彩色数字全息及其在材料变形检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料制造与加工技术的发展,新材料在工业中获得了广泛应用,材料的细观结构越来越复杂,其对材料力学性能的影响越来越重要,对材料内部结构变形损伤机制的研究对先进材料的研究和应用具有重要意义。而且,材料构件的变形及疲劳失效对材料应用有较大的影响,材料的失效很多情况是由于材料内部缺陷及材料选择的不恰当引起的。组成构件的材料及构件形状的复杂性,使得很多材料构件的强度及刚度等力学性能理论上是较难计算得到,通常需要通过实验手段进行测量。由于材料受外力时的应变及应力分布通常能反映材料构件的性能,研究能实现对任意形状材料构件受力时变形及应力分布的准确检测的方法在材料工程应用中有重要的意义。
     在材料应力场分析及变形测量中,光测方法因其独有的优势而得到发展,目前主要有光弹法,激光散斑干涉法,云纹干涉法等。光弹性法是现代材料应力分布检测的一种有效的实验方法,但存在条纹分离困难、过程复杂等问题。全息光弹法提高了光弹法检测的精度及条纹判读的自动化程度,使光弹方法的应用更方便、快捷。但传统全息后期处理过程繁琐,且需要在暗室中拍摄,因此限制了其应用。对于位移场(变形)的测量,激光散斑干涉法及云纹干涉法是目前常用的方法,在很多领域获得了重要应用,但一次测量时只能得到至多两个方向的信息。
     数字全息技术是现代无损检测的一种重要方法,其检测精度高、速度快、非接触、可实时全场测量,且数字全息的记录、存储及再现全部采用数字化方式,容易得到相位信息,近年来在无损检测领域获得重要应用。但对于一些复杂矢量信息,传统数字全息检测信息量不足以准确获得全部的信息。
     在数字全息研究领域中,使用多种波长的激光照明的彩色数字全息是近几年的研究热点问题。但使用彩色数字全息进行检测应用还有很多问题需要解决,如探寻新的波面重建算法实现彩色数字全息不同波长照明下重建图像的准确合成,消除彩色数字全息重建场的零级干扰得到高质量的重建场等。
     基于目前对材料变形及应力检测技术的现状,本文使用彩色数字全息对材料的变形及应力分布进行检测与分析,同时对数字全息检测相关问题如彩色数字全息波面重建算法、优化的光路设计、零级干扰的消除等进行研究。然后使用彩色数字全息对透明材料应力场、变形场及散射材料三维变形进行检测研究。主要研究工作包括以下几点:
     1.对数字全息波面重建算法进行讨论,重点分析了不同重建算法满足采样定理的条件,结论表明,使用角谱衍射公式对数字全息波面进行重建可以得到较准确的结果。
     2.对彩色数字全息波面重建算法进行研究与讨论。对使用球面波为重现波的可变放大率算法进行了研究,对使用多波长激光照明的彩色数字全息来说,使用可变放大率的波面重建算法,可以较好实现不同波长全息图重建像的准确合成。论文对散射物光场的数字全息记录及再现理论进行研究,把散射物体视为基元点光源的集合,其重建场为所有点光源在重建平面的叠加,使用可变放大率算法对物光波面进行重建,可得到任意放大率的重建像。
     3.对彩色数字全息中不同波长记录的全息图重建像的合成方法进行了讨论,提出一种准确实现彩色数字全息不同波长物光场合成的方法。研究表明,可使用S-FFT重建像为参考,选择频谱滤波中心及滤波窗口,使用可变放大率的算法,选择合适的放大率,实现不同波长的重建像的准确重叠。
     4.对球面波照射后全息图的频谱进行分析,对可变放大率算法中零级干扰的形式及分布进行研究。研究表明,球面波照射后全息图零级频谱随着放大率增大而展宽。论文对各种消除零级的方法进行研究,并给出结果的比较。使用计算机控制相移,在参考光中引入任意相移,通过两幅数字全息图相减的方法实现了零级干扰的消除,扩大频谱滤波窗口的尺寸,获得较高质量的重建图像。直接对全息图进行频谱滤波处理,获得“无干扰”的全息图,并对“无干扰”全息的频谱滤波方法进行改进,通过像面滤波技术,不但可以得到高质量的重建物光场,而且可以在清晰的像平面上选择任意区域进行重建,有利于局部细节的分析与检测。
     5.使用彩色数字全息技术对透明材料的变形进行检测,并分析了检测的误差。理论上提出一种通过旋转参考光的偏振方向来实现透明材料应力场的数字全息检测研究的方法,并对理论公式进行计算机模拟,其结果与实验结果吻合较好,证明这种方法的可行性。然后使用这种方法对复杂开孔的构件应力分布进行了检测。设计对透明材料应力场进行实时检测的彩色数字全息检测系统。使用彩色数字全息技术,对散射物体加载时三维变形场的检测作了初步研究,实时得到了三维变形信息。
With development of materials manufacturing and processing technology, new materials are widely applied in the modern engineering, meanwhile, meso-structure of material is increasingly complex, and its influence to mechanical properties of material is more and more important. So, the research of deformation and damage mechanism of material internal structure is significant to the study and application of new materials. Furthermore, material components deformation and fatigue failure have important influence on the material application. In most cases, the failure of materials performance is due to internal defects and the inappropriate selection of materials. Due to the complexity of material composition and shape, many mechanical properties, such as strength and stiffness are difficult for theoretical calculation, and usually the experimental methods for measuring are needed. Because the performance of the material components can be usually reflected by strain and stress distribution, the accurate detection method of stress deformation and stress distribution of arbitrary shape material components have important significance in materials engineering applications.
