数字智能三分量力平衡加速度传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数字信号处理与网络技术的发展,地震观测及工程测振对传感器的精度、可靠性等性能指标的要求越来越高。本文研究目的是将模拟量输出的力平衡加速度传感器、数据采集、计算、触发判断、数据传输和数据存储等功能集于一体,组成高精度、低功耗的智能数字式输出加速度传感器,为今后强震观测提供了有力的技术支持。本论文主要包括以下内容:
     1提出了将高精度数字采集与控制系统应用于加速度传感器构成数字智能传感器的方案。方案的特点在于采用高精度24位A/D模数转换器,以高速信号处理器为控制核心,具有高精度、大动态范围、功耗低、体积小等特性。
     2对模拟量输出的力平衡传感器的工作原理及电路进行理论分析。在理论分析的基础上,提出了电路改进方案,设计了数字化集成相敏解调与正弦波振荡器,并通过实验测试,改进了其性能。
     3采用磁导法和有限元分析的方法对传感器的磁路特性进行了设计分析与仿真研究,并与测量数据进行对比分析,结果表明两种方法都能满足传感器磁路设计的要求,但有限元分析的方法更为准确。
     4对传感器的零位电压与环境温度之间的关系进行了原理分析,并进行了高低温实验,采用最小二乘法对传感器的零位电压与温度变化的数据进行分析,分析了采用不同曲线拟合方法的误差,并设计了传感器的温度补偿电路。指出采用二次、三次曲线拟合进行温度特性补偿可以减小零位温度漂移,采用高次曲线拟合虽能进一步减小误差影响,但其计算复杂会影响系统运行效率。
     5研制成数字智能三分量力平衡加速度传感器的样机。给出了数字智能加速度传感器系统的传递函数与特性,分析了其在有限硬件资源条件下,对完整TCP/IP协议进行优化方法,移植了适用于智能传感器数据传输的嵌入式TCP/IP协议和基于网页交互控制的嵌入式WebServer协议;实现了基于CF卡的嵌入式文件系统以完成数据的采集与存储;设计了基于IIR带通滤波器的传感器触发采集机制,并对滤波器的性能进行测试。
     6在对传感器传递函数特性分析的基础上,进一步分析了采用线性相位与最小相位数字滤波器对传感器特性的影响。通过激光干涉法与自标定法对传感器特性进行了测试与分析。通过传感器幅频与相频特性测试,利用实验数据对传感器的传递函数进行了辨识分析。分析并研究了传感器横向灵敏度和敏测角对传感器性能的影响。
     7设计了基于虚拟仪器的传感器自标定测试分析系统;比较分析了传感器不同标定方法测定结果之间误差产生原因和不同标定方法所适用的范围。分析并测试了基于反馈闭环式传感器的噪声特性与动态范围,认为基于力平衡式传感器相对于开环加速度传感器提高了动态范围与频响特性,但是对于传感器的自身噪声特性并无改善,为了提高传感器的噪声特性,必须改进传感器的结构与电路设计。
     8对数字智能三分量力平衡加速度传感器的样机的主要性能进行了详细的测试,获得了理想的实验数据。
With the development of digital signal processing and network technology,vibration sensor must have higher accuracy and reliability. Digital intelligentaccelerometer can perform data acquisition, control calculation, triggerjudgment and data transmission. It has the characteristic of high precisionand low power consumption. On the basis of original analog force balanceaccelerometer, the intelligent digital output accelerometer is studied toprovide technical support for the strong motion observation. This dissertationmainly includes the following work:
     1This paper presents a scheme of digital smart accelerometer combinedwith high-precision digital acquisition system and control system. Thecharacteristics of the scheme are using high-precision24-bit A/D converter,high-speed signal processor as the controller. The accelerometers have largedynamic range, low power consumption and small size features.
     2This paper analyzes the operating principle of force balanceaccelerometer. Under the basis of theoretical analysis, the circuit design ofdigital integrated demodulation and sine wave oscillator is performed and theimprovement is experimental tested.
     3The accelerometer magnetic circuit is analyzed with permeance methodand finite element method. Measurement data show that both methods canmeet the requirement of the sensor magnetic circuit design, but finite elementanalysis method is more accurate.
     4The relationship between drift voltage of the accelerometer and theambient temperature is studied using the least squares method through thetemperature experimental test. Error brought up by using different curvefitting methods is tested. The temperature compensation circuit is designedfor the accelerometer. This paper points out that quadratic and cubic curvefitting for temperature compensation can reduce the temperature voltage drift.Although the high curve fitting is able to further minimize the drift, whichalso increase the computational complexity and affect the efficiency ofsystem operation.
