相干布居数囚禁原子钟性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相干布居数囚禁(Coherent Population Trapping, CPT)原子钟具有体积小、功耗低、长期频率稳定度较好等特点,可广泛用于微小卫星、水下通讯设备、通信基站、导弹等领域。以改善CPT原子钟的性能,减小其体积和功耗为目标,论文对CPT原子钟的各组成部分性能展开研究和优化,工作主要涉及CPT原子钟的伺服电路设计、信号检测电路优化、锁频环路优化和物理系统优化四部分,成果包括:
     1.完成CPT原子钟伺服电路的数字化设计和实现。设计出高度数字化的伺服电路,并通过现场可编程门阵列实现。减小了原子钟电路的体积和功耗,降低了温度漂移,提高了抗干扰能力,并方便了各种智能化操作的执行。该工作还为设计伺服电路的专用集成芯片打下基础。
     2.改进信号检测电路,包括光检电路、滤波器和相敏解调电路。改进了光检放大电路,既提高了信号检测的精度,又扩大了动态范围。设计了数字滤波器代替模拟滤波器,提高了短期频率稳定度,降低了功耗;与传统数字滤波器相比,所设计的数字滤波器所占用的逻辑资源大幅度减少。设计并实现了两种对相敏解调电路的优化方案。这两种方案完全省去了数字滤波器,在保持短期频率稳定度基本不变的同时,使设计大为简化,对数字伺服的主控芯片功能要求降低,能大幅降低功耗,适用于对低功耗有特殊要求的原子钟。
     3.优化锁频环路,改进锁频控制器、频率扫描方式并优化环路参数。设计了多种变步长锁频控制器,克服了传统锁频控制器具有多个平衡点、存在稳态误差、纠偏速度和短期频率稳定度不能兼容等缺点。通过算法实现了对受到振动和冲击等情况造成的频率偏差进行识别和校正,提高了变步长锁频控制器在拟合区之外和受到外界干扰时恢复正常工作状态的能力。通过改进锁频控制器的结构,消除了晶振频率漂移速率变化引起的频率误差,提高了原子钟频率的长期稳定性。对锁频环路积分时间的影响进行分析,得出了小型CPT原子钟和微型CPT原子钟适用的不同控制速率,并提高了短期频率稳定度。通过改变锁频环路的频率扫描方式,提高了CPT原子钟的频率复现性,并使输出频率精确可调。
     4.改进物理系统,提高原子钟性能。设计研制出用于垂直腔面发射半导体激光器的精密温控电路。研究了吸收泡中不同缓冲气体配比时原子钟的温度频移,通过调节配比、改变吸收泡工作温度,抑制了温度频移。通过计算和实验得出了零温度频移点和缓冲气体配比的关系,据此可根据吸收泡的工作温度选取最佳配比。对C场线圈结构进行改进,提高了吸收泡内磁场的均匀性和稳定性。
Passive coherent population trapping (CPT) atomic clocks can be widely used in microsatellites, submarine communication devices, telecommunication stations, missile guidance, etc., due to its small scale, low power dissipation and relatively good long-term frequency stability. This work focused on the research and improvement of components and performances of CPT atomic clocks. The aim is to get better frequency stability, smaller size and lower power dissipation, so as to improve the property and expand the application of CPT atomic clocks. The work involves the design of servo circuit, and the improvement of signal detecting circuit, frequency locking loop and physical package. Significant results are as follows.
     1. The digital servo of CPT atomic clocks is designed and realized by using a field programmable gates array (FPGA). The highly digitalized servo minimized the size and power dissipation of the atomic clock, decreased the total temperature drift of devices, enhanced the anti-jamming ability, and supplied a convenient environment to implement intelligent operations. Besides, the design provided a scheme easily to be transformed into application specific integrated circuit (ASIC) for miniature CPT atomic clock.
     2. The signal detection circuit, including the optical detection circuit, the filters, and the phase-sensitivity demodulation circuit is improved,. The improved optical detection circuit covered both wide dynamic range and high sensitivity. We designed a digital filter to replace the original analog one, which improved the short-term stability and decreased the power dissipation. The logic resource required by the digital filter is highly saved by advancing its structure, compared to the traditional digital filter. We also developed two kinds of phase-sensitivity demodulation schemes which need no filters. Though the short-term stability slightly decreased, the selection or design of main control chip is simplified, so the power dissipation is potential to be highly decreased. Therefore they are especially fit for the applications require extremely low power dissipation.
