigation Satellite Based on Crosslink Range and Orientation Parameters Constraining[J]. Geo-spatial Information of Science, 2006, 9(1):18~23.
    [159] Randai, W. B., Jonathan, L. A Coordination Architecture for Spacecraft Formation Control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6):777~790.
    [160] Yoshikawaa, M., Kawaguchia, J., Yamakawa, H. Summary of the Orbit Determination of NOZOMI Spacecraft for All the Mission Period[J]. Acta Astronautica, 2005, 57:510~519.
    [161]刘林,廖新浩.人卫长弧定轨中的摄动计算问题[J].天文学报, 1993, 34(4):411~422.
    [162]程云鹏.矩阵论[M].西安:西北工业大学出版社, 2000.
    [163] Moulton, F. R. An Introduction to Celestial Mechanics[M]. New York: The Macmillan Co., 1914.
    [164] Stephen, G. N., Ariela, S. Linear and nonlinear programming[M]. New York: The McGraw-Hill Book Companies, Inc., 1996.
    [165]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社, 1997.
    [166]陆本魁,李剑峰,马静远.一种有摄初轨计算的单位矢量法[J].宇航学报, 1999, 20(1):14~20.
    [167] Tapley, B. D., Schutz, B. E., Born, G. H. Statistical Orbit Determination[M]. Burlington: Elsevier Academic Press, 2004.
    [168] Yoon J C, L. K. H., Lee B S. Geostationary Orbit Determination for Time Synchronization Using Analytical Dynamic Models[J]. IEEE Trans Aero Elec Sys 2004, 40(4):1132~1146.
    [169]陈务深,陆本魁,马静远.单位矢量法的数学模型(MMUVM)及其简化形式(PUVMI)的迭代法的收敛性[J].天文学报, 2007, 48(3):343~354.
    [170] Layne, T. W. Numerical Linear Algebra Aspects of Globally Convergent Homotopy Methods[R].The University of Michigan Technical 1986.
    [171]王则柯,高堂安.同伦方法引论[M].重庆:重庆出版社, 1990.
    [172] Waybum, T. L., Seader, J. D. Homotopy Continuation Methods for Computer-aided process design[J]. Computers & Chemical Engineering, 1987, 11(1):7~25.
    [173]李霞.非线性方程组的同伦算法及应用[D].燕山大学硕士学位论文, 2005.
    [174]李庆扬,莫孜中,祁力群.非线性方程组的数值解法[M].北京:科学出版社, 1987.
    [175]张丽琴,王家映,严德天.稳定的同伦路径跟踪算法及其应用[J].石油地球物理勘探, 2004, 39(5):515~518.
    [176] Choi, S. H. A Robust Path Tracking Algorithm for Homotopy Continuation[J]. Computers & Chemical Engineering, 1996, 20:647~655.
    [177]陶本藻,张勤. GPS非线性数据处理的同伦最小二乘模型[J].武汉大学学报(信息科学版), 2003, 28(特刊):115~118.
    [178] Li, Q., Guo, F. C., Zhou, Y. Y. Observability of Satellite to Satellite Passive Tracking from Angles Measurements[C]. The IEEE sixth International Conference on Control and Automation. Guangzhou, 2007:1926~1931.
    [179]孙仲康,周一宇,何黎星.单多基地有源无源定位技术[M].北京:国防工业出版社, 1996.
    [180] Marino, R., Tomei, P. Nonlinear control design: geometric, adaptive and robust[M]. Pearson Education, Inc., 1996.
    [181]张艳.基于星间观测的星座自主导航方法研究[D].国防科技大学博士学位论文, 2005.
    [182] Liu, Y. C., Liu, L. Orbit Determination Using Satellite-to-Satellite Tracking Data[J]. Chinese Journal of Astronomy and Astrophysics, 2001, 1(3):281~286.
    [183]刘迎春,刘林,王昌彬.关于星-星跟踪的定轨问题[J].飞行器测控学报, 2000, 19(2):7~14.
    [184]马静远,掌静,陆本魁.小卫星星座自主定轨的论证与仿真[J].飞行器测控学报, 2004, 23(1):43~49.
    [185] Van, M. R., Wan, E. A. The Square-root Unscented Kalman Filter for State and Parameter-stimation [C]. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Piscataway, NJ, USA. 2001.
