蒸汽爆破尾叶桉木材的生物转化单细胞蛋白
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用蒸汽爆破预处理的木材进行生物转化单细胞蛋白的研究对于解决我国木材采伐、加工剩余物的利用和饲料蛋白缺乏的现状有重要意义。为了弄清楚蒸汽爆破尾叶桉木材生物转化单细胞蛋白的工艺,解决我国饲料蛋白缺乏的现状,本研究以三年生尾叶桉(Eucalyptus urophylla)为原料,采用蒸汽爆破方法进行预处理,通过常规化学分析方法及扫描电镜、X射线衍射、红外光谱等现代分析手段,对蒸汽爆破尾叶桉木材的微观形貌和化学成分进行了分析,并研究了蒸汽爆破尾叶桉木材生物转化单细胞蛋白的工艺过程,包括发酵产酶、酶水解、水解液脱色及水解液发酵单细胞蛋白,并对单细胞蛋白产品进行了氨基酸和矿质元素营养分析,得到的主要结论归纳如下:
     1.蒸汽爆破处理能使尾叶桉木材纤维之间的结合变得松散,纹孔膜破损,从而提高生物酶对纤维素的可及度,改善其生物化学反应性能。对化学成分的测定和红外光谱的分析结果表明,蒸汽爆破能溶解出一定量的半纤维素和木质素,纤维素除无定形区少量降解外基本不受损失,有利于提高酶解率。蒸汽爆破前用0.2%硫酸预处理,尾叶桉木材纤维变得更细碎,表面积更大,同时木质素脱除率提高,纹孔膜破损比例增加,更适合于纤维素酶的作用。
     2.用绿色木霉(Trichoderma viride)和黑曲霉(Aspergillus niger)混合菌种发酵,蒸汽爆破尾叶桉木材发酵产纤维素酶和木聚糖酶的最佳工艺条件为:接种量6%、菌种配比(绿色木霉/黑曲霉)为1∶1、底物浓度1.0%,在温度28℃、初始pH值4.5条件下发酵4d。
     3.原料在蒸汽爆破前的预处理及蒸汽压力对其发酵产酶能力有显著的影响,爆破前用0.2%硫酸预处理可使相同蒸汽压力下CMC酶活力(β-1,4-葡聚糖内切酶活力,羧甲基纤维素酶活力)、FPA酶活力(滤纸酶活力)和木聚糖酶活力明显提高,且通过单因素方差分析表明酶活力差异极显著;然而氨水预处理却降低了这三种酶的活力,且处理与未处理间差异也极显著。
     4.蒸汽爆破尾叶桉木材纤维素酶水解的最佳工艺条件是:温度45~50℃、pH 4.8、底物浓度2%,酶用量25 FPIU/g底物,酶解时间48 h;水解液用活性炭脱色的最佳条件是温度70℃、pH 2、脱色时间90 min、活性炭用量3.5%,该条件下水解液的脱色率达到77.02±0.52%,总还原糖回收率为80.81±0.23%。
     5.原料在蒸汽爆破前的预处理及蒸汽压力对其用纤维素酶水解能力有显著的影响,爆破前用0.2%硫酸预处理可使相同蒸汽压力下爆破尾叶桉木材的纤维素酶水解糖化率明显提高,而氨水预处理却使水解率降低。在2.2 Mpa的蒸汽压力下,0.2%硫酸预处理的爆破材料,用最佳工艺条件(即底物2.0%,酶用量20 FPIU/g底物,50℃,pH 4.8,水解48 h)进行纤维素酶水解,其水解液中还原糖浓度为12.72±0.26 g/L,水解糖化率达82.43%±0.017。
     6.蒸汽爆破尾叶桉木材纤维素酶水解液用高效液相色谱分析表明,其中葡萄糖、木糖、阿拉伯糖、二糖的百分含量分别为69.39±0.67%、27.53±0.40%、0.65±0.05%、2.44±0.88%,乙酸含量随糖浓度的高低没有明显变化,而糠醛含量会随糖浓度的提高而增加。水解液经脱色处理会降低糠醛的含量,但不会降低乙酸含量。
     7.蒸汽爆破尾叶桉木材纤维素酶水解液发酵单细胞蛋白的最适培养基组成:磷酸氢二铵为氮源,加入量为4.0g/L,酵母浸粉,磷酸二氢钾和硫酸镁的加入量分别为0.5、1.0和0.3g/L;最佳接种方式为:种子浓度10~7 cell/mL,接种酿酒酵母(Sacchromycescerevisive)和假丝酵母(Candida utilis 2.587)混合菌种,配比为S.c:C.u=1∶3,接种量为10%;最佳工艺条件为:发酵温度31~34℃,初始pH为4.5,初始还原糖浓度11.33~17.52g/L,250mL摇瓶发酵的最适体积为25mL。
     8.蒸汽爆破尾叶桉木材纤维素酶水解液中含有多种单糖,酿酒酵母和假丝酵母混合接种发酵对单糖的利用是有顺序的,且会出现二次生长现象。在有葡萄糖的时候,两个菌种优先利用葡萄糖,葡萄糖即将被消耗完时,假丝酵母也可以利用木糖,阿拉伯糖等五碳糖作为其生长的碳源继续生长。葡萄糖在接种后随即被消耗,6~9 h时间内葡萄糖浓度降低最快,到发酵9 h时几乎被消耗完毕;而木糖浓度的变化是在发酵开始9 h之内浓度几乎不降低,到9 h葡萄糖被消耗完毕后,木糖才开始减少,发酵15 h时木糖也完全被利用;阿拉伯糖浓度的降低也是出现在发酵9 h之后。此外,乙酸在发酵的过程中也可以被酵母利用。
     9.尾叶桉木材纤维素酶水解液经脱色后发酵单细胞蛋白,菌体得率系数(Y_(x/s))和菌体比生长速率(μ)比未脱色液高,基质比消耗速率(ν)比未脱色液低,表明脱色过程脱去了水解液中对发酵有抑制作用的物质,对酵母菌体的生长繁殖是有利的。
     10.在6~40g/L的初始基质浓度范围内,随基质浓度的升高,得到的最高菌体浓度(X_(max))、菌体生产率(Q_x)和菌体比生长速率(μ)也随之升高,但菌体得率系数(Y_(x/s)),却逐渐降低,最大比生长速率(μ_(max))和基质饱和常数(K_S)的值分别为0.093 h~(-1)和0.88 g/L。
     11.本研究制备的单细胞蛋白产品的干物质、粗蛋白含量、灰分分别达到92.82%、43.59%和7.68%,蛋白质中含动物生长发育所需的各种氨基酸,且氨基酸组分平衡,尤其是赖氨酸含量高,占到总蛋白质的7.27%;微量元素含量高,铁、锌、锰分别达到216、353、16.70 mg/kg。
