基于不同尺度模拟研究储层参数变化对渗流的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国东部大部分油田都已经进入特高含水期,该阶段是油田重要的开采阶段,有相当一部分剩余可采储量将在这一阶段采出。但是经过长时间的注水冲刷,油藏储层宏观参数已经发生很大变化,导致油田流体呈现出特殊的渗流特征。储层微观参数变化是宏观参数变化的内在原因,因此,从微观和宏观尺度开展特高含水期油藏特有的开发规律及其影响因素研究,深入认识该阶段渗流特征,有助于进一步改善油藏开发效果,提高最终原油采收率。
     本文结合胜利油田资料,在对相对渗透率实验数据进行分析的基础上,基于不同尺度,开展了储层参数变化对渗流的影响规律研究。在微观网络模拟研究中,建立了三维微观网络模型,讨论了喉道半径、形状因子、配位数等微观参数对宏观参数的影响,并建立了储层宏观参数变化的综合模式。在油藏数值模拟研究过程中,考虑了孔隙度、渗透率和相渗曲线等宏观参数变化进行了数值模拟器的改进,并进行了单因素和储层参数综合变化情况下对预测采收率的影响。针对特高含水开发期呈现出的特殊的油藏静态及动态特征,最终确立了“储层微观参数-储层宏观参数-开发规律”之间内在关系,理论探讨储层参数变化因素对渗流特征和开发规律产生的影响。
     微观模拟结果表明,各微观影响参数中,对孔隙度影响较大的因素为喉道半径;对渗透率影响较大的因素包括喉道半径、喉道半径均质系数、孔喉比、配位数;而对相对渗透率影响较大的因素包括喉道半径均质系数、孔喉比、润湿性、孔喉形状、配位数。数值模拟结果表明,在本文参数讨论范围内,渗透率对采收率影响较大,预测采收率最大下降1~3%,而孔隙度对采收率影响相对较小,预测采收率下降值在0.5%以内。考虑相对渗透率变化,预测采收率上升,最大可提高3~6%左右。而在考虑三种变化参数后所讨论的外在静动态影响因素中,油藏非均质性的影响是最大的。
Most of the oilfields in east China had entered the ultra-high water cut stage, which was an important stage and quite a few remaining recoverable reserves were developed in the stage. The change of formation macroscopic parameters because of long-term water injection caused the special seepage characteristics of reservoir fluids. The change of microscopic parameters was the internal reason of the change of macroscopic parameters. Therefore, the study of development rules and influential factors from the aspect of macroscopic and microscopic scales and the in-depth understanding of the seepage characteristics in the stage were conducive to the improvement of development effect and enhancement of ultimate oil recovery.
     On the basis of the analysis of the relative permeability curves, the effect of formation parameters change on seepage characteristics was investigated from different scales with the combination of the data in Shengli oilfield. Three dimensional network model was established in the process of microscopic network study. The effect of pore throat radius, shape factor and coordination number on macroscopic parameters was discussed and the comprehensive mode of formation parameters was developed. In reservoir numerical study, porosity, permeability and relative permeability curve were taken into consideration to improve the reservoir numerical simulator and the effect of single factor and comprehensive change on predicted oil recovery was researched. The internal relationship between formation microscopic parameter, macroscopic parameters and development rules was determined with the aim to understand the special static and dynamic characteristics in ultra high water cut stage.
     It was indicated in the microscopic study that the predominately influential factor of porosity was pore throat radius; the mainly influential factors of permeability were pore throat radius, homogeneity coefficient of pore throat radius, pore throat radius aspect ratio and coordination number; and the chief influential factors of relative permeability curve were homogeneity coefficient of pore throat radius, pore throat radius aspect ratio, wettability, pore throat shape and coordination number. The numerical simulation study results showed that permeability had great impact on oil recovery and the predicted oil recovery could decrease 1~3% while porosity had less influence on oil recovery and the predicted oil recovery could decrease about 0.5%; if the relative permeability curve was taken into account, the predicted oil recovery could increase 3~6%. Reservoir heterogeneity was the most important factor in the discussion of static and dynamic influential factors after taking the three parameters into account.
