基于荧光寿命的光纤温度测量系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光光纤温度传感器是现代光纤传感技术领域研究的热点之一。许多测温场合条件特殊,对温度的测量可能造成一些实际的困难,在寻求温度传感器的其他替代手段的所有研究活动中,荧光光纤温度传感器以其抗电磁干扰、体积小、传输损耗低、耐腐蚀等优点正日益受到重视。
     在对国内外研究现状进行深入分析的基础上,提出了一种基于荧光寿命的双通道的光纤温度传感器,以实现特殊环境下温度的实时测量。
     论述荧光测量法的基本原理及特点,以及设计荧光光纤测温系统的总体方案。
     根据红宝石晶体的荧光特性,合理选择激发光源、滤光片及光电探测器。系统采用黄绿色超高亮发光二极管作为激励光源,低损耗石英光纤束作为光信号传输通道。对光源—光纤、光纤—探测器的耦合效率进行简要分析,为激发光纤和接受光纤的合理选择提供依据。
     提出一种利用锁相环技术测量荧光寿命的新方法。该方案具有锁相环路的特点,它利用相敏检波与调制技术,把荧光寿命转换成周期性输出信号,且荧光寿命与周期成正比。
     荧光信号检测系统,采用硅光敏三极管作为荧光信号探测器,8031单片机来测量荧光寿命。
     本研究的创新工作在于提出了基于荧光寿命的锁相测温法,系统采用与调制荧光信号相关的双光源相位锁定测量方案,实现荧光寿命在无激励光干扰情况下的实时测量。该系统具有较高的温度分辨率和灵敏度。
The fluorescence optical fiber temperature sensor is one of the interested problems that are researched in the field of modern optical fiber sensor technology. The situations of measurement temperature are specially, it is difficult to measure temperature for them, and so the other temperature sensor is searched in all research. The virtues of the fluorescence optical fiber temperature sensor are electromagnetic interference resisting, little bulk, low transmission loss, corrosion resisting. More and more attention is put on the fluorescence optical fiber temperature sensor.
    Based on thoroughly analyzing research present situation in home and abroad, the double-channels optical fiber temperature sensor based on fluorescence lifetime is purposed. It is the aim that the fluorescence optical fiber temperature sensor realizes real time measurement temperature in special environment.
    The basic principle and characteristic of fluorescence measurement method are discussed, and the total scheme of fluorescence optical fiber measurement temperature system is designed.
    Based on the fluorescence specific properties of ruby crystal are analyzed, excitation light source, optical filter and optical detector are used reasonably. The system uses the yellow green exceeded shine luminescence diode as the excited light source. The transmission channel of light signal is the low loss silicon optical fiber bundle. The coupling between optical fiber with light source and optical detector are simply analyzed in order to provide foundation for the reasonable selection of excitation and receiving optical fiber.
    A novel method for the detection of fluorescence lifetime that uses the technology of the phase-locked loop is proposed. With phase-sensitive detection technique and modulation technique in this scheme, the measured fluorescence lifetime is converted to a repetitive signal whose period is directly proportional to it.
    The system of fluorescence measurement uses the silicon photosensitive three-electrode tube as the detection of fluorescence signal. The 8031
    
    
    singlechip is used to measure fluorescence lifetime.
    The method of phase-locked measurement temperature based
    on fluorescence lifetime has been proposed as the main innovation work of this research. The system uses the scheme of double sources that relative to fluorescence signal modulated and phase-locked to measure temperature. The real time measurement of fluorescence lifetime is realized under no exciting light and no interference. This system has higher temperature resolution and response.
