电容层析成像系统的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电容层析成像(ECT)技术是基于电容敏感机理的过程层析成像(PT)技术。ECT系统具有非侵入、响应速度快、成本低等优点,可提供封闭管道及容器内部二维/三维可视化信息,在工业过程参数可视化检测应用中是一种非常有发展潜力的技术。
    本文的研究内容主要包括传感器的结构参数优化设计,图像重建算法研究以及硬件系统设计。主要研究内容和结果如下:
    1、编写了基于Matlab的ECT系统仿真软件包。软件包可自动建立8电极、12电极和16电极的二维/三维传感器模型;可计算灵敏度系数分布,绘制二维/三维灵敏度系数分布图。逆问题部分实现了反投影算法、动态滤波反投影算法、RBF神经网络算法以及SVM算法。
    2、传感器的结构参数优化设计。对传感器敏感场的灵敏度分布进行了研究,分析了电极数目、结构参数对敏感场的影响,并以此对传感器的结构参数进行了优化设计;以四面体作剖分单元构成三棱柱六面体成像单元,实现了用线性插值函数的三维有限元剖分,建立了ECT传感器的三维有限元模型;给出了传感器三维敏感场的灵敏度分布,分析了其轴向响应特性,得出了介质分布沿轴向变化时的三维仿真计算结果。
    3、动态滤波反投影算法的提出。基于敏感场分布的不均匀性,对滤波反投影算法进行了修正,提出了动态滤波反投影算法。
    4、基于RBF网络的图像重建。对RBF网络在图像重建中的应用进行了探讨。
    5、基于支持向量机的图像重建研究。提出了基于C-支持向量分类机的图像重建算法;提出了一种基于支持向量机的四层神经网络算法用于三相流图像重建;实现了基于支持向量机的三维图像重建,进行了仿真实验。
    6、硬件系统设计。构建了一套ECT系统样机,设计方案中应用了嵌入式技术和CAN总线等技术,获得了大量的实验数据,为进一步的研究奠定了基础。
Electrical capacitance tomography(ECT)based on capacitance sensing array isa kind of process tomography (PT). It has the advantages of being non-intrusive,fast in response and low in cost. It can acquire visible 2D/3D distributioninformation of closed pipeline or vessel. The visible technique is of a greatdeveloping potential in industrial process parameter measurement .
    Although ECT technique has achieved great progress in the recent twenty years,and various performance indexes have been improved. But this falls short of actualapplications in industrial processes, many foundational researches need also to bedone in the future.
    In this thesis, the author studied mainly three aspects, i.e. optimum design ofstructure parameter of capacitance sensing array electrode, reconstruction algorithmand hardware design of ECT system. The following achievements have beenobtained:
    1 The development of the simulation software package of ECT system
    The simulation software package of ECT system based on Matlab has beendeveloped, which can be used in 2D/3D simulation according to demands. Itincludes forward problem and inverse problem. The 2D/3D models of 8-electrode,12-electrode and 16-electrod can be constructed automatically in solving forwardproblem. To counter different model, the dissection and finite element computationcan be done. The 2D/3D sensitivity distribution (map) of ECT sensors can beobtained. The inverse problem is called as reconstruction algorithms, which includeback projection method and active filter back projection method improved by author,and moreover, the simulation of images reconstruction is performed using RBFneural network and SVM method
    2 The optimum design of structure parameter of sensing array electrode
    The sensing filed in ECT system is called as ‘ soft-filed ' , which isinhomogeneous,‘ill posed' ,nonlinear and mainly relies on the structure parameterof array electrode. The sensitivity distribution is calculated by using the 2D finite
    element method (FEM). The effect of the number and the structure parameters ofarray electrode on the field uniformity are analyzed . A set of optimum parametersof sensing array electrode based on this method is obtained .In order to study ECTsensor in detail, a 3D capacitance model based on the FEM has been developed.Four-node tetrahedron elements are used for 3D meshing, six-node pentahedronelements which are made up of four-node tetrahedron elements are used as imageconstruction elements, in this way an linear interpolation function can be used inthis method. The effect of medium distribution in the axial direction is analyzed byusing calculating results of sensitivity distribution, and 3D simulation results