     3. The frequency locking loop is optimized by means of improving frequency locker, frequency scanning method and parameters fo the loop. We developed several variable-step frequency lockers to replace the old ones, which had the shortages of multiple stationary points, stead-state error, and lack of balance between correction speed and short-term stability. Algorithms are designed to recognize and handle circumstances that the clock is suffering vibration or shock. The stead-state error caused by the inconstant frequency drift speed of oscillator is also eliminated by changing the locker's structure, so that the long-term stability is improved. We also analyzed the influence of integration time of the frequency locking loop, indentified best control speeds for small size and miniature CPT atomic clocks, relatively, and improved the short-term stability. The frequency retrace is also improved by changing the frequency scanning method, and the frequency accuracy is simultaneously enhanced.
     4. The structure of physical package is developed and the performance of the atomic clock is improved. We designed a special precise temperature-control system for vertical-cavity surface-emitting lasers (VCSEL). We also suppressed the temperature-frequency drift by studying the drift in different buffer gases ratios, modulating the ratio, and changing the operation temperature of the vapor cell. The work enables people to modulate the buffer gases ratio into best point according to the operation temperature the cell required, by the way of calculating the relation between inversion temperature and ratio. The work on C-field coil structure improved the uniformity and stability of magnetic field in the cell.
引文
[1]翟造成,张为群,蔡勇,杨佩红.原子钟基本原理与时频测量技术[M].上海:上海科学技术文献出版社,2009:81-82.
    [2]王义遒,王庆吉,傅济时,董太乾.量子频标原理[M].北京:科学出版社,1986.
    [3]费立刚,朱钧,张书练.光学频率标准与光钟的实现[J].光学与光电技术,2006,4(6):55-59.
    [4]Predehl K., Grosche G., Raupach S. M. F., Droste S., Terra O., Alnis J., Legero T., Hansch T. W., Udem T., Holzwarth R., Schnatz H. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science,2012,336(6080):441-444.
    [5]Chou C. W., Hume D. B., Koelemeij J. C. J., Wineland D. J., Rosenband T. Frequency comparison of two high-accuracy Al+ optical clocks[J]. Physical Review Letters,2010, 104(7):070802.
    [6]Vig J. R. Military applications of high accuracy frequency standards and clocks[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1993,40(5): 522-527.
    [7]Kusters J. A., Adams C. A. Performance requirements of communication base station time standards[J]. RF Design,1999:28-38.
    [8]Vanier J. Atomic clocks based on coherent population trapping:a review[J]. Applied Physics B-Lasers and Optics,2005,81(4):421-442.
    [9]Cyr N., Tetu M., Breton M. All-optical microwave frequency standard:a proposal[J]. Instrumentation and Measurement, IEEE Transactions on,1993,42(2):640-649.
    [10]Alzetta G., Gozzini A., Moi L., Orriols G. Experimental-method for observation of RF transitions and laser beat resonances in oriented Na vapor[J]. Nuovo Cimento Della Societa Italiana Di Fisica B-General Physics Relativity Astronomy and Mathematical Physics and Methods,1976,36(1):5-20.
    [11]Arimondo E. Coherent population trapping in laser spectroscopy[M]. Progress in Optics, Vol 35.1996:257-354.
    [12]Thomas J. E., Hemmer P. R., Ezekiel S., Leiby C. C., Jr., Picard R. H., Willis C. R. Observation of Ramsey fringes using a stimulated, resonance Raman transition in a sodium atomic beam[J]. Physical Review Letters,1982,48(13):867-870.
    [13]Vanier J., Godone A., Levi F. Coherent population trapping in cesium:Dark lines and coherent microwave emission[J]. Physical Review A,1998,58(3):2345-2358.
    [14]Vanier J., Levine M., Kendig S., Janssen D., Everson C., Delaney M. Practical realization of a passive coherent population trapping frequency standard[C]. Frequency Control Symposium and Exposition,2004. Proceedings of the 2004 IEEE International.2004. 92-99.
    [15]Wynands R., Nagel A. Precision spectroscopy with coherent dark states[J]. Applied Physics B-Lasers and Optics,1999,68:1-25.
    [16]Brandt S., Nagel A., Wynands R., Meschede D. Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz[J]. Physical Review A,1997,58(2):1063-1066.
    [17]Xu J. H., Alzetta G. High buffer gas pressure perturbation of coherent population trapping in sodium vapors[J]. Physics Letters A,1998,248:80-85.