     5The prototype of intelligent tri-axial force balance accelerometer isdeveloped. Transfer function of digital accelerometer is studied by analyzingits working principle. Under the conditions of limited hardware resources,the method for optimize the TCP/IP protocol is studied, which can be used inthe embedded system of the intelligent sensor for the data transmission andweb-based interactive control. Embedded file system based on CF card isdesigned for data collection and storage. Strong motion records trigger filterare designed for the accelerometer, and its performance is tested.
     6In this paper, the transfer function and characteristic parameters areanalyzed. Linear phase and minimum phase digital filters used in digitalprocession are introduced which have different features and different usage scope. Features of accelerometer are tested by laser interferometry methodand self calibration method. The transfer function fitting analysis isperformed by experimental data using least squares fitting method. Thecross-axis sensitivity and misalignment angle are measured and analyzed,which would affect the accelerometer performance.
     7The accelerometer calibration system based on virtual instrument isdesigned for testing the factor of sensor. The differences arising from usingdifferent calibration method are comparative analyzed to make it clear theapplication scope of the methods. The noise characteristics and dynamicrange of digital accelerometer are analyzed.
     8Digital tri-axial accelerometer is tested in detail, and experimental datashows that its performance achieve the expected the design requirements.
引文
[1]白瑞林,张道.可移植嵌入式文件系统的设计与实现[J].计算机工程,2008,242(3):249-250.
    [2]蔡亚先.面对21世纪的地震观测技术与传感器[J].国际地震动态,2004,5:1-5.
    [3]陈亮,杨春勇,潘显章.基于摆式重力仪的电容测微相敏检波器研究[J].传感技术学报,2009,22(8):1127-1131.
    [4]程佩青.数字信号处理教程[M].北京:清华大学出版社,2007,202-291.
    [5]崔庆谷,朱小毅,薛冰.反馈网络对地震计性能的影响[J].地震地磁观测与研究,2002,23(3):9-14.
    [6]崔庆谷.反馈式地震计的性能设计与噪声测量研究[D].中国地震局地球物理研究所,2003,8:36-40.
    [7]稻叶保.振荡电路的设计与应用[M].何希才,尤克译.北京:科学出版社,2004:79-85.
    [8]顾启泰,刘学斌.Levy方法的改进[J].航空学报,1997,18(6):735-738.
    [9]高晋占.微弱信号监测[M].北京:清华大学出版社,2004:3-7.
    [10]过润秋,郑晓东,王成.加速度计静态温度模型辨识及温度补偿方法研究[J].西安电子科技大学学报,2007,34(3):438-442.
    [11]黄振平.强震仪[M].北京:地震出版社,1988:161-163.
    [12]海深,陆阳,周正,等.嵌入式文件系统的实现及性能改进[J].合肥工业大学学报,2007,30(3):265-267.
    [13]洪小丽,戴一帆.改善电感测微仪二次测量电路精度的措施[J].国防科技大学学报,2003,25(3):100-103.
    [14]华成英,童诗白.模拟电子技术基础[M].4th ed.北京:高等教育出版社,2006,402-404.
    [15]康华光.电子技术基础模拟部分[M].北京:高等教育出版社,1988:410-413.
    [16]龙毅,丁键,李松茂.力平衡式传感器磁路的温度稳定性分析[C].重庆:第三届中国功能材料及其应用学术会议,1998.
    [17]雷军,李学政,冯永革.从20年国际地学计划中看地震观测台网与现代数字地震仪的发展[J].地球物理学进展,2004,19(4):819-827.
    [18]李德葆,陆秋海.工程振动实验分析[M].北京:清华大学出版社,2004,9:52-55.
    [19]李彩华.力平衡加速度传感器设计分析[J].传感器技术,2005,24(8):46-47.
    [20]李枚.磁路温度特性对力平衡加速度计精度的影响研究[J].传感器与微系统,2008,27(10):63-65.
    [21]李彬,郑宾,刘佳钰.加速度计横向灵敏度测试方法研究[J].航空兵器,2008,6:14-17.
    [22]李小军,周正华,于海英,等.汶川8.0级地震强震动观测及记录初步分析[C/OL].汶川地震建筑震害调查与灾后重建分析报告,北京:中国建筑工业出版社,2008.http://www.csmnc.net/selnewxjx1.asp?id=747.
    [23]梁志国,耿书雅.基于傅里叶变换的正弦信号源波形失真评价方法[J].计量学报,2004,25(4):357-360.