Bioconversion of steam exploded wood to single cell protein is important for using the wood cutting and machining residues and settling the feed protein lacking situations.In order to make clear the techniques of bioconversion of Eucallptus urophylla wood biomass to single cell protein,this research took triennial Eucalyptus urophylla wood pretreated by steam explosion as materials,the general chemical analytic method and the advanced analytic techniques including SEM,X-ray diffraction spectrum and IR spectrum were applied to investigate the effects of steam explosion on chemical components,appearance and structure of steam exploded Eucallptus urophylla wood.The bioconversion process including cellulase fermentation,hydrolyzing by cellulase enzymes,decolorizing of hydrolysate and single cell protein fermentation were also studied,the amino acids and mineral elements in single cell protein product were analyzed.The results were as follows:
     1) The steam explosion pretreatment caused the relaxation between wood fiber and the breakage of pit membrane,which consequently enhanced the available surface area of enzymes,and improved the performance of biochemical reaction.The mensuration to chemical components and analysis by IR spectrum showed that steam explosion pretreatment also made part of hemicellulose and lignin dissolve, cellulose was basically not losing except little decomposing in amorphous area,it was favorable for improving enzymic hydrolysis.If pretreated by 0.2%sulphuric acid before steam explosion,Eucallptus urophylla wood fiber became smaller and thinner,the available surface area became larger,at the same time,the deligninification the breakage degree of pit membrane increased,thus could benefit the cellulase enzymes action.
     2) The optimized technical conditions of cellulase and xylanase fermentation using Trichoderma viride and Aspergillus niger mixed strains in exploded Eucallptus urophylla wood substrate were: inoculum dosage 6%,inoculum propotion(T.v/A.n) 1:1,substrate concentration 1.0%,temperature 28℃,initial pH 4.5,for 4d fermentation.
     3) The pretreatment before steam explosion to Eucallptus urophylla wood material and the steam pressure had prominent effects to cellulase and xylanase fermentation.The CMC cellulase(endo -β-1, 4 glucanase),FPase(Filter Paper cellulase) and xylanase activities improved evidently if pretreated with 0.2%sulphuric acid before explosion in the same steam pressure and the results by single factor analysis indicated that enzymatic activities differences were notable;However,if pretreated with ammonia,these three enzymatic activities reduced and the difference between treated and untreated was also notable.