    [18]Affolderbach C., Nagel A., Knappe S., C. J., Wiedenmann D., Wynands R. Nonlinear spectroscopy with a vertical-cavity surface-emitting laser(VCSEL)[J]. Applied Physics B-Lasers and Optics,2000,70:407-413.
    [19]Kitching J., Knappe S., Vukicevic M., Hollberg L., Wynands R., Weidmann W. A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor[J]. Instrumentation and Measurement, IEEE Transactions on,2000,49(6): 1313-1317.
    [20]Knappe S., Wynands R., Kitching J., Robinson H. G., Hollberg L. Characterization of coherent population-trapping resonances as atomic frequency references[J]. Journal of the Optical Society of America B,2001,18(11):1545-1553.
    [21]Kitching J., Hollberg L., Knappe S., Wynands R. Compact atomic clock based on coherent population trapping[J]. Electronics Letters,2001,37(24):1449-1451.
    [22]Micro-PNT-Clocks[EB/OL]. http://www.darpa.mil/Our_Work/MTO/Programs/Micro-Technology_Positioning,_Navigation and_Timing_%28Micro-PNT%29/Clocks.aspx.
    [23]Kitching J., Knappe S., Hollberg L. Miniature vapor-cell atomic-frequency references[J]. Applied Physics Letters,2002,81(3):553-555.
    [24]Lutwak R., Emmons D., English T., Riley W., Duwel A., Varghese M., Serkland D. K., Peake G. M. The chip-scale atomic clock-recent development progress[C].35th Annual Precise Time and Time Interval (PTTI) Meeting. Reston, VA, USA,2003.467-478.
    [25]Kitching J., Knappe S., Schwindt P. D. D., Shah V, Hollberg L., Liew L. A., Moreland J. Power dissipation in a vertically integrated chip-scale atomic clock[C]. Frequency Control Symposium and Exposition,2004. Proceedings of the 2004 IEEE International.2004. 781-784.
    [26]李孝辉,杨旭梅,刘娅,张慧君,施韶华.时间频率信号的精密测量[M].北京:科学出版社,2010.
    [27]Allan D. W. Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators[J]. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on,1987, UFFC-34(6):647-654.
    [28]Vanier J., Levine M. W., Janssen D., Delaney M. J. The coherent population trapping passive frequency standard [Rb example][J]. Instrumentation and Measurement, IEEE Transactions on,2003,52(2):258-262.
    [29]Vanier J., Audoin C. The quantum physics of atomic frequency standards[M]. England: IOP Publishing Ltd.,1989.
    [30]Vanier J., Godone A., Levi F., Micalizio S. Atomic clocks based on coherent population trapping:basic theoretical models and frequency stability[C]. Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum,2003. Proceedings of the 2003 IEEE International.2003.2-15.
    [31]Lutwak R., Rashed A., Varghese M., Tepolt G., LeBlanc J., Mescher M., Serkland D., Geib K., Peake G., Romisch S. The chip-scale atomic clock-prototype evaluation[C].39th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting. Long Beach, CA,2007.269-290.
    [32]Serkland D. K., Geib K. M., Peake G. M., Lutwak R., Rashed A., Varghese M., Tepolt G., Prouty M. VCSELs for atomic sensors[C]. SPIE 6484, Vertical-Cavity Surface-Emitting Lasers XI. Bellingham:Spie-Int Soc Optical Engineering,2007.48406-48406.
    [33]Al-Samaneh A., Haidar M. T., Wahl D., Michalzik R. Polarization-stable single-mode VCSELs for Cs-based miniature atomic clocks[C]. Lasers and Electro-Optics Europe (CLEO EUROPE/EQEC),2011 Conference on and 12th European Quantum Electronics Conference.2011.1-1.
    [34]Kargapoltsev S. V, Kitching J., Hollberg L., Taichenachev A. V., Velichansky V. L., Yudin V. I. High-contrast dark resonance in σ+-σ- optical field[J]. LASER PHYSICS LETTERS, 2004,1(10):495-499.
    [35]Grabherr M., Wiedenmann D., Jaeger R., King R. Fabrication and performance of tuneable single-mode VCSELs emitting in the 750 to 1000 nm range[C]. Proc. SPIE 5737, Vertical-Cavity Surface-Emitting Lasers Ⅸ.2005.120-128.