    [186] Willsky, A. S., Bello, M. G., Castanon, D. A. Combining and Updating of Local Estimates and Regional Maps Along Sets of One_dimensional Tracks[J]. IEEE Transaction on Automatic Control, 1982, 27(4):799~812.
    [187] Carlson, N. A. Federated Square Root Filter for Decentralized Parallel Process[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(3):517~525.
    [188] Manyika, J., Durrant-Whyte, H. Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach[M]. Prentice Hall, 1994.
    [189] Carlson, N. A. Federated Filter for Computer Efficient, Near-Optimal GPS Integration[J]. IEEE Trans on Aerospace and Electronic Systems, 1996:306~314.
    [190] Ham, F. M., Brown, T. G. Observability, Eigenvalues, and Kalman Filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(2):269~275.
    [191] Song, T. L. Observability of Target Tracking with Range-only Measurements[J]. IEEE Journal of Oceanic engineering, 1999, 24(6):383~387.
    [192]马艳红,胡军.基于SVD理论的可观测度分析方法的几个反例[J].中国惯性技术学报, 2008, 16(4):448~457.
    [193] Goshen, M. D., Bar, I. Y. Observability Analysis of Piece-wise Constant Systems-part I: Theory[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(4):1056~1067.
    [194] Marino, R. Adaptive Observers for Single Output Nonlinear Systems[J]. IEEE Trans Automatic Control, 1990, (35):1054~1058.
    [195]王润轩.相对运动的动力学方程[J].物理与工程, 2002, 12(5):18~20.
    [196]杨素珍,罗庚荣.非完整系统相对运动动力学的Hamilton原理[J].西南师范大学学报(自然科学版), 1997, 22(1):106~112.
    [197] Vallado, D. A. Fundamentals of Astrodynamics and Applications[M]. Microcosm Press, 2001.
    [198]杏建军.编队卫星周期性相对运动轨道设计与构形保持研究[D].国防科技大学博士学位论文, 2007.
    [199] Bestle, D., Zeitz, M. Canonical Form Observer Design for Nonlinear Time Variable Systems [J]. Int J Control, 1983, (38):419~431.
    [200] Byron, T., Bob, E. S., George, H. B. Statistical Orbit Determination[M]. Elsevier Academic Press, 2003.
    [201] Doerschuk, P. C. Cramer-Rao Bounds for Discrete-Time Nonlinear Filtering Problems[J]. IEEE Trans on Automatic Control, 1995, 40(8):1465~1469.
    [202] Tichavsky, P. Posterior Cramer-Rao Bounds for Adaptive Harmonic Retrieval[J]. IEEE Trans on Signal Processing, 1995, 43(5):1299~1302.
    [203] Deok, J. L. Nonlinear Bayesian Filtering with Applications to Estimation and Navigation[D]. Texas A&M University dissertation, 2005.
    [204] Tichavsky, P., Muravchik, C. H., Nehorai, A. Posterior Cramer-Rao Bounds for Discrete-time Nonlinear Filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(5):1386~1396.
    [205]占荣辉,郁春来,万建伟.机动目标跟踪误差CRLB计算与分析[J].国防科技大学学报, 2007, 29(5):89~94.
    [206] Zhan, R. H., Wan, J. W. PCRB Analysis for Passive Target Tracking[J]. Journal of Electronics, 2008, 25(1):84~88.
    [207] LeMay, J. L., Brogan, W. L., Seal, C. E. High Altitude Navigation Study(HANS)[C]. Report No. TR-0073(3491),TheAerospaceCorp., June. 1973.
    [208] Mark, L., Psiaki, S. P. The Accuracy of the GPS-Derived Acceleration Vector[J]. A Novel Attitude Reference, AIAA-99-4079, 1999.
    [209]陈金平,焦文海,马骏等.基于星间测距轨道定向参数约束的导航卫星自主定轨研究[J].武汉大学学报(信息科学版), 2005, 30(5):439~443.
    [210]朱俊.基于星间测距和地面发射源的导航星座整网自主定轨[J].国防科技大学学报, 2009, 31(2):15~20.
    [211]闫野,郗晓宁,任萱.利用星间测距对卫星网进行定位[J].空间科学学报, 2000, 20(1):54~60.
