超声相控阵检测系统图像处理和成像技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声相控阵技术,是当前无损检测技术的热点研究领域。其通过控制超声阵列发射的声波相干实现声束的偏转和聚焦,使其可以方便地应用于含复杂几何结构的工作对象的检测。当前,许多高校已对其展开研究,研究结果也已逐渐应用于工业的无损检测的领域中。由于相应的缺陷诊断与识别的要求,检测图像的效果日益受到关注。本文基于超声相控阵技术,从改善图像质量的参数设计、图像处理和成像技术方面进行了研究。
     首先,对超声相控阵技术的基本原理和基础知识进行了介绍,并利用Civa仿真软件直观的仿真了超声相控阵系统的偏转和聚焦的性质和工作情况,并对阵元数目设置进行讨论,对后面的实验设计提供了理论依据。说明了几种超声图像的形成机制,为后文的成像环节提供了基础。
     其次,主要以提高超声图像质量展开讨论并进行实验。针对超声图像中由于介质内部漫反射造成的相干噪声,进行了滤波处理,通过对结果的比较,认为Lee滤波在诸多滤波算法中效果最好,经过Lee滤波算法后,图像的相干斑系数最小,去斑效果最好。接下来,对于一些典型的伪缺陷进行去除,提高了图像的质量。
     再次,超声相控阵所得图像聚焦效果不佳,使得图像尺寸大于缺陷真实尺寸。于是将合成孔径聚焦成像算法应用于成像。但对线缺陷的直接进行合成孔径聚焦成像算法的效果不明显。经过分析,将多个点缺陷错位叠加的结果作为线缺陷。对每个点缺陷的图像采用合成孔径聚焦算法重建后依次按一个阵元错位相加,以所得结果来表示线缺陷的合成孔径聚焦成像结果。通过仿真和实验数据,证明了方法的可行性,所得结果更符合真实缺陷的尺寸及形貌。
Ultrasonic Testing is a research hotspot in NDT field at present. Through controlling the sound wave interference, it can make the sound beam steer and focus, which enable it be applied in inspecting work object with complicated structure. Now, it is being studied by universities, and research acheivements are applied in industrial NDT filed. As is required by defect testing and recognizing, the quality of defect image has been highly concerned. This thesis focuses on research on plan designing, image processing and imaging technology of ultrasonic phased array system.
     Firstly, the basic principle and knowledge of ultrasonic phased array are introduced. Civa software is used to simulate the basic properties of ultrasonic phased array system and probe paremeter designing is discussed, which has provided the designing of experiment with theoretical basis. Several kinds of ultrasonic image forming mechanism are introduced, which provides the basis of following imaging part.
     Secondly, how to improve the quality of image is discussed and experiment is conducted. Aim at the interference noise caused by diffuse reflection, filter is used to finish the denoising. After comparation of results of several algorithms, Lee algorithm has the best result. Then some typical fake defect images are elimated, which improved the quality of image.
     Thirdly, for the characteristics of ultrasound testing, the defect image is not focused enough, which lead it to have a larger size. Then the synthetic aperture focusing imaging algorithm is used for imaging. But the effect of this algorithm on line defect is not obvious. After analysis, decide to use the result of image adding of point defects as line defect. Rebuild the point image by synthetic aperture focusing imaging algorithm and add these images together each with a displacement of one probe element. Use the result acquired to take the place of line defect image rebuilt by synthetic aperture focusing algorithm. Through simulation and experiment, the method is proved to be feasible, and the defect image rebuilt is more in accordance with the real defect.
引文
[1]典型的NDT检测方法及优缺性比较,天工无损检测网, 2004年5月23日
    [2]王越,全数字相控阵超声无损检测系统软件算法与实现,[硕士学位论文],上海:上海师范大学,2003
    [3]刘晨,魏炜,姜永亮,汪承灏,祖庆夕,平云轩,超声数字式相控阵换能器动态聚焦系统研制,应用声学,2000,19(6):14~18
    [4]詹湘琳,超声相控阵油气管道环焊缝缺陷检测技术的研究,天津大学博士生论文,2006
    [5]鲍晓宇,施克仁,陈以方,张伟,超声相控阵系统中相控发射与同步的实现,无损检测,2003,25(10):507~510
    [6] D. S. Dean, Review of ultrasonic transducer arrays, British Journal of Non-destructive Testing, 1979, 21(3), 140~141
    [7]薛振奎,黄建民,白世武等,大口径管道环焊缝相控阵超声波自动检测系统,中国,发明专利,01131973.2,2001
    [8]李新育,夏欣等,相控阵超声波仪器及其检测方法,中国,发明专利,01131936.4, 2001
    [9] Xue Zhenkui, Bai Shiwu, Zhan Hua, Xia Xin, Xiang Yang, Development of automatic phased array inspection system for long-distance pipeline, Engineering Sciences, 2004, 2(4): 15~19
    [10]长输管道全自动相控阵检测系统研制,www.cpgp.cn
    [11]相控阵超声检测技术与西气东输,中国石油网,2004, www.oilnews.com.cn
    [12] Achim A, Bezerianos A, Tsakalides P. Novel Bayesian multiscale method for speckle removal in medical ultrasound images [J]. IEEE Trans Medical. Imaging, 2001,20(8): 772-783.