    [36]Strekalov D., Matsko A. B., Savchenkov A. A., Nan Y., Maleki L. Practical aspects of the active-loop chip-scale atomic clock[C]. Lasers and Electro-Optics,2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006.,2006.1-2.
    [37]Zhu M., Cutler L. S. Theoretical and experimental study of light shift in a CPT-based rb vapor cell frequency standard[C].32nd Annual Precise Time and Time Interval (PTTI) Meeting. Reston, VA, USA,2000.311-323.
    [38]Vanier J., Levine M. W., Kendig S., Janssen D., Everson C., Delaney M. J. Practical realization of a passive coherent population trapping frequency standard[J]. Instrumentation and Measurement, IEEE Transactions on,2005,54(6):2531-2539.
    [39]Gerginov V., Knappe S., Shah V., Schwindt P. D. D., Hollberg L., Kitching J. Long-term frequency instability of atomic frequency references based on coherent population trapping and microfabricated vapor cells[J]. Journal of the Optical Society of America B, 2006,23(4):593-597.
    [40]Vanier J. Determining and setting the frequency modulation index of a laser in a CPT frequency standard. United States, US2008/0317025 A1[P].2008.
    [41]Deng K., Guo T, Su J., Guo D., Liu X., Liu L., Chen X., Wang Z. Full hyperfine frequency modulation in the implementation of coherent population trapping atomic clocks[J]. Physics Letters A,2009,373(12-13):1130-1132.
    [42]Kahanov M., Ben-Aroya I., Eisenstein G. An atomic clock based on a VCSEL-driven CPT resonance and a small 87Rb vapor cell[C]. Quantum Electronics and Laser Science Conference,2007. QELS'07.2007.1-2.
    [43]Knappe S., Schwindt P., Shah V., Hollberg L., Kitching J., Liew L., Moreland J. Microfabricated atomic frequency references[C]. Frequency Control Symposium and Exposition,2004. Proceedings of the 2004 IEEE International.2004.87-91.
    [44]Gerginov V., Knappe S., Shah V., Hollberg L., Kitching J. Laser noise cancellation in single-cell CPT clocks[J]. Instrumentation and Measurement, IEEE Transactions on,2008, 57(7):1357-1361.
    [45]Camparo J., Huang M., Coffer J. Laser polarization noise & CPT atomic clock signals[C]. Frequency Control Symposium,2007 Joint with the 21st European Frequency and Time Forum. IEEE International.2007.1056-1059.
    [46]Huang M., Camparo J. The influence of laser polarization variations on CPT atomic clock signals[C]. Frequency Control and the European Frequency and Time Forum (FCS),2011 Joint Conference of the IEEE International.2011.1-4.
    [47]Knappe S., Velichansky V., Robinson H. G., Kitching J., Hollberg L. Compact atomic vapor cells fabricated by laser-induced heating of hollow-core glass fibers[J]. Review of Scientific Instruments,2003,74(6):3142-3145.
    [48]Zhu M., Cutler L. S., Berberian J. E., DeNatale J. F., Stupar P. A., Tsai C. Narrow linewidth CPT signal in small vapor cells for chip scale atomic clocks[C]. Frequency Control Symposium and Exposition,2004. Proceedings of the 2004 IEEE International. 2004.100-103.
    [49]Liew L.-A., Knappe S., Moreland J., Robinson H., Hollberg L., Kitching J. Microfabricated alkali atom vapor cells[J]. Applied Physics Letters,2004,84(14): 2694-2696.
    [50]Knappe S., Gerginov V., Schwindt P. D. D., Shah V., Robinson H. G., Hollberg L., Kitching J. Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability[J]. Optics Letters,2005,30(18):2351-2353.
    [51]Gong F., Jau Y. Y., Jensen K., Happer W. Electrolytic fabrication of atomic clock cells[J]. Review of Scientific Instruments,2006,77(7):076101-076103.
    [52]Douahi A., Nieradko L., Beugnot J. C., Dziuban J., Maillote H., Guerandel S., Moraja M., Gorecki C., Giordano V. Vapour microcell for chip scale atomic frequency standard[J]. Electronics Letters,2007,43(5):33-34.
    [53]Su J., Deng K., Guo D.-Z., Wang Z., Chen J., Zhang G.-M., Chen X.-Z. Stable 85 Rb micro vapour cells:fabrication based on anodic bonding and application in chip-scale atomic clocks[J]. Chinese Physics B,2010,19(11):110701.