引文
1 靳伟,廖延彪,张志鹏.导波光学传感器:原理与技术.科学出版社,1998:217-249
    2 苏东波.光纤温度传感器发展现状.传感器技术,1995(6):1-5
    3 刘瑞复,史锦珊.光纤传感器及其应用.机械工业出版社,1987:39-40
    4 孙圣和,王延云,徐影.光纤测量传感技术.哈尔滨工业大学出版社,1991:138-139
    5 张友俊.荧光光纤温度传感器原理性实验系统的研制.传感器技术,1997,16(2):7-8
    6 张友俊.荧光光纤传感器的表面非接触测温.传感器技术,2001,20(6):49-50
    7 Z. Y. Zhang, K. T. V. Grattan and A. W. Pamler. Fiber optical temperature sensor based on the cross referencing between blackbody radiation and fluorescence lifetime. Rev. Sci. Instrum., 1992, 63 (5): 3177-3181
    8 Z. Y. Zhang, K. T. V. Grattan and A. W. Pamler. Phase-locked detection of fluorescence lifetime. Rev. Sci. Instrum., 1993, 64(9):2531-2533
    9 K. T. V. Grattan, A. W. Palmer. Fluorescence-based lifetime measurement thermometer for use at subroom temperature (200-300 K). Rev. Sci. Instrum., 1995,66(3):2611-2614
    10 K. T. V. Grattan, A. W. Palmer. Fluorescence-based lifetime measurement thermometer for use at subroom temperature(200-300 K). Rev. Sci. Instrum., 1995, 66(3):2611-2614
    11 A. Babnik, A. Kobe. Improved probe geometry for fluorescence-based fiber-optic temperature sensor. Sensors and Actuators, 1996(57):203-207
    12 T. Sun, Z. Y. Zhang and K. T. V. Gratta. Temperature dependence of the fluorescence life time in Pr~(3+): ZBLAN glass for fiber optic thermometry. Rev. Sci. Instrum., 1997, 68(9):3447-3451
    13 Z. Y. Zhang, K. T. V. Grattan. Fiber optic thermometry based on Cr-fluorescence in olivine crystals. Rev. Sci. Instrum., 1997, 68(6):2418-2421
    14 S. Collines, G. Baxter and S. Wade. Comparison of the fluorescence-based temperature sensors schemes: theoretical analysis and experimental validation. J. Appl. Phys., 1998(84):4649-4654
    15 Z. Y. Zhang, K. T. V. Grattan and A. W. Palmer. Characteristics of a high-temperature fiber-optic sensor probe. Sensors and Actuators A, 1998(64):231-236
    16 D. P. Jia, W. Lin. The realization of multi-channel fluorescent temperature measuring system. SPIE, 2000(4077): 264-266
    17 刘英,刘桂雄.一种红宝石光纤温度传感器的研究.光学精密工程,1998,6(1):5-6
    18 张友俊.非接触型荧光屏光纤温度传感器.传感器技术,1999,18(3):15-16
    19 沈永行.从室温到1800℃全程测温的蓝宝石单晶光纤温度传感器.光子学报,2000,20(1):30-32
    
    
    20 胡红利,张晓鹏.用荧光光纤温度传感器测试X射线探伤机高压包热场分布.High Voltage Apparatus, 2001, 37(3): 4-5
    21 T. Sun, Z. Y. Zhang and K. T. V. Grattan. Analysis of double exponential fluorescence decay behavior for optical temperature sensing. Rev. Sci. Instrum., 1997, 68(1):58-63
    22 Z. Y. Zhang, K. T. V. Grattann and A. W. Palmer. Fluorescence decay-time characteristics of erbiumdoped optical fiber at elevated temperatures. Rev. Sci. Instrum., 1997, 68(7):2764-2766
    23 Eric Maufice, Scott A. Wade and Stephen F. Collins. Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb~(3*)-doped silica fiber. Applied Optics, 1997, 36(2):8264-8268
    24 St. Franke, A. Dinldage and C. Wike. Absolute calibration of laser-induced fluorescence experiments by optical depth correction. Rev. Sci. Instrum., 2001, 72(4):2048-2050
    25 S. Wade, J. Muscat, S. Collins and G. Baxter. Nd~(3+)-doped optical fiber temperature sensor using the fluorescence intensity ratio technique. Rev. Sci. Instrum., 1999, 70 (11):4279-4282