     4) The best cellulose hydrolyzing conditions of steam exploded Eucallptus urophylla wood with cellulase enzyme were:48 h of hydrolyzing at temperature 45~50℃,pH 4.8,substrate concentration 2 %,cellulase dosage 25 FPIU/g substrate;The best decoloration condition with active carbon were: temperature 70℃,pH 2,90 min,active carbon dosage 3.5%,and the decoloration rate and the total reducing sugar regaining was 77.02±0.52%and 80.81±0.23%respectively in best conditions.
     5) The pretreatment before steam explosion to Eucallptus urophylla wood material and the steam pressure had prominent effects to its cellulase hydrolysis competence.Saccharification of exploded Eucallptus urophylla wood improved evidently if pretreated with 0.2%sulphuric acid before explosion in the same steam pressure,however it reduced if pretreated with ammonia.The reducing sugar concentration in liquid hydrolysate and the saccharification rate was 12.72±0.26 g/L and 82.43%±0.017 respectively,if the material which exploded at 2.2 MPa steam pressure and pretreated with 0.2% sulphuric acid before explosion was hydrolyzed in best hydrolysis conditions.
     6) The analysis in high performance liquid chromatography showed that glucose,xylose, arabinose and disaccharide contents were 69.39±0.67%,27.53±0.40%,0.65±0.05%,2.44±0.88% respectively in cellulase liquid hydrolysate of exploded Eucallptus urophylla wood.Acetic acid concentration in liquid hydrolysate did not change with the reducing sugar concentration diversification, but furfural concentration enhanced with the sugar concentration increasing.There was a fall of furfural concentration if the liquid hydrolysate was decolored,but the acetic acid concentration did not reduce.
     7) The optimal culture medium ingredients of single cell protein fermentation were:4.0 g/L (NH_4)_2HPO_4 as the nitrogen source,0.5 g/L yeast lixiviating matter,1.0 g/L KH_2PO_4 and 0.3 g/L MgSO_4·7H_2O.The optimal inoculation fashion in shake flask were:10~7 cell/mL inoculum concentration, the Sacchromyces cerevisive and Candida utilis 2.587 mixed(S.c:C.u = 1:3) strains fermentation and 10%inoculum dosage.The optimal technical conditions were:31~34℃temperature,initial pH4.5, 11.33~17.52g/L initial reducing sugar concentration,25mL fermentation liquid in 250mL shake flask.
     8) There were multiple single sugars in cellulase liquid hydrolysate of exploded Eucallptus urophylla wood,a diauxic growth and sequential subatrate utilization were observed in Sacchromyces cerevisive and Candida utilis 2.587 mixed fermentation.D-glucosse was utilized first(within 9 h after inoculation) by two strains,D-xylose and L-arabinose utilization by Candida utilis 2.587 commenced shortly before the depiction of D-glucose.D-glucose was consumed with that inoculation,the fast fall of its concentration appeared in 6~9 h after inoculation,the glucose was almostly depleted in 9 h.D-xylose reduced after glucose depletion,its complete utilization appeared 15 h after inoculation,L-arabinose utilization as well as came forth 9 h after inoculation.Furthermore,the acetic acid could be assimilated by yeast in fermentation.
     9) Biomass yield coefficient(Y_(x/s)) and Specific growth rate(μ) of discolored hydrolyzate single cell protein fermentation were higher and specific rate of substrate consumption(υ) was lower than undiscolored hydrolyzate,which indicated that the inhibiting substances in liquid hydrolysate were removed,it was favorable to yeast growth.
     10) Kinetic parameters of maximum biomass concentration(X_(max)),rate of biomass formation(Q_x) and specific growth rate(μ) enhanced with the substrate concentration increasing in initial substrate concentration range of 6~40 g/L,the biomass yield coefficients reduced instead.The values of maximum specific growth rate(μ_(max)) and substrate saturation constant(K_S) were 0.093 h~(-1) and 0.88 g/L respectively by estimate.
     11) The dry matter,crude protein and ash content were 92.82%、43.59%and 7.68%separately in single cell protein products of this research,there were balancing various aminao acids for animal growth in protein,especially there was a higher lysine content,which occupied 7.27%of the total protein;Also there were higher trace elements in single cell protein products,for example,the iron,zinc and manganese contents reached 216,353,and 16.70 mg/kg separately.