aregiven.3 The presentation of the active filter back projection methodBased on inhomogenous of sensitivity distribution distribution the active filterback projection method is presented by improving filter back projection method.Simulation results show that the new method is superior to the classical filter backprojection method4 The applying the RBF neural network to the image reconstructionThe ECT is a typical nonlinear mapping problem, and the mapping model isdifficult to be described analytically. A neural network offers a general frameworkfor representing nonlinear function mapping from several input variables to severaloutput variables. In fact the image reconstruction based on neural network isprovided with nonlinear mapping from sampling capacitance data to pixel values.The RBF neural network provided a good properties of approximation, classifyand convergence. There is a liner relationship between network weight value andoutput value. It has no local minimum problem, and it is an optimization networkcompared with other forward networks. The applying the RBF neural network to thereconstruction is studied5 The investigating image reconstruction based on Support VectorMachine(SVM)The capacitance tomography is a typical small samples and nonlinear mappingproblem. Support vector machines (SVM) is based on the special small samplestheory with strong generalization ability, and is selected as an optimal theory for
    small samples classify problem.The ECT image reconstruction algorithms based on C-SVM is proposed. In thispaper a novel training method is proposed to improve the efficiency of C-SVMclassifier by selecting active penalty parameters;an image reconstruction algorithmbased on C-SVM is proposed by using four-layers neural network for three-phaseflow. The 3D image reconstruction algorithm is implemented by simulation.6 Hardware design of ECT systemAn ECT system is designed and developed successfully. The embeddedtechnique and CAN bus are applied in the design. The system possesses the stability,flexibility,expansibility and can reconstruct relatively good images.
引文
[1]Dickin F J,Hoyle B S, et al.Tomographic imaging of industral process equipment: techniques and applications,IEE Proceedings-G,1992, 139(1):72~82
    [2]Huang S M,Plaskowski,et al.Tomographic imaging of industrial process equipment: techniques and applications. J.Phys.E.1989, 22(3): 173~177
    [3]Xie C G,Plaskowski A,et al.8-electrode capacitance system for two-component flow identification part 1: Tomographic flow imaging, IEE Proceedings Pt.A,1989,136(4):173~183
    [4]Xie C G,Huang S M,et al.Transputer-based electrical capacitance tomography for real-time imaging of oilfield flow pipeline, Tomography Techniques for Process Design and Operation, Southamphton: Computer Mechanics, 1992, 333~346
    [5]Fasching G E,Smith N S.A capacitance system for three-dimensional imaging of a fluidized beds.Rev.Sci.Instrum,1992,62(9):2243~2251
    [6]Halow J S,Nicoletti P.Observation of fluidized bed coalescence using capacitance imaging.Powder Technology,1992,69:255~277
    [7]Brodowicz K and Maryniak L et al. Application of capacitance tomography for pneumatic conveying process, Tomography Techniques for Process Design and Operation, Southamphton: Computer Mechanics, 1992, 361~368
    [8]Isaksen Φ,Dico A S,Hammer E A. A capacitance-based tomography system for interface measurement in separation vessels, Meas. Sci. Technol,1994, 5(10):1262~1271
    [9]Johansen G A, FrΦystein T,et al. The development of a dual mode tomography for three-component flow imaging, The Chemical Engineering Journal,1995, 56:175~182