    [54]Hasegawa M., Chutani R. K., Gorecki C., Boudot R., Dziuban P., Giordano V, Clatot S., Mauri L. Microfabrication of cesium vapor cells with buffer gas for MEMS atomic clocks[J]. Sensors and Actuators A:Physical,2011,167(2):594-601.
    [55]Kitching J., Knappe S., Liew L., Moreland J., Robinson H. G., Schwindt P., Shah V., Hollberg L. Microfabricated atomic frequency references[C]. Frequency and Time Forum, 2004. EFTF 2004.18th European.2004.23-28.
    [56]Eklund E. J., Shkel A. M., Knappe S., Donley E., Kitching J. Glass-blown spherical microcells for chip-scale atomic devices[J]. Sensors and Actuators A:Physical,2008, 143(1):175-180.
    [57]DeNatale J. F., Borwick R. L., Tsai C., Stupar P. A., Lin Y., Newgard R. A., Berquist R. W., Zhu M. Compact, low-power chip-scale atomic clock[C]. Position, Location and Navigation Symposium,2008 IEEE/ION.2008.67-70.
    [58]Knappe S., Kitching J., Hollberg L., Wynands R. Temperature dependence of coherent population trapping resonances[J]. Applied Physics B-Lasers and Optics,2002,74(3): 217-222.
    [59]Boudot R., Dziuban P., Xiaochi L., Hasegawa M., Chutani R., Galliou S., Giordano V., Gorecki C. Dark line resonances in Cs-Ne vapor microcells for chip scale atomic clocks[C]. Frequency Control and the European Frequency and Time Forum (FCS),2011 Joint Conference of the IEEE International.2011.1-5.
    [60]Camparo J. C., Coffer J. G., Townsend J. J. Reducing PM-to-AM conversion and the light-shift in laser-pumped, vapor-cell atomic clocks[C]. Frequency Control Symposium and Exposition,2004. Proceedings of the 2004 IEEE International.2004.134-136.
    [61]Lutwak R., Rashed A., Serkland D. K., Peake G. M., Varghese M., Tepolt G., Leblanc J. R., Mescher M. The miniature atomic clock-pre-production results[C]. Frequency Control Symposium,2007 Joint with the 21st European Frequency and Time Forum. IEEE International.2007.1327-1333.
    [62]Deng K., Guo T., He D. W., Liu X. Y., Liu L., Guo D. Z., Chen X. Z., Wang Z. Effect of buffer gas ratios on the relationship between cell temperature and frequency shifts of the coherent population trapping resonance[J]. Applied Physics Letters,2008,92(21): 211104-211103.
    [63]Kozlova O., Boudot R., Guerandel S., de Clercq E. Temperature dependence cancellation of the Cs clock frequency in the presence of Ne buffer gas[J]. Instrumentation and Measurement, IEEE Transactions on,2011,60(7):2262-2266.
    [64]Deng K., Chen X., Wang Z. Minimization of the temperature coefficient of resonance frequency shift in the coherent population trapping clock[J]. Optics Letters,2011,36(10): 1740-1742.
    [65]Hasegawa M., Dziuban P., Nieradko L., Douahi A., Gorecki C., Giordano V. Fabrication of wall-coated Cs vapor cells for a chip-scale atomic clock[C]. Optical MEMS and Nanophotonics,2008 IEEE/LEOS Internationall Conference on.2008.162-163.
    [66]Kazakov G. A., Litvinov A. N., Matisov B. G., Romanenko V. I., Yatsenko L. P., Romanenko A. V. Influence of the atomic-wall collision elasticity on the coherent population trapping resonance shape[J]. Journal of Physics B:Atomic, Molecular and Optical Physics,2011,44(23):235401.
    [67]Ben-Aroya I., Kahanov M., Eisenstein G. A CPT-based 87Rb atomic clock employing a small spherical glass vapor cell[C].38th Annual Precise Time and Time Interval (PTTI) Meeting. Reston, VA, USA,2006.259-270.
    [68]Liew L., Moreland J., Knappe S., Shah V., Schwindt P., Gerginov V., Kitching J., Hollberg L. Microfabricated alkali atom vapor cells with in-situ heating for atomic-based sensors[C]. Porceeding of 3th International Symposium on Sensor Science. Juelich, Germany,2005.181-183.