    [212] Sibley, G., Sukhatme, G., Matthies, L. The Iterated Sigma Point Kalman Filter with Applications to Long Range Stereo[C]. Proceedings of Robotics: Science and Systems, Philadelphia, PA. Aug. 2006.
    [213] Banani, S. A., Masnadi-Shirazi, M. A. A New Version of Unscented Kalman Filter[J]. Proceedings of World Academy of Science, Engineering and Technology, 2007, 20:192~197.
    [214]成兰,谢恺.迭代平方根UKF[J].信息与控制, 2008, 37(4):439~444.
    [215] Zhan, R. H., Wan, J. W. Iterated Unscented Kalman Filter for Passive Target Tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3):1155~1163.
    [216] Wen, Y. L., Zhu, J. Simulation and Analysis of Integrated Orbit Determination of Satellites Constellation[J]. Journal of Astronautics, 2009, 30(1):155~163.
    [217] Cai, Z. W., Chen, J. P., Jiao, W. H. Research on Autonomous Orbit Determination of Navigation Satellite Based on Crosslink Range and Orientation Parameters Constraining[J]. Geo-spatial Information of Science, 2006, 9(1):18~23.
    [218]第一作者.基于双星编队的空间非合作目标联合定轨方法[J].宇航学报, 2010, 31(9):2095~2100.
    [219]张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004.
    [220] Vercauteren, T., Wang, X. D. Decentralized Sigma-Point Information Filters for Target Tracking in Collaborative Sensor Networks[J]. IEEE Transactions on Signal Processing, 2005, 53(8):2997~3009.
    [221] Ferguson, P., How, J. P. Decentralized Estimation Algorithms for Formation Flying Spacecraft[C]. Proceedings of the AIAA Guidance, Navigation, and Control Conf., August. 2003.
    [222]顾启泰,王颂.联邦滤波器理论研究[J].中国惯性技术学报, 2002, 10(6):34~40.
    [223]张淑琴.空间交会对接测量技术及工程应用[M].北京:中国宇航出版社, 2005.
    [224]仇越,郭碧波,李成等.航天器非合作目标相对导航的联邦滤波算法研究[J].宇航学报, 2009, 30(6):2206~2212.
    [225]刘林,廖新浩.关于数值求解天体运动方程的几个问题[J].天文学报, 1997, 38(1):75~85.
    [226]杨元喜.抗差估计理论及其应用[M].八一出版社, 1993.
    [227] Turkey, J. W. A Survey of Sampling from Contaminated Distribution in Cotribution to Probability and Statistics[M]. Stanford Calf: Stanford University Press, 1960.
    [228] Yang, Y. X. Estimators of Covariance Matrix at Robust Estimation Based on Influence Functions[J]. Zeitschrift Fuer Vermessungswesen, 1997, 122(4):166~174.
    [229] Mohamed, A. H. Adaptive Kalman Filtering for INS/GPS[J]. Journal of Geodesy, 1999, 73(4):193~203.
    [230]崔先强.噪声协方差矩阵加权估计的Sage自适应滤波[J].测绘科学, 2002, 27(2):26~30.
    [231]徐天河,杨元喜.改进的Sage自适应滤波方法[J].测绘科学, 2000, 25(3):22~24.
    [232] Sage, A. P., Husa, G. W. Adaptive Filtering with Unknown Prior Statistics[C]. Joint Automatic Control Conference, 760~769. 1969.
    [233]赵琳,王小旭,孙明等.基于极大后验估计和指数加权的自适应UKF滤波算法[J].自动化学报, 2010, (7):57~61.
    [234] Maybeck, P. S. Stochastic Models, Estimation and Control[M]. New York: Academic Press, 1979.
    [235] Xiong, K., Zhang, H. Y., Chan, C. W. Performance Evaluation of UKF-based Nonlinear Filtering[J]. Automatic, 2006, 42(2):261~270.
    [236] Xiong, K., Zhang, H. Y., Chan, C. W. Author's reply to "Comments on 'Performance evaluation of UKF-based nonlinear Filtering'"[J]. Automatic, 2007, 43(3):569~570.
    [237] Fagin, S. L. Comments on a Method for Improving Extends Kalman Filter Performance for Angle-only Passive Ranging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3):1148~1150.
    [238] Aaron, J., Thomas, W. V. AeroAstro's Escort-A Microsatellite for On-orbit Inspection of Space Assets[C]. 17th Annual AIAA/USA Conference on Small Satellite, Utah, August. 2003.