    [10]Johansen G A,FrΦystein T,et al. A dual sensor flow imaging tomographic system, Meas. Sci. Technol, 1996, 7(3):297~307
    [11]Wang S J,Dyakowski T,et al. Real time capacitance imaging of bubble formation at the distributor of a fluidized bed, The Chemical Engineering Journal,1995, 56:95~100
    [12]Waterfall R C,White N B,et al. Combustion imaging from electrical impedance measurements, Meas. Sci. Technol,1996,7(3):369~374
    [13]Liu S,Yang W Q,et al. Investigation of square fluidized beds using capacitance tomography: preliminary results, Meas. Sci. Technol, 2001,12(8):1120~1125
    [14]Warsito W,Fan L-S.Neural network based multi-criterion optimization image reconstruction technique for imaging two-and three-phase flow systems using electrical capacitance tomography, Meas. Sci. Technol, 2001,12:2198-2210
    [15]Nooralahiyan A Y, Hoyle B S.Three-component tomographic flow imaging using artifical neural network reconstruction, Chemical Engineering Science, 1997, 52: 2139~2148
    [16]Warsito W,Fan L-S.ECT imaging of three-phase fluidized bed based on three-phase capacitance model,Chemical Engineering Science,2003, 58:823~832
    [17]Yan Hua,Shao FuQun,Xu Hui,et al.Three-dimensional electrical capacitance tomography sensing fields,Meas. Sci. Technol,1999,10: 717~725
    [18]Pugsley T, Tanfara H, Malcus S. Verification of fluidized bed electrical capacitance tomography measurements with a fibre optic probe,Chemical Engineering Science, 2003,58:3923~3934
    [19]王海刚,刘石,杨五强等,电容层析成像算法研究与软件设计,仪器仪表学报,2004,25(6):701~704
    [20]Yang W Q. Calibration of capacitance tomography systems:a new method for setting system measurement range. Meas. Sci. Technol.1996, 7:863~867
    [21]Yang W Q. Hardware design of electrical capacitance tomography systems, Meas. Sci. Technol. 1996, 7(3):225~232
    [22]Nooralahiyan A Y, Hoyle B S and Bailey N J. Neural network for pattern association in electrical capacitance tomography.IEE Proceedings-Circuits Devices Syst. 1994,Dec.,141(6):517~521
    [23]Polydorides N, Lionheart W R B.Amatlab toolkit for three-dimensional electrical impedance tomography:a contribution to the electrical impedance and diffuse optical reconstruction software project, Meas. Sci. Technol, 2002, 13:1871~1883
    [24]Xie C G, Huang S M, et al.Electrical capacitance tomography for flow imaging: system model for development of imaging reconstruction algorithms and design of primary sensors, IEE Proceedings-G, 1992, 139(1):89~98
    [25]马西奎,电磁场理论及应用,西安:西安交通大学出版社,2000
    [26]王增和,王培章,卢春兰,电磁场与电磁波,北京:电子工业出版社,2001
    [27]盛剑宏,电磁场数值分析,北京:科学出版社,1984
    [28]李开泰,有限元方法及应用,西安:西安交通大学出版社,1992
    [29]曾余庚,电磁场有限单元法,北京:科学出版社,1982
    [30]倪光正,钱秀英,电磁场数值计算,北京:高等教育出版社,1996
    [31]李忠元,电磁场边界元素法,北京:北京工业出版社,1987
    [32]夸克工作室,有限元分析基础篇 ANSYS 与 Matlab,北京:清华大学出版社,2002
    [33]王学辉,张明辉,Matlab 6.1 最新应用详解,北京:中国水利水电出版社,2002
    [34]闻新,周露,王丹力等,Matlab 神经网络应用设计,北京:科学出版社,2002
    [35]何世钧,王化祥,周勋等,基于三维有限元的电容层析成像正问题仿真,河南科学,2005,23(2):183~188
    [36]颜华,邵富群,王师等,电容层析成像传感器软场性能分析,东北大学学报(自然科学版),1999,20(5):457~460
    [37]Yan Hua, Shao FuQun, Xu Hui,et al.Three-dimensional analysis of electrical capacitance tomography sensing fields,Meas Sci Technol, 1999, (10):717~725
    [38]Khan S H,Abdullah F, Finite Element Modelling of Multielectrode Capacitive System for Flow Imaging,IEE Proc G,1993, 140(3):216~222
    [39]Xie C G,Stott A L,Plaskowski A,et al. Design of Capacitance Electrodes for Concentration Measurement of Two-Phase Flow, Meas Sci Technol, 1990,(1):65-78.