    [69]Lutwak R., Riley W., Varghese M., Lablanc J., Tepolt G., Mescher M., Serkland D. K., Geib K. M., Peake G. M. The chip-scale atomic clock-low-power physics package[C]. 36th Annual Precise Time and Time Interval (PTTI) Meeting. Washington. DC, USA, 2004.1-12.
    [70]Youngner D. W., Lust L., Carlson D. R., Lu S. T., Forner L. J., Chanhvongsak H. M., Stark T. D. A manufacturable chip-scale atomic clock[C]. Solid-State Sensors, Actuators and Microsystems Conference,2007. TRANSDUCERS 2007. International.2007.39-44.
    [71]Gerginov V., Knappe S., Schwindt P. D. D., Shah V., Liew L., Moreland J., Robinson H. G., Hollberg L., Kitching J., Brannon A., Breitbarth J., Popovic Z. Component-level demonstration of a microfabricated atomic frequency reference[C]. Frequency Control Symposium and Exposition,2005. Proceedings of the 2005 IEEE International.2005. 758-766.
    [72]Kitching J., Knappe S., Liew L., Schwindt P. D. D., Gerginov V, Shah V, Moreland J., Brannon A., Breitbarth J., Popovic Z., Hollberg L. Chip-scale atomic frequency references[C]. Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005). Long Beach, CA, USA,2005. 1662-1669.
    [73]Lutwak R., Vlitas P., Varghese M., Mescher M., Serkland D. K., Peake G. M. The MAC-a miniature atomic clock[C]. Frequency Control Symposium and Exposition,2005. Proceedings of the 2005 IEEE International.2005.752-757.
    [74]Lutwak R. The chip-scale atomic clock-recent developments[C]. Frequency Control Symposium,2009 Joint with the 22nd European Frequency and Time forum. IEEE International.2009.573-577.
    [75]Deng J., Vlitas P., Taylor D., Perletz L., Lutwak R. A commercial CPT rubidium clock[C]. Proceedings of 22th European Frequency and Time Forum.2008.22-25.
    [76]Brannon A., Breitbarth J., Popovic Z. A low-power, low phase noise local oscillator for chip-scale atomic clocks[C]. Microwave Symposium Digest,2005 IEEE MTT-S International.2005.1535-1538.
    [77]Nguyen C. T. C., Kitching J. Towards chip-scale atomic clocks[C]. Solid-State Circuits Conference,2005. Digest of Technical Papers. ISSCC.2005 IEEE International.2005. 84-85.
    [78]Brannon A., Jankovic M., Breitbarth J., Popovic Z., Gerginov V., Shah V., Knappe S., Hollberg L., Kitching J. A local oscillator for chip-scale atomic clocks at NIST[C]. International Frequency Control Symposium and Exposition,2006 IEEE.2006.443-447.
    [79]Kahanov M., Ben-Aroya I., Eisenstein G. An optimized frequency locked loop in a small scale CPT based rubidium atomic clock[C]. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. Optical Society of America,2008.
    [80]Audoin C., Candelier V, Diamarcq N. A limit to the frequency stability of passive frequency standards due to an intermodulation effect[J]. Instrumentation and Measurement, IEEE Transactions on,1991,40(2):121-125.
    [81]Knappe S., Shah V, Gerginov V., Brannon A., Hollberg L., Kitching J. Long-term stability of NIST chip-scale atomic clock physics packages[C].38th Annual Precise Time and Time Interval (PTTI) Meeting. Reston, VA,2006.241-250.
    [82]Shah V., Schwindt P. D. D., Gerginov V, Knappe S., Hollberg L., Kitching J. Active light shift stabilization in modulated CPT clocks[C]. International Frequency Control Symposium and Exposition,2006 IEEE.2006.699-701.
    [83]Knappe S., Schwindt P., Shah V., Hollberg L., Kitching J., Liew L., Moreland J. A chip-scale atomic clock based on 87Rb with improved frequency stability[J]. Optics Express,2005,13(4):1249-1253.
    [84]Jau Y. Y., Miron E., Post A. B., Kuzma N. N., Happer W. Push-pull optical pumping of pure superposition states[J]. Physical Review Letters,2004,93(16):160802.
    [85]Zhang Y, Qu S., Gu S. Spin-polarized dark state free CPT state preparation with co-propagating left and right circularly polarized lasers[J]. Optics Express,2012,20(6): 6400-6405.
    [86]Rosenbluh M., Shah V, Knappe S., Kitching J. Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields[J]. Optics Express, 2006,14(15):6588-6594.