    [24]刘海涛,温志渝,温中泉.电容式微加速度传感器信号处理电路的设计[J].传感技术学报,2006,19(5):2190-2196.
    [25]刘佳钰,郑宾.惯性加速度计横向灵敏度测量方法及特性分析[J].弹箭与制导学报,2008,28(4):49-51.
    [26]刘金星,等.伺服系统传递函数的全数字测量方法[J].电子测量技术,2010,33(9):8-10.
    [27]刘静纨.最小二乘法在系统辨识中的应用[J].北京建筑工程学院学报,2004,20(3):19-22.
    [28]刘君华.智能传感器系统[M].西安:西安电子科技大学出版社,1999:5-7.
    [29]刘凯,等.MEMS传感器和智能传感器的发展[J].仪表技术与传感器,2007,9:9-11.
    [30]刘庆伟,庄灿涛,刘惠宁.FBS-3A型反馈式宽频带地震计的传递函数[J].地震学报2001,23(1):79-86.
    [31]刘迎春,叶湘滨.现代新型传感器原理与应用[M].北京:国防工业出版社,2000,5.
    [32]刘育梁,何俊,王永杰,等.光纤地震波探测的研究进展[J].激光与光电子学进展,2009,46(11):21-28.
    [33]罗军舟,等.TCP/IP协议及网络编程技术[M].北京:清华大学出版社,2004,10:1-5.
    [34]艾费科,等.数字信号处理实践方法[M].北京:电子工业出版社,2004,357-35.
    [35] Paul Horowitz, Winfield Hill.电子学[M].2nd ed.吴利民,等译.北京:电子工业出版社,2005.
    [36]马洁美.基于斜对称轴结构的差容式力平衡地震计的研制[D].北京:中国地震局地球物理研究所,2006,7:27-30.
    [37]莫冰,谭晓昀,刘晓为.电容检测型微机械陀螺的信号检测电路[J].仪器仪表学报,2005,26(8),325-326.
    [38]潘显,张昱.力平衡式三轴微加速度计的设计与分析[J].纳米技术与精密工程,2006,4(2):141-145.
    [39]任枭,刘瑞丰,等.中国数字地震台网所使用的仪器及其传递函数的计算方法[J].地震地磁观测与研究,2009,30(5):113-119.
    [40]史维祥,由昌德.系统辨识基础[M].上海:上海科学技术出版社,1988,1:137-142.
    [41]史謌.地球物理学基础[M].北京:北京大学出版社,2002:29-30.
    [42]单成祥,牛彦文,张春.传感器原理与应用[M].北京:国防工业出版社,2006,96-97.
    [43]邵玉平,等.用于地震观测的瞬态滤波器仿真研究[J].地震地磁观测与研究,2009,30(3):90-93.
    [44]史君成,等.LabWindows虚拟仪器设计[M].北京:国防工业出版社,2007,4:185-187.
    [45]孙丽明.TMS320F2812原理及其C语言程序设计[M].北京:清华大学出版社,2008,12:3-5.
    [46]孙晓云,等.基于LabWindows/CVI的虚拟仪器设计与应用[M].北京:电子工业出版社,2005,7.
    [47]童诗白.模拟电子技术基础[M].北京:高等教育出版社,1988,452-453.
    [48]王家行,胡振荣.SLJ型宽频带大动态力平衡三分向加速度计的设计与研制[J].地震地磁观测与研究,1997,18(5):46-52.
    [49]王田苗.嵌入式系统设计与实例开发-基于ARM处理器与μC/OS-Ⅱ实时操作系统[M].北京:清华大学出版社,2003.
    [50]王喜珍,腾云田.地震传感器的新技术与发展[J].地球物理学进展,2010,25(4):478-485.
    [51]王以真.实用磁路设计[M].北京:国防工业出版社,2008,9:41-42.
    [52]王永瑞,熊剑平.基于CF卡的特定FAT文件系统的软硬件设计与实现[J].仪器仪表学报,2008,29(4):190-193.
    [53]谢礼力,于双久,等编著.强震观测与分析原理[M].北京:地震出版社,1982.
    [54]夏宏玉,尚建忠.仪器仪表零件结构设计[M].长沙:国防科技大学出版社,2001,2:13-16.
    [55]肖茂森.PIC单片机芯片在电涡流传感器温度补偿中的应用[D].西安:西安建筑科技大学,2005,55-57.
    [56]熊凯,范永坤,吴钦章.嵌入式虚拟动态信号分析仪的设计[J].光学精密工程,2009,17(5):1026-1031.
    [57]徐科军.传感器动态特性的实用研究方法[M].合肥:中国科学技术大学出版社,1998,7:2-5.