    [40]郭红星,余胜生,冯纪先等,多电极传感器的参数优化设计,武汉大学学报(自然科学版),2000,46(5):637~640
    [41]王化祥,张立峰,朱学明,电容层析成像系统阵列电极的优化设计,天津大学学报,2003,36(3):307~310
    [42]张立峰,电容层析成像系统的设计及应用研究:[硕士学位论文],天津;天津大学,2004
    [43] Xie C G.Mass flow measurement of solid in a gravity drop conveyor using capacitance transducer:[ Ph.D.Thesis], UMIST, Manchester, U.K., 1988
    [44]王保良,电容层析成像技术在两相流参数检测中的应用:[博士学位论文],杭州;浙江大学,1998
    [45]Reinecke N,Mewes D.Recent development and industrial research applications of capacitance tomography,Meas.Sci.Technol,1996,7: 233~246
    [46]Su B,Zhang Y,Peng L,et al.The use of simultaneous iterative reconstruction technique for electrical capacitance tomography, Chem.Eng,2000,77:37~41
    [47]Liu S,Fu L,Yang W Q.Optimization of an iterative image reconstruction algorithm for electrical capacitance tomography,Meas.Sci.Technol, 1999,10: 37~39
    [48]Yan H,Liu L J,Xu H,et al. Image reconstruction in electrical capacitance tomography using multiple linear regression and regularization,Measurement Science and Technology,2001,12(5):575~581.
    [49]Nooralahiyan A Y,Hoyle B S,Bailey H J. Neural network for pattern association in electrical capacitance tomography, IEE Proc-Circuits Devices Syst,1994,141(6): 517~521
    [50]Nooralahiyan A Y,Hoyle B S. Three-component tomographic flow imaging using artifical neural network reconstruction,Chemical Engineering Science, 1997, 52(13): 2139~2148.
    [51]Warsito W,Fan L-S. Neural network based multi-criterion optimization image reconstruction technique for imaging two-and three-phase flow systems using electrical capacitance tomography,Meas.Sci.Technol, 2001,12:2198~2210
    [52]Ge S M, Yang W Q. Filtering in image reconstruction for electrical capacitance tomography,In: 2nd World Congress on Industrial Progress Tomography. Hannover, Germany, 29th-31st August 2001:41~47.
    [53]Yang W Q,Spink K M,York T A,et al.An image reconstruction algorithm based on Landweber's iteration method for electrical capacitance tomography, Meas.Sci.Technol, 1999,10:1065~1069.
    [54]蔡芹,马宁,苏祥芳等,电容层析成像的 BP 网络重建,武汉大学学报(自然科学版),1997,43(1):107~112.
    [55]McCulloch W S,W Pitts. A logical calculus of the ideas immanent in nervous activity,Bulletin of Mathematical Biophysics,1943,5:115~133
    [56]Hebb D O.The Organization of Behavior: A Neuropsychological Theory,1949, New York:Wiley.