     Optical measurement method is one of methods to analyze material stress and deformation because of its many advantages. At present, optical measurement methods include photoelastic method, laser speckle interferometry method, moire interferometry method etc. Photoelastic method is an effective experimental method of modern material stress distribution detection, but exists in this method some problems such as stripe separation, complicate processing and so on. Holographic photoelastic method improves the detection precision and the automation degree of stripe interpretation; hence makes the application of photoelastic method more convenient and fast. But the process of hologram is more complicated, and needs record the hologram in darkroom. At present, laser speckle interferometry and moire interferometry are the main methods of displacement field (deformation) measurement, got important applications in many areas. But the measurement can only get at most two direction information.
     Digital holography is an important nondestructive testing method, and won widely application in many field because of the merit such as high accuracy, speed, non-contact, real-time full measurement and so on. Furthermore, we can get the phase information because of digital recording and storing of hologram. But traditional digital holography cannot get enough information for complicated vector information.
     In the research field of digital holography, color digital holography is a hot research issues in recent years. But there are many problems need to solve. First of all, how to accurately synthesize the three images or information of different wavelengths is the all-important problem needed to solve; In order to obtain an accurately synthesized image of different wavelength, we need to find new reconstruction algorithm for color digital hologram. Meanwhile, the zero-order image is disturbed by the object wave field information, and has serious effect of detection information of color digital holography. Therefore, another important step in color digital holography is to eliminate the zero-order.
     In this thesis, we try to detect the material deformation and stress distribution by using the color digital holography. In order to get high quality information, some issues about color digital holography, such as wave field reconstruction algorithm, light path optimization design and zero-order elimination are also described in this paper.
     Based on the results, stress detection of transparent material is presented, and displacement of rough surface is tested by use of color digital holography. The main works are included as follows:
     1. Algorithm of digital holography wave surface reconstruction is discussed; sampling conditions of different algorithm is selectively analyzed. The results show that, an accurate result can be got by use of angular spectrum transfer function.
     2. Algorithm of color digital holography is discussed. The algorithm of variable magnification is discussed; this method is more advantageous in color digital holography because the magnifier of different wavelength unified. In this paper, we discussed the recording and reconstructing of scattering object, and got the reconstruction field of scattering object.