    26 P. V. dos Santos, M. T. de Araujo. Optical Thermometry Through Infrared Excited Upconversion Fluorescence Emission in Er~(3+)-Yb~(3+)-doped Chalcogenide glasses. Ieee Journal Quantum Electronics, 1999, 35(2):395-399
    27 Z. Y. Zhang, K. T. V. Grattan and B. T. Meggitt. Characteristics of a high-temperature fibre-optic sensor probe. Sensors and Actuators A, 1998 (64): 231-236
    28 V. Femicola and L. Crovin. Cr: YAG fluorescence-delay for optical-fiber temperature sensor. Proc. SPIE, 1993(2070):472-477
    29 Z. Y. Zhang, K. T. V. Grattan and A. W. Palmer. Fiber-optic high-temperature sensor based on the fluorescence lifetime of alexandrite. Rev. Sci. Instrum., 1992, 63(8):3869-3873
    30 Z. Y. Zhang, K. T. V. Grattan and A. W. Palmer. Thermal characteristics of alexandrite fluorescence decay at high temperature, induced by a visible laser diode emission. J. Appl. Phys., 1993, 73(7): 3493-3498
    31 F. Anghel, C. Lliescu and K. T. V. Grattan. Fluorescent-based lifetime measurement thermometer for use at subroom temperatures (200-300k). Rev. Sci. Instrum., 1995, 66(3):2611-2614
    32 K. T. V. Grattan, A. W. Palmer. Temperature dependences of fluorescence lifetimes in Cr~(3+)-doped insulating crystals. Physical Review B, 1993, 48(11):7772-7778
    33 罗先和,张广军,路飞等.光纤检测技术.北京航天航空大学出版社,1995:93-95
    34 D. P. Jia, W. Lin. The realization of multi-channel fluorescent temperature measuring system. Proceedings of SPIE, 2000(4077): 264-267
    35 A. Babnik, A. Kobe. Improved probe geometry for fluorescence-based fiber-optic temperature sensor. Elsevier Science S. A., 1996: 203-207
    
    
    36 K. A. Wickersheim and M. H. Sun. Fiber-optic thermometry and its applications. Journal of Microwave Power, 1987, 22(2):85-94
    37 Z. Y. Zhang, K. T. V. Grattan and A. W. Palmer Fluorescence decay-time characteristics of erbiumdoped optical fiber at elevated temperature. Rev. Sci. Instrum., 1997, 68 (7):2764-2766
    38 季雄,李郁章,王海波.荧光光纤传感器.仪表技术与传感器,1998 (7):6-9
    39 吕海宝,颜树华,罗武胜.激光光电检测周防科技大学,2000:142-144
    40 中国计量出版社组.通用模拟电路.中国计量出版社,2001:34
    41 中国计量出版社组.测量与传感电路.中国计量出版社,2001:45-46
    42 廖延彪.光纤光学.清华大学出版社,2000:54-55
    43 杨性愉.光学检测原理与技术.内蒙古大学出版社,1995:262-276
    44 吴运昌编著.模拟集成电路原理及应用.华南理工大学出版社,1995:125-127
    45 张厥盛,邓继禹,万心平编.锁相技术.西北电讯工程学院出版社,1986:45-46
    46 叶嘉雄,常大定,陈汝钧.光电系统与信号处理.科学出版社,1997:260-261
    47 肖文,崔瑜.光纤传感器系统中的功能光学.光子学报,1997(29):41-45
    48 林立忠,宋敏.微弱信号检测方法及仪器.国防工业大学出版社,1994:207
    49 吴兴惠,王彩君.传感器与信号处理.电子工业出版社,1998:169-170
    50 中国计量出版社组编.通用数字电路.中国计量出版社,2001:45
    51 方德寿,方佼,杨达永.实用电子手册.国防工业出版社,1999:30
    52 沙占友.智能化集成温度传感器原理与应用.机械工业出版社,2002:154-160
    53 栾桂冬,张金铎,金欢阳.传感器及其应用.西安电子科技大学出版社,2002:96
    54 沈德金,陈粤初.MCS-51系列单片机接口电路与应用程序实例.北京航空航天大学出版社,1990:45-46
    55 孙育才.MCS-51系列单片微型计算机及其应用.东南大学出版社,1992:30-32
    56 刘教民.MCS-51系列单片机与数字式温度传感器的接口设计.电测仪表,1990,27(10):41-42
    57 何立民.单片机应用技术选编.北京航空航天大学出版社,1992:5-6
    58 俞应华,黄寅.等精度频率测量技术在单片机系统中的应用.现代计量测试,1998(3):21-23
    59 刘晋.8031测量频率的方法研究.电子测量技术,1998(1):27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700