    [57]Rosenblatt F. The Perceptron: A probabilistic model for information storage and organization in the brain, Psychological Review, 1958, 65:386-408
    [58]Hopfield J.Neural network and physical systems with emergent collective computationl abilities, Proceedings of the National Academy of Science, USA 1982,79:2554~2558
    [59]Rumelhart D E, G E Hinton,R J Williams. Learning representations of back-propagation errors,Nature (London) 1986,323:533~536
    [60]Broomhead D S,D Lowe.Multivariable function interpolation and adaptive networks,Complex Systems,1988,2:321~355
    [61]Poggio T,Girosi F.Regularization algorithms for learning that are equivalent to multiplayer networks, Science,1990,247:978~982
    [62]孙增圻,张再兴,邓志东,智能控制理论与技术,北京:清华大学出版社,广西科学技术出版社,1997
    [63]张立明,人工神经网络的模型及其应用,上海:复旦大学出版社,1993
    [64]王永庆,人工智能原理与方法,西安:西安交通大学出版社,1998
    [65]王旭东,邵惠鹤,范懋基,改进的 RBF 神经网络及其应用,上海交通大学学报,1996,30(4):132~136
    [66]Simon Haykin,神经网络原理(叶世伟,史忠植译),北京:机械工业出版社,2004
    [67]阎平凡,张长水,人工神经网络与模拟进化计算,北京:清华大学出版社,2000
    [68]王旭东,邵惠鹤,罗荣富,分布式 RBF 神经网络及其在软测量方面的应用,控制理论与应用,1998,15(4):58~563
    [69]王旭东,邵惠鹤,一类典型工业过程的 RBF 神经网络控制,上海交通大学学报,1998,32(1):122~126
    [70]Kuo R J, Cohen P H.Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network, Neural Networks,1999,12:355~370
    [71]屈永华,曾勇,杨永国等,径向基函数神经网络地质曲面重建及应用,中国矿业大学学报,2000,29(3):318~321
    [72]吴浩江,周芳德,应用 RBF 神经网络智能识别油气水多相流流型,石油学报, 2000,21(3):57~60
    [73]朱学明,王化祥,何世钧等.基于 RBF 网络和遗传算法的电阻抗图像重建算法,天津大学学报,2002,35(6):686-690
    [74]Horst Bischof, Ales Leonardis, View-based object representations using RBF networks, Image and Bision Computing,2001,19:619~629
    [75]Rafiq M Y, Bugmann G, Easterbrook D J.Neural netwoek design for engineering applications,Computers and structures,2001,79:1541~1552
    [76] Tan K K,Tang K Z.Taguchi-tuned radial basis function with application to high precision motion control, Artificial Intelligence in Engineering, 2001,15:25~36
    [77]Powell M J D. Radial basis function approximations to polynomials, Numerical Analysis 1988 Proceedings,Dundee,UK,1988,241~254.
    [78]Tikhonov A N. On solvinlving incorrectly posed problems and method of regularization.Doklady Akademii Nauk USSR,1973,151:501~504
    [79]Poggio T,Girosi F.Netwoks for approximation and learning,Proceedings of IEEE,1990,78:1481~1497
    [80]Micchelli C A. Interpolation of scattered data:Distance matrices and conditionlly positive definite functions,Constructive Approximation, 1986,2:11~22
    [81]Park J,Sandberg I W.Universal approximation using radial basis function networks,Neural Computation,1991,3:246~257.