    [58]徐宁寿.系统辨识技术及其应用[M].北京:机械工业出版社,1986,12:105-109.
    [59]严蔚敏,吴伟民.数据结构:C语言版[M].北京:清华大学出版社,1997,63-65.
    [60]杨大克,罗艳.地震仪器的发展[J].防灾技术高等专科学校学报,2005,7(2):19-23.
    [61]有史以来我国共发生过18次8级地震[OL].http://www.ceic.ac.cn/contents/background/background4.jsp.
    [62]杨宝清.现代传感器技术基础[M].北京:中国铁道出版社,2001:64-66.
    [63]杨学山.工程振动测量仪器和测试技术[M].北京:中国计量出版社,2001:52-54.
    [64]杨振宇,刘志言,沈毅.力平衡加速度计在线动态测试方法的实验研究[J].世界地震工程,2007,23(1):43~46.
    [65]杨晓源.数字地震观测中的线性和最小相位滤波[J].四川地震,2005,2:1-5.
    [66]姚放吾,徐漫江.嵌入CompactFlash卡接口设计[J].计算机应用研究,2004,21(6):225-227.
    [67]于梅,孙桥,冯源,等.正弦逼近法振动传感器幅相特性测量技术的研究[J].计量学报,2004,25(4):344-348.
    [68]于梅.三轴向振动加速度校准系统的研究[J].计量学报,2010,31(6):517-519.
    [69]郁有文,常建.传感器原理及工程应用[M].西安:西安电子科技大学出版社,2000,66-68.
    [70]喻泽成,刘铁英.嵌入式TCP/IP协议实现的特点[J].电测与仪表,2005,42(475):51-53.
    [71]张海涛,阎贵平.MEMS加速度传感器的原理及分析[J].电子工艺技术,2003,24(6):260-265.
    [72]张宇峰,刘晓为,陈伟平.力平衡MEMS加速度计的系统级建模与仿真[J].半导体学报,2008,29(5):917-921.
    [73]赵杰,李军强,等.用于抑震的磁流变阻尼器磁路设计与力学性能研究[J].振动与冲击,2010,29(11):139-142.
    [74]赵维谦,谭久彬,刘冰峰,等.改善调幅式传感器测量电路精度的措施[J].仪器仪表学报,2001,22(3):247-250.
    [75]郑玲,李以农,胡勇,等.磁流变减震器磁路设计与结构优化[J].振动工程学报,2008,21(2):173-178.
    [76]郑重,滕云田,周鹤鸣.BKD-2型反馈式宽频带地震计传递函数分析[J].地震地磁观测与研究.2001,22(3):7-12.
    [77]周立功,等.ARM嵌入式系统软件开发实例[M].北京:北京航空航天大学出版社,2005,8:248-250.
    [78]周雍年.中国大陆的强震观测[J].国际地震动态,2006,11:1-6.
    [79]中国地震局.DB/T10-2001数字强震动加速度仪[S]//全国地震标准化技术委员会.北京:地震出版社,2002:16-19.
    [80] A. AMINI and M.D. TRIFUNAC A note on optimum frequency and damping for optically recording strong motion accelerographs[J]. Soil Dynamics and Earthquake Engineering,1982,1(4):189-194.
    [81] A.V. Oppenheim and R.W. Schafer. Discrete-Time Signal Processing[M]. UpperSaddle River, NJ: Prentice-Hall,1999.
    [82] Akira Umeda, Mike Onoe, et al. Calibration of three-axis accelerometers using a three-dimensional vibration generator and three laser interferometers[J]. Sensor and Actuators A: Physical,2004,114:93-101.
    [83] Ali Amini. Mihailo Trifunac. Analysis of a feedback transducer[R]. Los Angeles: US. University of Southern California Department of Civil Engineering,1983.
    [84] Chae Junseok, Kulah Hal, Najafi Khalil. Amonolithic three-axis micro-g micro-g micromachined silicon capacitive accelerometer[J]. Jouranal of Microelectromechanical System,2005,14(2):235-240.
    [85] Elena I. Novikova, M. D. Trifunac, M. EERI. Digital Instrument ResponseCorrection for the Force-Balance Accelerometer[J]. Earthquake Spectra,1992,8(3):429-442.
    [86] Iwan W D, Moser M A, Peng C Y. Some Observations on Strong-MotionEarthquake Measurement Using a Digital Accelerograph[J]. Bulletin of theSeismological Society of America,1985,75(5):1225-1246.
    [87] J. C. Candy, G. C. Temes, Oversampling Delta-Sigma Data Converters: Theory, Design and Simulation[M]. IEEE Press,1992.