    [87]Taichenachev A. V, Yudin V. I., Velichansky V. L., Zibrov S. A. On the unique possibility of significantly increasing the contrast of dark resonances on the D1 line of Rb-87[J]. Jetp Letters,2005,82(7):398-403.
    [88]Zibrov S. A., Novikova I., Phillips D. F., Walsworth R. L., Zibrov A. S., Velichansky V. L., Taichenachev A. V, Yudin V. I. Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks[J]. Physical Review A,2010,81(1): 013833.
    [89]Mikhailov E. E., Horrom T., Belcher N., Novikova I. Performance of a prototype atomic clock based on lin|| lin coherent population trapping resonances in Rb atomic vapor[J]. Journal of the Optical Society of America B,2010,27(3):417-422.
    [90]杨晶,刘国宾,顾思洪.平行线偏光激发CPT共振方案实验研究[J].物理学报,2012, 61(4):043202.
    [91]Jau Y. Y., Post A. B., Kuzma N. N., Braun A. M., Romalis M. V., Happer W. Intense, narrow atomic-clock resonances[J]. Physical Review Letters,2004,92(11):110801.
    [92]Post A. B., Jau Y. Y, Kuzma N. N., Braun A. M., Lipp S. End resonances for atomic clocks [M].35th Annual Precise Time and Time Interval Meeting.2004:445-455.
    [93]Kwakernaak M., Lipp S., McBride S., Zanzucchi P., W. Chan, Khalfin V., An H., Whaley R., Willner B., Ulmer A., Li J., Braun A., Abeles J., A. Post, Jau Y.-Y., Kuzma N. N., Happer W. Components for batch-fabricatable chip-scale atomic clocks[C].36th Annual Precise Time and Time Interval (PTTI) Meeting. Washington. DC,2004.355-368.
    [94]Braun A. M., Davis T. J., Kwakernaak M. H., Michalchuk J. J., Ulmer A., Chan W. K., Abeles J. H., Shellenbarger Z. A., Jau Y.-Y, Gong F., Happer W., McClelland T., Fruehauf H., Drap R., Weidemann W., Variakojis M. RF-interrogated end-state chip-scale atomic clock[C].39th Annual Precise Time and Time Interval (PTTI) Meeting. Long Beach, CA, USA,2007.233-248.
    [95]Zhu M. High contrast signal in a coherent population trapping based atomic frequency standard application[C]. Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum,2003. Proceedings of the 2003 IEEE International.2003.16-21.
    [96]Shah V., Knappe S., Hollberg L., Kitching J. High-contrast coherent population trapping resonances using four-wave mixing in 87Rb[J]. Optics Letters,2007,32(10):1244-1246.
    [97]Shah V., Knappe S., Hollberg L., Kitching J. Generation of coherent population trapping resonances with nearly 100% transmission contrast[C]. Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International.2007. 1339-1341.
    [98]Zanon T., Tremine S., Guerandel S., Emeric de C., Holleville D., Dimarcq N., Clairon A. Observation of Raman-Ramsey fringes with optical CPT pulses[J]. Instrumentation and Measurement, IEEE Transactions on,2005,54(2):776-779.
    [99]Zanon T., Tremine S., Guerandel S., Dahes F., de Clercq E., Clairon A., Dimarcq N. Recent results on a pulsed CPT clock[C]. Frequency Control Symposium and Exposition, 2005. Proceedings of the 2005 IEEE International.2005.774-777.
    [100]Boudot R., Guerandel S., de Clercq E., Dimarcq N., Clairon A. Current status of a pulsed CPT Cs cell clock[J]. Instrumentation and Measurement, IEEE Transactions on,2009, 58(4):1217-1222.
    [101]Peter Y., Yi Z., Guobin L., Wei D., You L., Sihong G. Multipulse Ramsey-CPT interference fringes for the 87 Rb clock transition[J]. EPL (Europhysics Letters),2012, 97(6):63004.
    [102]Guo T., Deng K., Chen X., Wang Z. Atomic clock based on transient coherent population trapping[J]. Applied Physics Letters,2009,94(15):151108.
    [103]刘国宾.相干布居囚禁的实验与理论研究[D].武汉:中国科学院研究生院,2010.
    [104]Shah V. Microfabricated atomic clocks based on coherent population trapping[D]. Boulder, CO, USA:University of Colorado,2007.