引文
[1]卜登攀.饲用纤维素酶及产酶微生物[J].宁夏农学院学报,2000,21(4):72-78.
    [2]陈洪章,刘健,李佐虎.半纤维素蒸汽爆破水解物抽提及其发酵生产单细胞蛋白工艺[J].化工冶金,1999a,20(4):428-431.
    [3]陈洪章,李佐虎.麦草蒸汽爆破处理的研究Ⅱ.麦草蒸汽爆破处理作用机制分析[J].纤维素科学与技术,1999b,7(4):14-22.
    [4]陈洪章编著.纤维素生物技术[M].北京:化学工业出版社.2005.
    [5]陈庆森,刘剑虹,蔡红远,等.多菌种共发酵生物转化天然纤维素材料的研究[J].天津商学院学报,2000,20(3):1-6.
    [6]陈庆森,刘剑虹,李跃滕,等.多菌种共发酵体系的建立及生物转化玉米秸秆[J].广州化工,2000,28(4):69-73,27.
    [7]陈喜斌主编.饲料学[M].北京:科学出版社.2003.
    [8]崔积常,郭萌.我国城市木材废弃物亟待重视--关于废旧木材资源再生利用的建议[C].新世纪生物材料与木材工业的可持续发展研讨会论文集,江苏丹阳:2004,68-71.
    [9]邓毛程,王瑶,阳元娥.一株绿色木霉液体深层发酵产纤维素酶工艺研究[J].食品与机械,2004,20(3):6-8.
    [10]丁满生,苏米亚,肖冬光.食用营养酵母菌种的选育[J].工业微生物,2003,33(2):27-30.
    [11]方祥年,夏黎明.木糖醇发酵液脱色条件的研究[J].林产化学与工业,2005,25(2):71-74.
    [12]高培基,曲音波,王祖农.维素酶解过程的分析和测定[J].生物工程学报,1988,4(4):324-326.
    [13]贺近恪,李启基主编.林产化学工业全书[M].北京:中国林业出版社.2001.
    [14]贺小贤主编.生物工艺原理[M].北京:化学工业出版社.2003.
    [15]黄群,马美湖,夏岩石,等.单细胞蛋白开发及其在蛋鸡营养中应用的研究[J].饲料研究,2004.(2):20-24.
    [16]姜笑梅,叶克林,吕建雄,等著.中国桉树和相思人工林木材性质与加工利用[M].北京:科学出版社,2007.
    [17]康东亮,吕世峰,阎振丽,等.里氏木霉R_3液体深层发酵产纤维素酶工艺优化研究[J].河南工业大学学报,2006,27(5):47-50,54.
    [18]李大鹏.利用废糖蜜生产单细胞蛋白饲料的研究[J].粮食与饲料工业,2003,(11):23-24.
    [19]李德发主编.中国饲料大全[M].北京:中国农业出版社.2003.
    [20]李济清.单细胞蛋白饲料的开发与应用[J].湖南畜牧兽医,1998(5):23.
    [21]李坚等著.木材波谱学[M].北京:科学出版社.2003.
    [22]梁霆,王遂,莫志忠,等.纤维素酶液体深层发酵条件的研究[J].生物技术,1997,7(6): 22-26.
    [23]刘家建,陆怡.纤维素酶的研究及应用综述[J].林产化工通讯,1995,(1):6-10.
    [24]刘洁,李宪臻,高培基.纤维素酶活力测定方法评述[J].工业微生物,1994,24(4):27-32.
    [25]刘同军,张玉臻.半纤维素酶的应用进展[J].食品与发酵工业,1998,24(6):58-61.
    [26]罗鹏,刘忠.蒸汽爆破法预处理木质纤维原料的研究[J].林业科技,2005,30(3):53-56.
    [27]钱俊青,计伟荣.利用稻谷壳水解液培养单细胞蛋白[J].无锡轻工业大学学报,1999,18(1):11-15.
    [28]屈维均主编.纸浆造纸实验[M].北京:轻工业出版社.1990.
    [29]沈金龙,毛爱军,王远亮,等.纤维素酶在木质纤维素生物质转化中的应用研究[J].微生物学报,2004,44(4):507-510.
    [30]舒远才,张运强,周金燕,等.纤维素酶的液体发酵[J].纤维素科学与技术,1994,2(3-4):83-88.
    [31]宋先亮,殷宁,潘定如,等.爆破法制浆技术的研究现状[J].北京林业大学学报,2003,25(4):75-79
    [32]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11(1):42-55.