    [239]车汝才,张洪华.追踪星跟踪空间非合作目标的相对轨道设计[J].航天控制, 2006, 24(5):40~45.
    [240]朱彦伟,杨乐平.航天器在轨服务接近策略研究[J].中国空间科学技术, 2007, 38(1):14~20.
    [241] Kozai, Y. The Motion of A Close Earth Satellite[J]. The Astronomical Journal, 1959, 64(9):259~283.
    [242]王宏.空间目标动态信息库的设计与实现[D].解放军信息工程大学硕士学位论文, 2004.
    [243]韩蕾,陈磊,周伯昭. SDP4/SGP4模型用于空间碎片轨道预测的精度分析[J].中国空间科学技术, 2004, 24(8):65~69.
    [244] Pedro, R., ESCOBAL. Methods of Orbit Determination[M]. New York: John Wiley & Sons, Inc., 1965.
    [245]陈宝林.最优化理论和算法[M].北京:清华大学出版社, 2005.
    [246]第一作者.导航卫星广播星历参数拟合算法研究[J].国防科技大学学报, 2008, 30(3):100~104.
    [247] Leung, S. H., So, C. F. Gradient-based Variable Forgetting Factor RLS Algorithm in Time-varying Environments[J]. IEEE Trans Signal Process, 2005, 53(8):3141~3150.
    [248]朱仁璋,胡锡婷.航天器交会快速接近机动策略[J].中国空间科学技术, 2007, 38(5):57~63.
    [249]符俊.基于大椭圆轨道的对地球同步轨道卫星接近技术研究[D].国防科技大学硕士学位论文, 2008.
    [250]张玉锟.卫星编队飞行的动力学与控制技术研究[D].国防科技大学博士学位论文, 2002.
    [251]林来兴.空间交会对接技术[M].北京:国防工业出版社, 1995.
    [252]周须峰,唐硕.固定时间拦截变轨段制导的摄动修正方法[J].飞行力学, 2006, (24):46~49.
    [253] Bate, R. R.,吴鹤鸣,李肇杰译.航天动力学基础[M].北京:北京航空航天大学出版社, 1990.
    [254]第一作者.基于微分改正的Lambert拦截摄动修正方法研究[J].弹箭与制导学报, 2009, 29(5):87~90.
    [255]第一作者.基于组合机动的共面绕飞卫星队形保持研究[J].国防科技大学学报, 2009, 31(4):112~116.
    [256]杨乐平,朱彦伟,安雪滢.基于组合机动的空间V-bar交会策略[J].国防科技大学学报, 2006, 20(5):6~10.
    [257]林来兴,车汝才.航天器编队飞行动力学模型和精度分析[J].航天器工程, 2008, (3):19~25.
    [258] Pluym, J. P., Damaren, C. J. Second Order Relative Motion Model for Spacecraft Under Perturbations[C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado. 2006.
    [259] Lawden, D. F. Optimal Trajectories for Space Navigation[M]. London: Butterworths, 1963.
    [260] Lion, P. M., Handelsman, M. Primer Vector On Fixed-Time Impulsive Trajectories[J]. AIAA Journal, 1968, (6):127~132.
    [261] Prussing, J. E. Optimal Impulsive Linear System: Sufficient Conditions And Maximum Number Of Impulses[J]. The Journal of the Astronautical Sciences, 1995, (43):195~206.
    [262] Carter, T. E., Brient, J. Linearized Impulsive Rendezvous Problem[J]. Journal of Optimization Theory and Application, 1995, 86:553~584.
    [263]赵健康,戴金海.基于螺旋伴飞式航天器交会控制技术[J].空间科学学报, 2006, 26(4):298~302.
    [264] Clohessy, W. H., Wiltshire, R. S. Terminal Guidance System for Satellite Rendezvous[J]. Journal Aerospace Science 1960, 27(9):653~658.
    [265] Gim, D. W., Alfriend, K. T. The State Transition Matrix of Relative Motion for the Perturbed Non-Circular Reference Orbit[C]. The AAS/AIAA Space Flight Mechanics Meeting, Santa Barbara, C.A. 2001.
    [266] Stengel, R. F. Optimal Control and Estimation[M]. Dover Publications, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700