    [82]Friedhelm Schwenker, Hans A, Kestler, Gunther Palm.Three learning phases for radial-basis-function networks,Neural Networks,2001,14: 439~458
    [83]Moody,Darken C. Fast learning in networks of locally-tuned processing units,Neural Computation,1989,1:281~294
    [84]王旭东,邵惠鹤,RBF 神经元网络在非线性系统建模中的应用,控制理论 与应用,1997,14(1):59~66
    [85]Vapnik V N,统计学习理论的本质,北京:清华大学出版社,2000
    [86]Boser B E, Guyon I M,Vapink V N. A training algorithm for optimal margin classifier. In D. Haussler, editor, proceedings of the 5th annual ACM Workshop on Computational Learning Theory,ACM Press,1992:144~152
    [87]VapnikV, Lerner A. Pattern recognition using generalized portrait method,Automation and Remote Control, 1963,24
    [88]Vapnik V,Chervonenkis A. Anote on one class of perceptrons, Aotumation and Remote Control, 1964, 25
    [89]Cover T M. Geometrical and statistical properties of system of linear inequalities with applications in pattern recongnition,IEEE Ttansactions on Electronic Computers,1965,14:326~334
    [90]Duda R O,Hart P E. Pattern Classification and Scene Analysis, Wiley,1973
    [91]Aronszajn N. Theory of reproducing kernels, Transactions of American Mathematical Society,1950,68:337~404
    [92]Wahba G. Spline Models for Observational Data,volume 59 of CBMS-NSF Regional Conference Series in Applied Mathematics,SIAM,1990
    [93]Poggio T,Girosi F. Networks for approxmation and learning, Proceedings of the IEEE, 1990,78(9)
    [94]Aizerman M, Braverman E,Rozonoer L. Theoretical foundations of the potential function method in pattern recognition learning, Automation and Remote Control,1964,25:821~837
    [95]Mangasarian O L. Linear and nonlinear separation of patterns by linear programming. Operations Research.1965,13:444~452,
    [96]Hassoun M H. Optical threhold Gates and Logical Processing, [Ph.D. thesis], Department of ECE, Wayne State University, Detroit, USA, 1986
    [97]Smith F W. Pattern classifier design by linear programming,IEEE Transactions on Computers,1986,17:367~372
    [98]Bennett K P,Mangasarian O L. Robust linear programming discrimination of two linerly inseparable sets,Optimization Methods and Software, 1992,1:23~24
    [99]Cortes C ,Vapnik V. Support vector networks,Machine Learning,1995, 20:273~297
    [100]Burges C J C. A tutorial on support vector machines for pattern recognition,Data Mining and Knowledge Discovery,1998,2(2):121~167
    [101]Evgeniou T,Pontil M,Poggio T. A unified framework for regularization networks and support vector machines,Technical Report CBCL Paper \#171/AI Memo \#1654, Massachusetts Institute of Technology,1999
    [102]Smola A J, Bartlett P, Sch?lkopf B,et al. Advances in Large Margin Classifiers,MIT Press,1999
    [103]Fayyad U M,Piatetsky-Shapiro G,Smythand P,Uthurusamy R. Advances in Knowledge Discovery and Data Mining, MIT Press, 1996:181-203
    [104]Oren M,Papageorgiou C,Sinha P, et al.Pedestrian Detection Using Wavelet Templates,In Proceedings Computer Vision and Pattern Recognition, 1997:193~199
    [105]Osuna E, Freund R,Girosi F. Training Support Vector Machines: An Application to Face Detection,In Proceedings of Computer Vision and Pattern Recognition, 1997:130~136
    [106]Pontil M,Verri A.Object Recognition with Support Vector Machines. IEEE Trans. PAMI,1998(20):637~646
    [107]Boser B E, Guyon I M,Vapnik V N. A Training Algorithm for Optimal Margin Classifiers,Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, ACM Press,1992:144~152
    [108]LeCun Y, Jackel L D,Bottou L.Comparison of Learning Algorithms for Handwritten Digit Recognition,nternational Conference on Artificial Neural Networks,volume II, EC2, 1995:53~60
    [109]经玲,王来生,重建自由曲面的支持向量机方法,电子与信息学报,2003(25):63~68
    [110]刘广利,邓乃扬,基于 SVM 分类的预警系统,中国农业大学学报,2002, 7(6):97~100
    [111]王铠,张彩明,重建自由曲面的神经网络算法,计算机辅助设计与图形学学报,1998,10(3):193~199
    [112]王弄,经玲,支持向量机方法实现曲面重构中数据的预处理,电子与信息 学报,2003(25):52~56
    [113]Yiqiang Zhan,Dinggang Shen.Design efficient support vector machines for fast classification,attern Recognition,2005(38):157~161
    [114]Sch?lkopf B, Burges C J C,Smola A J. Advances in Kernel Methods --Support Vector Learning,MIT Press,1999.
    [115]Smola A,Sch?lkopf B.A tutorial on support vector regression, Statistics and Computing, Invited paper,1998.