    [33]童应凯,王学玲,宋绍奎,等.锯末作饲料的开发研究[J].农牧产品开发,1995,(10):20-21.
    [34]涂璇,薛泉宏,司美茹,等.多元混菌发酵对纤维素酶活性的影响[J].工业微生物,2004,34(1):30-34.
    [35]汪世华,胡开辉,黄碧芳,等.黑曲霉LH2446产纤维素酶液体发酵条件的研究[J].江西农业大学学报,2005,27(3):466-468.
    [36]王成福,赵光辉,马文辉,等.木糖用颗粒活性炭脱色工艺条件的研究[J].应用化工,2005,34(4):256-258.
    [37]王成华,丁云桥,肖朝峰,等.利用纤维质原料生产高酶活单细胞蛋白[J].工业微生物,2001,31(1):30-33.
    [38]王传槐,卞青.提高饲料酵母质量与作用效率的研究[J].饲料研究,1999,(5):6-9.
    [39]王丹,林建强,张萧,等.直接生物转化纤维素类资源生产燃料乙醇的研究进展[J].山东农业大学学报,2002,33(4):525-529.
    [40]王福荣主编.生物工程分析与检验[M].北京:中国轻工业出版社.2005.
    [41]王关斌,赵光辉,贺东海,等.木糖生产中废旧活性炭再生条件初步研究[J].应用化工,2005,34(8):515-518.
    [42]王珊珊,孙芳利,段新芳.废弃木质材料的循环利用现状及其研究展望[C].新世纪生物材料与木材工业的可持续发展研讨会论文集,江苏丹阳:2004,62-67.
    [43]王文岭,陈秀兰,冉延红,等.活性炭对桃胶水解液的脱色研究[J].食品科技,2006,(10): 104-107.
    [44]王燕.纤维素酶与饲料生产[J].黑龙江畜牧兽医,1999,(7):22-23.
    [45]王战勇,苏婷婷.产纤维素酶黑曲霉LN 0401液体发酵条件的分析[J].辽宁石油化工大学学报,2006,26(2):27-30.
    [46]吴坤,张世敏,朱显峰.木质素生物降解研究进展[J].河南农业大学学报,2000,34(4):349-354.
    [47]吴谦,马立安.以甘蔗渣为唯一碳源生产单细胞蛋白的研究[J].湖北农学院学报,2002,22(2):150-152.
    [48]武赞,卜可华,李平,等.黑曲霉2277菌株产纤维素酶最佳液体发酵条件的研究[J].食品研究与开发,2006,127(9):44-48.
    [49]熊筱芳.利用废液废料生产饲料酵母的研究[J].江西教育学院学报,2001,22(6):33-35,58.
    [50]徐坚平,刘均松,孔维,等.利用秸秆类物质微生物共发酵生产单细胞蛋白[J].微生物学通报,1995,22(4):222-225.
    [51]许凤,孙润仓,詹怀宇.木质纤维原料生物转化燃料乙醇的研究进展[J].纤维素科学与技术,2004,12(1):45-54.
    [52]薛振华,赵广杰.不同处理方法对木材结晶性能的影响[J].西北林学院学报,2007,22(2):169-171.
    [53]姚荣,丁霄霖.β-葡萄糖苷酶的研究概况[J].天津微生物,1996,(2):23-25.
    [54]杨辉,郑玲,梁海秋,等.龙眼核水解液发酵生产单细胞蛋白的研究[J].粮食与饲料工业,2003,(7):33-34.
    [55]杨崎峰,王双飞,黄崇杏,等.蒸汽爆破蔗渣浆的微观研究[J].中国造纸学报,2005,20(2):27-30.
    [56]杨淑惠主编.植物纤维化学(第三版)[M].北京:中国轻工业出版社,2001.
    [57]俞俊堂,唐孝宣,邬行彦编著.新编生物工艺学[M].北京:化工出版社.2003.
    [58]余世袁.林产资源的生物转化与利用[J].南京林业大学学报,2000,24(2):1-5.
    [59]翟倩,江正强,闫巧娟,等.链霉菌Z18产木聚糖酶的发酵条件[J].中国农业大学学报,2007,12(3):75-80.
    [60]张德强,黄镇亚,张志毅.木质纤维生物量一步法转化成乙醇的研究(Ⅰ)-木质纤维原料蒸汽爆破预处理的研究[J].北京林业大学学报,2000a,22(6):43-46.