引文
[1]邓玉珍,徐守余,三角洲储层渗流参数动态模型研究-以胜坨油田二区下第三系沙二段83小层为例[J].石油学报,2003, 24(2):61-64
    [2]陈亮,吴胜和,刘宇红,胡状集油田胡十二块注水开发过程中储层动态变化研究[J],石油实验地质, 1999,21(2):141-145
    [3]李阳,陆相断陷湖盆油藏流场宏观参数变化规律及动态模型[J],石油学报, 2005,26(2):65-68
    [4]王洪光,高含水期油藏储集层物性变化特征模拟研究[J],石油学报,2004,25(6):53-58
    [5]郭莉,王延斌,刘伟新等,大港油田注水开发过程中油藏参数变化规律分析[J],石油实验地质,2006,28(1):85-90
    [6]徐守余,渤海湾盆地胜坨油田二区储层微观渗流场演化研究[J],石油实验地质,2003,25(4):381-384
    [7]束青林,张本华,徐守余,孤岛油田河道砂储集层油藏动态模型及剩余油研究[J],石油学报,2005,26(3):64-67
    [8]李军,蔡毅,长期水洗后储层孔隙结构变化特征[J],油地质与采收率,2002,.9(2):68-70
    [9]王美娜,李继红,郭召杰等,注水开发对胜坨油田坨30断块沙二段储层性质的影响[J],北京大学学报, 2004,40(6):855-863
    [10]吕学成,付洁,张冲等,注水开发中濮城油田储集层性质变化的研究[J],江汉石油学院学报, 2000,22(4):52-54,
    [11]张伟峰,刘守军,李拥安等,孤岛馆陶组注水开发储层性质动态变化特征研究[J],地球科学与环境学报,2004,26(2):51-53,58
    [12]林光荣,陈付星,邵创国等,马岭油田长期注水对油层孔隙结构的影响[J],西安石油学院学报(自然科学版) 2001, 16(6):33-35
    [13]杨晓蓓,冯毅,郭恩常等,砂砾岩油藏特高含水期储层参数变化规律[J],西南石油学院学报, 2000,22(4):22-25
    [14]孙士孝,韩锦文,郭云尧等,胜坨油田岩石水洗前后物性变化的试验研究,石油大学学报(自然科学版), 1996,20增刊:33-35
    [15]姜汉桥,谷建伟,陈民锋等,时变油藏地质模型下剩余油分布的数值模拟研究[J],石油勘探与开发, 2005,32(2):91-93
    [16]杨克敏,何方,胡文革,注水开发对储层物性及粒度分布的影响[J],断块油田, 19986(4):25-27,31
    [17]周洪钟,张燕,王炎明等,注水开发对孤岛油田馆上段储层的影响研究[J],江汉石油学院学报, 2002,24(3):70-71,
    [18] Fatt,I. The Network model of porous media[J],I. Capillary pressure characteristics. Trans. AIMM, 1956;207:144-159.
    [19] Koplik J. On the effective medium theory of random linear networxs[J]. Solid State Phys,1981;14:4821-4837.
    [20] Maier R.,Laidlaw W.G. Fluid Topology for Invasion Percolation in 3-D Lattices[J]. Transport in Porous Media,1993;10:221-234.
    [21] Yeong, C. L. Y., and Torquato, S. Reconstructing random media[J]. Phys. Rev. E,1998;57:495-506.
    [22] Hidajat, I., A. Rastogi, M. Singh and K. K. Mohanty. Transport properties of porous media from thin-sections[J]. SPE 69623:25-27.
    [23]何更生.油层物理[M].第一版,北京,石油工业出版社,1994:234-245.