    [105]Steck D. A. Rubidium 87 D Line Data[EB/01]. http://steck.us/alkalidata.2010.
    [106]Firstenberg O., Shuker M., Ben-Kish A., Fredkin D. R., Davidson N., Ron A. Theory of Dicke narrowing in coherent population trapping[J]. Physical Review A,2007,76(1): 013818.
    [107]Clarke P. FDSOI roadmap renames next node as 14-nm[EB/OL]. http://www.eetimes.com/electronics-news/4403224/FDSOI-roadmap-renames-20-nm-node-as-14-nm.
    [108]Disalvo F. J. Thermoelectric cooling and power generation[J]. Science,1999,285: 703-706.
    [109]赵劫成,陈杰华,吴红卫,顾思洪.一种被动型相干布居数囚禁原子频标的全数字伺服装置.中国,发明专利,ZL201010299497.3[P].2012.
    [110]高晋占.微弱信号检测(第1版)[M].北京:清华大学出版社,2004:154-156.
    [111]姚天任,江太辉.数字信号处理(第二版)[M].武汉:华中科技大学出版社,2000:107-120,204-214.
    [112]管至中,恪夏.,孟桥.信号与线性系统[M].北京:高等教育出版社,2004.
    [113]Full differential analog input 24-bit,192-kHz stereo A/D converter[EB/01]. www.ti.com, 2001.
    [114]Hogenauer E. An economical class of digital filters for decimation and interpolation[J]. IEEE Trans. Acoust., Speech, Signal Process.(1975-1990),1981,ASS-29:15-162.
    [115]Donadio M. P. CIC filter introduction[EB/01]. http://www.dspguru.com/dsp/tutorials/cic-filter-introduction.2000.
    [116]Singh R. K., Richa, Katiyar A. Design and implementation of CIC based decimation filter for improved frequency response[C]. Emerging Trends in Electronic and Photonic Devices Systems,2009. ELECTRO'09. Int. Conf.,2009.236-240.
    [117]Zhao J., Wu H., Gu S. Digital filter design for cpt atomic clocks and FPGA realiazation[J]. Journal of Convergence Information Technology,2012,7(4):97-105.
    [118]Knappe S. MEMS atomic clocks[M]. Comprehensive Microsystems. Oxford:Elsevier, 2008:571-612.
    [119]Crystal oscillator[EB/01]. http://en.wikipedia.org/wiki/Crystal_oscillator#Crystal_cuts,2013.
    [120]屈八一.CPT原子钟、星载钟及时频测控领域的新技术研究[D].西安:西安电子科技大学,2010.
    [121]孙德宝,王永骥,王金城.自动控制原理[M].北京:化学工业出版社,2002:72-75.
    [122]Corless R. M., Gonnet G. H., Hare D. E. G., Jeffrey D. J., Knuth D. E. On the Lambert W Function[J]. Advances in Computational Mathematics,1996,5:329-359.
    [123]Riehle F. Frequency standards-basics and applications[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA,2004.
    [124]Lear K. L., Mar A., Choquette K. D., Kilcoyne S. P., Schneider R. P., Geib K. M. High-frequency modulation of oxide-confined vertical cavity surface emitting lasers[J]. Electronics Letters,1996,32(5):457.
    [125]张肃文,陆兆熊.高频电子线路(第三版)[M].北京:高等教育出版社,1993:536-537.
    [126]杜润昌,刘国宾,陈杰华,王谨,刘朝阳,顾思洪.相干布居数囚禁原子频标的实现及相关实验参数研究[J].光谱学与光谱分析,2008,28(8):1697-1770.
    [127]Levi F., Godone A., Vanier J. The light shift effect in the coherent population trapping cesium maser[J]. Ultrasonics Ferroelectrics and Frequency Control, IEEE Transactions on, 2000,47(2):466-470.
    [128]Vanier J., Levine M. W., Janssen D., Delaney M. J. On the use of intensity optical pumping and coherent population trapping techniques in the implementation of atomic frequency standards[J]. Instrumentation and Measurement, IEEE Transactions on,2003, 52(3):822-831.
    [129]赵劫成,杨晶,屈苏平,顾思洪.CPT原子频标温度频移实验研究[C].2011全国时间频率会议.北京,2011.101-103.
    [130]Strumia F., Beverini N., Moretti A., Rovera G. Optimization of the buffer gas mixture for optically pumped Cs frequency standards[C].30th Annual Symposium on Frequency Control.1976.468-472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700