    [61]张德强,黄镇亚,张志毅.木质纤维生物量一步法转化成乙醇的研究(Ⅱ)-纤维素酶解条件的研究[J].北京林业大学学报,2000b,22(6):47-49.
    [62]张德强,黄镇亚,张志毅.木质纤维生物量一步法(SSF)转化成乙醇的研究(Ⅲ)--毛白杨爆破原料一步法转化成乙醇的研究[J].北京林业大学学报,2000c,22(6):50-54.
    [63]张德强,黄镇亚,张志毅.绿色木霉纤维素酶AS3.3032液体发酵的研究[J].北京林业大学学报,2001,23(1):56-58.
    [64]张建安,张小勇,韩润林,等.木质素对纤维素酶解的影响及纤维素酶解[J].化学工程,2000,28(1):37-39,43.
    [65]张全福,严岩,傅海虹.开发生物能 促进环境保护[J].农业环境与发展,1994,(4):34-36.
    [66]张树政主编.酶制剂工业(下)[M].北京:科学出版社.1984.
    [67]张晓燕,赵广杰.木质生物质的生物分解与生物转化研究进展[J].林业科学,2006,42(3):85-93.
    [68]张星元编著.发酵原理[M].北京:科学出版社.2005.
    [69]赵广杰.木质生物质的生物、热化学变换及功能性生态材料制备[C].新世纪生物材料与木材工业的可持续发展研讨会论文集,江苏丹阳:2004,139-146.
    [70]赵林果,王书翰,叶汉玲,等.农林废弃物制备的酵母培养物养鱼应用研究[J].饲料研究,2000,(5):11-13.
    [71]周亚樵.植物质生物转化发展近况[J].纤维素科学与技术,2000a,8(3):59-66.
    [72]周亚樵,安新跃,吉小强,等.用农作物秸秆生产单细胞蛋白的研究[J].中国饲料,2000b,(8):11-13.
    [73]Almeida e Silva J B,Mancilha I M,Vanetti M C D et al.Mocrobiol protein production by cultivated in eucalyptus hemicellulosic hydrolyzate[J].Bioresource Technology,1995,52:197-200.
    [74]Almeida e Silva J B,Lima U A,Taqueda M E S et al.Use of response surface methology for selection of nutrient level for culturing in eucalyptus hemicellulosic hydrolyzate[J].Bioresource Technology,2003,87:45-50.
    [75]Anatole A,Klyosov.Trends in biochemistry and enzymology of cellulose degredation[J].Biochemistry,1990,29(47):10577-10585.
    [76]Anupama and Ravindra P.Value-aadded food:Single Cell Protein[J].Biotechnology Advances,2000,18:459-479.
    [77]Banerjee U C,Chisti Y and Moo-Young M.Effects of substrate particle size and alkaline pretreatment on protein enrichment by Neurospora sitophila[J].Resource,Conservation and Recycling,1995,13(2):139-146.
    [78]Chahal D S,Moo-Young M and Vlach D.Effect of physical and physicochemical pretreatments of wood for SCP production with Chaetomium cellulolyticum[J].Biotechnology and Bioengineering,1981,23:2417-2420.
    [79]Chen Huizhong,Hayn M and Esterbauer H.Purification and two extracellular -glucosidases from Trichoderma reesi[J].Biochimica et Biophysica Acta,1992,1121:54-60.
    [80]Chose T K,Ghosh P.Bioconversion of cellulosic substances[J].Journal of Applied Chemistry and Biotechnology,1978,28:309-320.
    [81] Clark T A and Mackie K L. Steam explosion of the softwood Pinus radiata with sulphur dioxide addition. I. Process optimization [J]. Journal of Wood Chemistry and Technology, 1987,7(3):373-403.
    [82] Gilkes N R, Kilbum D G, Miller R. C et al. Bacterial cellulse [J]. Bioresource Technology,1991,36:21-35.
    [83] Goyal A, Ghosh B and Eveleigh D. Characteristics of fungal cellulase [J]. Bioresource Technolog,1991,36:36-41.
    [84] Duff Sheldon J B and Murray William D. Bioconversion of forest products industry waste cellulosics to fuel ethnol: a review [J]. Bioresource Technology, 1996, 55:1-33.
    [85] El-Nawwi S A and El-Kader Amal Abd. Production of single-cell protein and cellulase from sugarcane bagasse: Effect of culture factors [J]. Biomass and Bioenergy, 1996, 11(4):361-364.
    [86] Felip M G A, Alves L A, Silva S S et al. Fermentation of eucalyptus hemicellulosic hydrolysate to xylitol by Candida guilliermondii [J]. Bioresource Technology, 1996, 56:281-283.