    [24] Lemaitre R.,Adler P.M. Fractal Porous Media IV:Three Dimensional Stikes Flow through Random Media and Regular Fractals[J], Transport in Porous Media, 1990;5:325-340.
    [25]刘慧卿.油藏数值模拟方法专题[M].山东东营:石油大学出版社,2001:26-34.
    [26]王金勋.应用孔隙水平网络模型研究两相渗流规律[D]:[博士论文],中国石油勘探开发研究院,北京:2001
    [27] Lin C.,Cohen M.H. Quantitative Methods for the microgeometric Modeling, [J]. Appl. Phys.,1982;53(6):4152-4165.
    [28] M. Joshi, Ph.D. thesis[D], Univ. of Kansas, Lawrence, 1974.
    [29] Quiblier, J.A new three-dimensional modeling technique for studying porous media[J]. Colloid Interface Sci.,1984;98:84-102.
    [30] Adler, P., Jacquin, C., and Quiblier, J. Flow in simulated porous media[J]. Int. J. of Multiphase Flow,1990;16:691-712.
    [31] Hazlett, R.D. Statistical characterization and stochastic modeling of pore network in relation to fluid flow[J]. Math. Geol.1997;29:801-821.
    [32] Yeong, C. L. Y., and Torquato, S. Reconstructing random media[J]. Phys. Rev. E,1998;57:495-506.
    [33] Bakke, S., and P. E. ?ren,3-D pore-scale modeling of sandstones and flow simulations inthe pore networks[J]. SPE J.,1997;2:136-149.
    [34] Bryant, S. P., R. King, and D. W. Mellor. Network model evaluation of permeability and spatial correlation in a real random sphere packing[J]. Transport in Porous Media,1993;11:53-70;
    [35] Thompson, K.E., and H.S. Fogler. Modeling flow in disordered packed beds from pore-scale fluid mechanics[J]. AIChE J,1997;43:1377-1389.
    [36] Hilpert, M., and C. T. Miller. Pore-morphology-based simulation of drainage in totally wetting porous media[J]. Advances in Water Resources,2001;24: 243-255.
    [37] Vogel, H. J., and K. Roth. A new approach for determining effective soil hydraulic functions[J]. European Journal of soil sciences,1997;49(4): 547-556.
    [38] Liang, Z. R., P. C. Phillippi, C. P. Fernandes, et al.Prediction of permeability from the skeleton of three-dimensional pore structure[J]. SPE Reservoir Evaluation and Engineering,1999;2(2):161-168.
    [39] Ioannidis, M. A., I. Chatzis. On the geometry and topology of 3D stochastic porous media[J]. Journal of Colloid and Interface Science,2000:229:323-334.
    [40] Hidajat, I., A. Rastogi, M. Singh and K. K. Mohanty. Transport properties of porous media from thin-sections[J]. SPE 69623:25-27.
    [41] Vogel, H. J., and K. Roth. Quantitative morphology and network representation of soil pore structure[J]. Advances in Water Resources,2001, 24:233-242.
    [42] Hazlett, R. D. Simulation of capillary-dominated displacements in microtomographic images of reservoir rocks[J]. Transport in porous media, 1995;20: 21-35.
    [43] Coker, D. A., and S. Torquato. Morphology and physical properties of Fontainebleau sandstone via a tomographic analysis[J]. Journal of Geophysical Research,1996;101(B8): 17497-17506.
    [44] Coles, M. E., R. D. Hazlett, P. Spanne et al.Pore level imaging of fluid transport using synchrotron X-ray microtomography[J]. Journal of Petroleum Science and Engineering,1998;19:55-63.
    [45] Guodong Jin. Physics-based Reconstruction of Sedimentary Rocks[J].SPE 83587.
    [46] ?ren, P. E., and S. Bakke. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects[J]. J. Pet. Sci. Eng.,2003;39:177-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700