    [13] Shan Baohua, Duan Zhongdong, Ou Jinping, Study of ultrasonic phased array inspection imaging technology for NDT, China Welding (English Edition), v15, n3, p 1-5, September 2006
    [14]美国无损检测学会编,《美国无损检测手册》译审委员会译.美国无损检测手册·超声卷(上册)[M],上海:世界图书出版公司,1996.438-444.
    [15] AchimA, Bezerianos A, Tsakalides P. Novel Bayesian multiscale method for speckle removal inmedical ultrasound images [J]. IEEE TransMedical. Imaging,2001,20(8): 772-783.
    [16]唐健,王真松,利用小波分析来抑制合成孔径雷达的相干斑噪声[J],电子科学学刊,1997, 19(4): 451~457.
    [17]陈立权,部分相关多视降低合成孔径雷达相干斑噪声研究[D],[硕士论文],北京:中国科学院电子所,1985
    [18] J W Goodman. Some fundamental properties of speckle [J]. J. Opt. Soc. Am, 1976, 66 (11): 1145~1150.
    [19]王新楼,基于偏微分方程的SAR图像去噪方法研究[D],[硕士论文],北京:中国科学院电子所, 2002 .
    [20] Armand Lopes, Ridha Touzi and E.Nezry, Adaptive Speckle Filters and Scene Heterogeneity, IEEE Trans. On Aerospace and Electronic System, 1990, Vol.28(6): 992-1000
    [21] Kuan D T, Sawchuk A A, Strand T C, and Chavel P. Adaptive Restoration of Images with Speckle, IEEE on Acoustics, Speech and Signal Processing,March, 1987, Vol. ASSP-35(3): 373-383
    [22] Kuan D T, Sawchuk A A, Strand T C, and Chavel P. Adaptive Smoothing Filter for Image with Signal-Dependent Noise. IEEE Trans. On Pattern Analysis and Machine Intelligence, March, 1985, Vol.PAMI-7(2): 165-177
    [23] L. J. Cutrona. Comparison of Sonar Sysrem Performance Achievable Using Synthetic Aperture Techniques with the Performance Achievable with More Conventional Means. Acoust. Soc, Am, 1985.(58): 336-348
    [24] S. Takuso, I. Osamu. Sequential Synthetic Aperture Sonar System-A Prototype of a Synthetic Aperture Sonar System. IEEE Trans. Sonics and Ultrasonics, 1977, (24): 253-259
    [25] G.Wade Editor. Acoustic Imaging. New York and London: Plenum Press, 1975:11-38
    [26] L. H. wade G. ed. Modern Acoustical Imaging. New York: IEEE Press, 1986: 453-462
    [27]冯若,超声手册.南京:南京人学出版社,1999: 21-26
    [28]查代奉,邱天爽,基于多层小波分解与稳定分布的超声图像散粒噪声抑制新方法[J],中国生物医学工程学报,2006, 25(1): 35-40.
    [29]张俊哲,超声成像检测技术评述,无损检测,1994,(2): 1-5
    [30]余厚全,黄载禄,屈万里,利用超声脉冲回波检查套管腐蚀与缺陷,测井技术,1997, 21(2): 129-131
    [31]孟祥玉,宁学涛,洪玉霞,井下成像技术在油田勘探开发领域的应用,焦作工学院学报,1999, 18(4): 254-256
    [32]柴满洲,向绪金,张庆生,杨清荣,井下电视测井系统在套管检测中的应用,测井技术,2002, 26(3): 242-246
    [33]胡大明,超声探伤,武汉:武汉测绘大学出版社,1996: 1-15
    [34]张凡,三维合成孔径聚焦成像的研究,[硕士学位论文],武汉:武汉大学,1998
    [35] G. R. Lockwood. J. R. Talman and S. S. Brunke. Real-time 3-D Ultrasound Imaging Using Sparse Synthetic Aperture Beam Forming. IEEE Trans. UFFC. 1998, 45(4): 980-988
    [36] R. L. Sanders, K. D. Fuehs. Borehole Imaging The Future of Formation Evaluation. Society of Professional Well Log Analysis, 1996, (7): 131-138
    [37]谭延栋,中国油气勘探测井技术的更新换代,测井技术,2000, 24(3): 163-167
    [38] A. J. Hayman et. al.胡恒山译,高分辨超声水泥胶结与套管腐蚀成像,国外测井技术,1991,6(6): 21-30
    [39]胡大明,超声探伤,武汉:武汉测绘大学出版社,1996:1-15
    [40]应崇福等,超声学,北京:科学出版社,1993:298-303
    [41]全国锅炉压力容器无损检测人员资格鉴定考核委员会,超声波探伤,北京:劳动人事出版社,1989
    [42]彭虎等,超声成像算法导论,合肥:中国科学技术大学出版社,2008.10: 122-124.
    [43] L. Weng, J. M. Reid, P. M. Shankar and K. Soetanto, Ultrasound speckle analysis based on the K-distribution. Acoust. 1991, 89: 2992-2995
    [44]孙宝坤,沈建中,合成孔径聚焦声成像(一),应用声学,1993,12(3): 43-45
    [45]陈雯柏,合成孔径技术在井壁超声成像系统的应用研究,[硕士学位论文],秦皇岛:燕山大学,2004
    [46] Case., G严碧歌,实时数字动态聚焦系统,国外医学:生物医学工程分册,1991,14(3): 164-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700