    [87] Ghaly A E, Kamal M. and Avery A. Influence of temperature rise on kinetic par ameters during batch propagation of Kluyveromyces fragilis in cheese whey under ambient conditions [J]. World Journal of Microbiology & Biotechnology, 2003, 19:741-749.
    [88] Ghaly A E, Kamal M and Correia L R. Kinetic modelling of continuous submerged fermentation of cheese whey for single cell protein production [J]. Bioresource Technology, 2005, 96:1143-1152.
    [89]Ghose T K. Measurement of cellulase activities [J]. Pure and Application Chemistry, 1987,59(2):257-268.
    [90] Gregg D and Saddler J N. Bioconversion of lignocellulosic residue to ethanol: Process flowsheet development [J]. Biomass and Bioenergy, 1995, 9(1-5):287-302.
    [91] Grethlein H E and Converse A O. Common aspects of acid prehydrolysis and steam explosion for pretreating wood [J]. Bioresource Technology, 1991,36:77-82.
    [92] Grous W R, Converse A O & Grethlein H E. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar [J]. Enzyme and Microbiol Technology, 1986, 8:274-280.
    [93] Holder N H M, Kilian S G and du Preez J C. Yeast biomass from bagasse hydrolysates[J].Biological Waste, 1989, 28(4): 239-246.
    [94] Holtzapple M T, Humphrey A E and Taylor J D. Energy requirements for the size reduction of poplar and aspenwood [J]. Biotechnology and Bioengineering, 1989, 33:207-210.
    [95] Jeffrey Wilson J, Deschatelets L and Nishikawa N K. Comparative fermentability of enzymatic and acid hydrolysates of steam-pretreated aspenwood hemicellulose by Pichia stipitis CBS5776 [J].Applied Microbiology and Biotechnology, 1989, 31:592-596.
    [96] Kubicek C P, Messner R, Gruber F et al. The Trichoderma cellulase regulatory puzzle: From the interior life of a secretory fungus [J]. Enzyme and Microbiol Technology, 1993, 15(2):90-99.
    [97] Laser M, Schulman D, Allen S G et al. Acomparision of liquid hot water and steam pretreatment of sugar cane baggage for bioconversion to ethanol [J]. Bioresources Technology, 2002,81:33-44.
    [98] Lee Bum-Kyu and Kim Joong Kyun. Production of Candida utilis biomass on molasses in different culture types [J]. Aquacultural Engineering, 2001, 25:111-124.
    [99] Lee P C, Lee S Y, Hong S H et al. Biological conversion of wood hydrolysate to succinic acid by Anaerbiospirillum succiniciproducens [J]. Biotechnology Letters, 2003, 25:111-114.
    [100] Mackie K L, Brownell H H, West K L et al. Effect of sulphur dioxide and sulphur acid on steam explosion of aspenwood[J]. Journal of Wood Chemistry and Technology, 1985, 5(3):405-425.
    [101] Maria C, Laura C, Alberto G. et al. Effects of inhibitors released during steam-explosion treatment of Poplar wood on subsequent enzymatic hydrolysis and SSF [J]. Biotechnology Progress,2004,20(1):200-206.
    [102] Martinez J and Saze F. Effects of acid steam explosion on enzymatic hydrolysis of O. nervosum and C. cardunculus [J]. Applied Biochemistry and Biotechnology, 1990, 24/25:127-134.
    [103] Miller T. Ferrell and Srinivasan V. R.. Production of single-cell protein by Aspergillus terreus [J].Biotechnology and Bioengineering, 1983, 25:1509-1519.
    [104] Murray W D and Asther M. Ethanol fermentation of hexose and pentose woood sugars produced by hydrogen-fluoride solvolysis of aspen chips [J]. Biotechnology Letters, 1984, 6(5):323-326.
    [105] Nigam J N. Single cell protein from pineapple cannery effluent [J]. World Journal of Microbiology & Biotechnology, 1998, 14:693-696.
    [106] Nigam J N. Cultivation of Candida langeronii in sugar cane bagasse hemicellulosic hydrolyzate for the production of single cell protein [J]. World Journal of Microbiology & Biotechnology, 2000,16:367-372.
    [107] Nguyen Q A and Saddler J N. An intergrated model for the technical and economic evaluation of an enzymatic biomass conversion process [J]. Bioresource Technology, 1991, 35:275-282.