    [116]Nello Cristianini, John Shawe-Taylor, 支持向量机导论(李国正等译),北京:电子工业出版社,2004
    [117]邓乃扬,田英杰,数据挖掘中的新方法——支持向量机,北京:科学出版社,2004
    [118]Bertsekas D P,Dynamic Programming and Optimal Control, vol.1 and vol.2,Belmont,MA:Athenas Scientific,1995
    [119]Kuhn H,Tucker A.Nonlinear programming,In Proceedings of 2nd Berkeley Symposium on Mathematical Statistics and Probabilistics, University of California Press, 1951,481~492.
    [120]Aizerman M,Braverman E,Rozonoer L. The probability problem of pattern recognition learning and method of potential function,Automation and Remote Control,1964,25:1175~1193
    [121]Girosi F. An equivalence between sparse approximation and support vector machines. Neural Computation,1998,10(6):1455~1480
    [122]Sch?lkopf B, Smola A J,Müller K.Kernel principal component analysis. Advances in Kernel Methods--Support Vector Learning,MIT Press,1999: 327~352
    [123]Kivinen J, Warmuth M K.Additive versus exponentiated gradient for linear prediction,Information and Computation,1997,132:1-64
    [124]Osuna E,Freund R,Girosi F.An improved training algorithm for support vector machines. Neural Networks for Signal Processing VII--Proceedings of the 1997 IEEE Workshop, IEEE, 1997,276~285
    [125]Osuna E, Freund R, Girosi F. Training support vector machines: An application to face detection, In Proceedings of Computer Vision and Pattern Recognition, 1997,130~136
    [126]Gonzaga C C. Path following methods for linear programming, SIAM Review, 1992,34(2):167~227
    [127]Guler O, Ye Y. Convergence behavior of interior point algorithms, Math. Programming, 1993,60: 215~228
    [128]Kojima M, Megiddo N, Mizuno S. A primal-dual infeasible-terior-point algorithm for linear programming,Math. Programming,1993,61:263~280
    [129]Zhong H B, Zhong P, Zhong C H. The Newton-PCG Algorithm via Automatic Differentiation,OR Transactions,2003,7(1):28~38
    [130]Zhang J Z,Xue Y, Zhong P, et al.PCG-Inexact Newton Methods for Unary Optimization. European J. of Operations Research, 2002,143:419-431
    [131]Zhong Y, Tapia R A.A superlinear convergent polynomial primal-dual interior-point algorithm for linear programming, SIAM J. Optimization, 1993,3:118~ 133
    [132]刘则毅,刘东毅,马逢时等,科学计算技术与 Matlab, 北京:科学出版社,2001
    [133]Platt J. Fast training of support vector machines using sequential minimal optimization,Advances in Kernel Methods--Support Vector Learning, MIT Press,1999,185~208.
    [134]刘志刚,李德仁,秦前清等,支持向量机在多类分类问题中的推广,计算机工程与应用,2004,40(7):10~13,65
    [135]安金龙,王正欧,马振平,一种新的支持向量机多类分类方法,信息与控制,2004,33(3):262~267
    [136]Bottou L,Cortes,Denker J,Comparison of classifier methods:acase study in handwriting,Proceedings of the 12th IAPR International Conference on Pattern Recognition,Jerusalem:IEEE,1994:77~82
    [137]Kreβel U,Pairwise classification and support vector machines, Advances in Kernel Methods--Support Vector Learning,MIT Press,1999, 185~208.