    [88] Jon S. Wilson. Sensor Technology Handbook[M]. Linacre House, JordanHill,Oxford OX28DP, UK,2005:102-105.
    [89] Jeremy Bentham. TCP/IP lean web server for embedded systems[M]. CMP books,Lawrence, Kansas,2002.
    [90] Kyung Il Lee, Hidekuni Takao, Kazuaki Sawada, et al. Low temperature dependence three-axis accelerometer for high temperature environments with temperature control of SOI piezoresistors[J]. Sensors and Actuators,2003:53-60.
    [91] Leiner, Barry et al. A Brief History of the Internet[OL]. Internet Society.http://www.isoc.org/internet/history/brief.shtml.
    [92] Levi, E.C. Complex-Curve Fitting[J]. IRE Trans. on Automatic Control,1959,4(1):37-44.
    [93] Ljung, L. System Identication: Theory for the User, Information and Systems Science,2nd edition,1999Prentice-Hall, Englewood Clis, New Jersey.
    [94] Low-power, Multi-channel Decimation Filter[G/OL]. Cirrus Logic, Inc. CS5376A Product data Sheet, CS5376A_F4.pdf.2008. http://www.cirrus.com/en/products/cs5376a.html.
    [95] Low-power, High-performance ΔΣ Modulators[G/OL]. Cirrus Logic, Inc.2009, CS5371/72Product data Sheet, CS5371-72_F2.pdf. http://www.cirrus.com/en/products/cs5371a.html.
    [96] MARIA I.TODOROVSKA. Cross-axis sensitivity of accelerographs with pendulum like transducers-mathematical model and the inverse problem[J]. Earthquake Engineering and Strucral Dynamics,1998,27:1031-1051.
    [97] Richard C. Dorf, Robert H. Bishop. Morden Control System[M], BeiJing: Science Press,2002,173-177.
    [98] R. Fielding, et al. Hypertext Transfer Protocol-HTTP/1.1[OL]. http://www.w3.org/Protocols/rfc2616/rfc2616.html.
    [99] Richard G. Lyons. Understanding Digital Signal Processing[M]. Upper SaddleRiver, NJ: Prentice-Hall,2004.
    [100]S. A. Dyer, J. S. Dyer. Least-squares fitting of data by rational functions:Levy’s method (Part1)[J]. IEEE Instrument Meas. Mag,2009,12(6):40-43.
    [101]Streckeisen STS-2broadband sensor[OL]. http://www.passcal.nmt.edu/cotent/instrumentation/sensors/broadband-sensors/sts-2-bb-sensor.
    [102]STS-2.5High-Performance Portable Very-Broad-Band Triaxial Seismometer[OL]. http://www.kinemetrics.com/p-81-STS-2.aspx.
    [103]Saeed V. Vaseghi. Advanced Digital Signal Processing and Noise Reduction,2ed. Wiley&Sons Ltd, Baffins Lane, Chichester, West Sussex, PO191UD,England.2000,25-27.
    [104]Trifunac M.Todorovska. M Evolution of Accelerographs, Data Processing, Strong Motion Arrays and Amplitude and Spatial Resolution in Recording Strong Earthquake Motion[J]. Soil Dynamics and Earthquake Engineering.2001,21(6):537-555.
    [105]Takashi Usuda, Christof WeiBenbom, et a1. Theoretical and experimental investigation of transverse sensitivity of aceelerometers under multiaxial excitation[J]. Measurement Science and Technology,2004,(15):896-904.
    [106]Vladimir Graizer. The Response to Complex Ground Motions of Seismometerswith Galperin Sensor Configuration[J]. Bulletin of the Seismological Society ofAmerica,2009,99(2):1366-1377.
    [107]Wielandt, E., G. Streckeisen. The Leaf-Spring Seismometer: Design andPerformance[J]. Bulletin of the Seismological Society of America,1982,72(6):2349-2367.
    [108]W. E. Farrell, J. Berger. Seismic System Calibration:1.Parametric Models[J].Bulletin of the Seismological Society of America,1979,69(1):251-270.
    [109]W. Richard Stevens. TCP/IP Illustrated, Vol.1: The Protocols[M]. Addison-Wesley Professional Computing Series by Boston,1998.
    [110]Wang, L. Gawthrop, P. J. On the estimation of continuous time transfer functions[J]. Int. J. Control,2001,74(9):889-904.
    [111]Wielandt E, Steim J M. A Digital Very-Broad-Band Seismograph[J]. AnnalesGeophysicae,1986,4(3):227-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700