    [108] Parajo J C, Dominguez H and Dominguez J M. Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansensii: Effect of the initial cell concentration [J]. Biotechnology Letters, 1996a, 18(5):593-598.
    [109] Parajo J C, Alonso J L and Santos V. Lactic acid from wood [J]. Process Biochemistry,1996b,31(3):271-280.
    [110] Parajo J C, Dominguez H and Domingguez J.M. Biotechnological production of xylitol .Part 2:Operation in culture media made with commercial sugars [J]. Bioresource Technology, 1998,65:203-212.
    [111] Paul Deepen, Mukhopadhay Pupak, Chatterjee Bishnu P. et al. Nutritional profile of food yeast Kluyveromyces fragilis biomass grown on whey [J]. Applied Biochemistry and Biotechnology, 2002,97:209-218.
    [112] Pessoa A J, Mancilha I. M., Sato S. Cultivation of Candida tropicalis in sugar cane hemicellulosic hydrolyzate for microbial protein production [J]. Journal of Biotechnology, 1996, 51:83-88.
    [113] Pierre Beguin . Bacterial cellulose [J]. Biochemical Society Transactions, 1992, 20 (1):42-46.
    [114] Preziosi-Belloy L, Nolleau V and Navarro J M. Xylitol production from aspenwood hemicellulose hydrolysate by Candida guilliermondii [J]. Biotechnology Letters, 2000, 22:239-243.
    [115] Rajoka M Ibrahim, Kiani M A Tariq, Khan Sohail et al. Production of single cell protein from rice polishing using Candida utilsi [J]. World Journal of Microbiology & Biotechnology, 2004,20(3):297-301.
    [116] Rodriguez-Vazquez Refugio and Diaz-Cervantes Dolores. Effect of chemical solutions sprayed on sugarcane bagasse pith to production single cell protein: physical and chemical analyses of pith [J].Bioresource Technology, 1994, 47:159-164.
    [117] Schultz T P, Biermann C and Biermann C. Steam explosion of mixed hardwood chips, rice hulls,and sugar cane baggase [J]. Journal of Agricultural and food chemistry, 1984, 32:1166-1172.
    [118] Shojaosadati Seyed Abbas, Khalilzadeh Rasoul, Jalilzadeh Abbas et al. Bioconversion of molasses stillage to protein as an economic treatment of this effluent [J]. Resource, Conservation and Recycling, 1999, 27:125-138.
    [119] Swaminathan Sandhya, Joshi Sharad R. and Parhad Narsing M. Bioconversion to single cell protein : A potential resource recovery from paper mill solid waste [J]. Journal of Fermentation and Bioengineering, 1989, 67(6):427-429.
    [120] Tanaka Mitsuo, Robinson Campbell W. and Moo-Young Murry. Chemical and enzymic pretreatment of corn stover to produce soluble fermentation substrates [J]. Biotechnology and Bioengineering, 1985, 27:362-368.
    [121] Thomas M Wood. Properties of cellulolytic enzyme systems [J]. Biochemical Society Transactions,1985,13(3):407-410.
    
    [122] Thomas M Wood. Fungal cellulases[J]. Biochemcal Society Transactions, 1992,20(l):46-53.
    [123] Thompson N. S. Wood and Agricultural Residues [Mj. New york: Academic Press,1983, 101-119.
    [124] Walker L P and Wilson D B. Enzymatic hydrolysis of cellulose: an overview [J]. Bioresource Technology, 1991,36: 3-14.
    [125] Wicklow D T, Langie R, Crabtree S et al. Degradation of lignocellulose in wheat straw versus hrdwood by Cyathus and related species(Nidulariaceae) [J]. Canadian Journal of Microbiology,1984,30:632-636.
    [126] Wood T M. Properties of cellulolytic enzyme systems [J]. Biochemical Society Transactions, 1985,13(3):407-410.
    
    [127] Wood T M. Fungal cellulases [J]. Biochemcal Society Transactions, 1992, 20 (1):46-53.
    [128] Wright J D. Ethanol from biomass by enzymatic hydrolysis [J]. Chemistry Engineering Progress,1998, 84(8):62-74.
    [129] Zayed G and Mostafa N. Studies on the production and kinetic aspects of single cell protein from sugar cane bagasse saccharified by Aspergillus Niger [J]. Biomass and Bioenergy, 1992,3(5):363-367.
    [130] Zhang Yaoli and Cai Liping. Effects of steam explosion on wood appearance and structure of sub-alpine fir [J]. Wood Science and Technology, 2006, 40(5):427-436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700