    [138]梅建新,段汕,潘继斌等,支持向量机在小样本识别中的应用,武汉大学学报,2002,48(6):732~736
    [139]程正兴,小波分析算法与应用,西安:西安交通大学出版社,1997
    [140]崔锦泰,小波分析导论,西安:西安交通大学出版社,1995
    [141]崔万照,朱长纯,保文星等, 最小二乘小波支持向量机在非线性系统辨识中的应用,2004,38(6):562~565,586
    [142]何世钧,韩宇辉,王化祥. 基于嵌入式结构的电容层析成像数据采集系统设计与应用,哈尔滨:中国控制与决策学术年会论文集,2005:3133-2135
    [143]Yang W Q,York T A. New AC-based capacitance tomography system, IEE Proceedings--Science Measurement and Technology,1999,146(1):47~53
    [144]王建和,段传华等,采用 DDS 技术实现的频率合成信号发生器,电子技术, 1997,1:30~32
    [145]方红斌,胡书屏等,AD7008 在数字频率合成器中的应用,电子与仪表,1999, 1:35~37
    [146]周国富,具有 50MHz 时钟率的 AD7008 单片 CMOS DDS 调制器,电子技术应用,1994,3:32~34
    [147]魏福立,直接数字合成技术及应用,电子技术应用,1995,5:25~28
    [148]王化祥,王艳儒,用于 EIT 成像系统的 AD7008 DDS 调制器,电子测量技术,1999,4:17~20
    [149]Analog Devices Cmos DDS Modulator AD7008
    [150]AD 公司产品资料光盘,1999
    [151]Huang S M,Xie G,Thorn R,et al. Design of electronics for electrical capacitance tomography, IEE Proc G,1992,139(1):83-88
    [152]Yang W Q,Stott A L,et al. A high frequency and high resolution capacitance measuring circuit for process tomography, IEE Proceedings-Circuit Device System, 1994, 141(3):215-219
    [153]王化祥,杨五强,电容过程成像技术的进展,仪器仪表学报,2000,21(1):4~7
    [154]Yang W Q,York T A. New AC-based capacitance tomography system, IEE Proceedings-Science Measurement and Technology,1999,146(1):47~53
    [155]Wanda Garrett, LM6361/LM6364/LM6365 Fast VIP Op Amps Offer High Speed at Low Power Consumption,Application Note 549, National Semiconductor, 1989
    [156]Loh Weng Wah.Real-time monitoring of drilling cuttings transport using electrical resistance tomography:[Ph.D.Thesis], UMIST, Manchester, U.K.,1998
    [157]Dickin F J.Resistive EIT-design reports and indication of industrial application, Process Tomography-A Strategy for Industrial Exploitation-1, March 1993: 221~224
    [158]王化祥,南国芳,王艳儒,王超,用于人体阻抗成像的数据采集系统,仪器仪表学报,2001,22(4):416~418
    [159]赵媛媛,赵书俊,刘洋,四象限乘法器/除法器在伽玛相机中的应用,现代电子技术,2005,28(2):6~7
    [160]童斌全,杜进,线性有源滤波器 MAX274/275 构成的几则电路,电子技术应用,1994,2:46~47
    [161]沈国治,MAXIM 有源滤波器设计软件,电子技术,1996,6:5~7
    [162]沈国治,集成状态变量滤波器 MAX274/275,电子技术,1994,6:20~23
    [163]叶轻舟,采用全有源器件的电压模式双二阶滤波器,福建工程学院学报,2004,2(2):168~171
    [164]Joyce Van de Vegte,数字信号处理基础(侯正信,王国安等译),北京:电子工业出版社,2003
    [165]方培本,利用双线性变换法设计 IIR Butterworth 数字滤波器,天津理工学院学报,1999,15(5):41~43
    [166]王超,医学电阻抗断层成像的研究:[博士学位论文],天津;天津大学,2001
    [167]李钟慎,基于 MATLAB 设计巴特沃斯低通滤波器,信息技术,2003,17(3):49~50,52
    [168]何世钧,韩宇辉,张 驰等,基于 CAN 总线的设施农业嵌入式测控系统,农业机械学报,2004,35(4):106~110
    [169]杨宪惠,现场总线技术及其应用,北京:清华大学出版社,1999
    [170]何世钧,王化祥,韩宇辉等,基于 CAN 总线的农业专用智能光强度传感器,红外技术,2003,25(1):82~88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700