     3. Accurate synthesize method of different wavelength image is discussed in this paper. And a new method about how to select the frequency filter is presented. The study shows that we can get accurate the position and size of frequency filter by refers to the S-FFT reconstructed image. Then got the color image through the reconstruction algorithm of variable magnification with same magnification.
     4. We discussed the frequency spectrum of hologram illuminating by spherical wave, and analyzed zero distribution. The results show that the frequency spectrum of zero-order is broadened by spherical wave, and is related to magnifier. Based on the discussion, some methods of zero-order eliminating have been studied. Zero-order image can be eliminated by adding a phase in reference beam, but two holograms are required. A good method is to get the frequency spectrum of object from hologram, then obtain the free disturb hologram from inverse fast Fourier transform. And we get the high quality reconstructed wave field without any zero-order and twin image. An improvement filter method is presented; we reconstruct the image by S-FFT method, and then select the information field, get "no disturbing hologram" by use inverse computing of diffraction, then get an image through variable magnifier algorithm. We can get the freewill information of image and let the reconstructed image full of the reconstructed field.
     5. Deformation measurement of transparent material is presented by use of color digital holography. We proposed a theoretical method to test stress distribution of transparent material by changing the polarizing direction of reference beam. Comparison of simulation and experimental result proved the feasibility of this method. At last, a real-time stress testing system of color holography is designed, and the testing results of displacement of scattering object is presented by use of color digital holography.
引文
[1]S.K. Dhir and H.A. Peterson. An application of holography to complete stress analysis of photoelastic models. Experimental Mechanics.1971,11(12):560-564.
    [2]M.E. Fourney. Application of holography to photoelasticity. Experimental Mechanics.1968, 8(1):33-38.
    [3]R.J. Sanford. Photoelastic holography—A modern tool for stress analysis. Experimental Mechanics.1980,20(12):427-436.
    [4]T.D. Dudderar and R.O. Regan. Measurement of the strain field near a crack tip in polymethylmethacrylate by holographic interferometry. Experimental Mechanics.1971,11 (2):49-56.
    [5]T.D.Dudderar. Applications of holography to fracture mechanics. Experimental Mechanics.1969,9 (6):281-285.
    [6]A.E. Ennos.Measurement of in-plane surface strain by hologram interferometry. Journal of Physics E:Scientific Instruments.2002,1(7):731-736.
    [7]P. Hariharan, B.F. Oreb and N. Brown. Real-time holographic interferometry:a microcomputer system for the measurement of vector displacements. Appl Optics.1983,22 (6):876-880.
    [8]J.A. Leendertz. Interferometric displacement measurement on scattering surfaces utilizing speckle effect. Journal of Physics E:Scientific Instruments.2002,3(3):214-220.
    [9]Y. Awatsuji, M. Sasada and T. Kubota. Parallel quasi-phase-shifting digital holography. Applied Physics Letters.2004,85(6):1069-1071.
    [10]F. Chen, C. T. Griffen and T. E. Allen. Digital speckle interferometry:some developments and applications for vibration measurement in the automotive industry. Opt Eng.1998,37 (5):1390-1397.
    [11]D. Dirksen, H. Droste, B. Kemper etal. Lensless Fourier holography for digital holographic interferometry on biological samples. Opt Laser Eng.2001,36(3):241-249.
    [12]O. Inomoto and I. Yamaguchi. Measurements of Benard-Marangoni waves using phase-shifting digital holography. In:Optical Engineering for Sensing and Nanotechnology,Yokohama, Japan, SPIE,2001
    [13]T. Kreis. Digital holography for metrologic applications. In:Interferometry in Speckle Light: Theory and Applications,lausanne, Switzerland, European Opt Soc,2000
    [14]T. Kreis, M. Adams and W. Juptner. Digital in-line holography in particle measurement, In: Interferometry'99:Techniques and Technologies,Pultusk, Poland,SPIE,1999
    [15]T. M. Kreis, W. P. O. Juptner and J. Geldmacher. Digital holography:Methods and applications. In:International Conference on Applied Optical Metrology,Balatonfured, Hungary, SPIE,1998
    [16]B. Nilsson and T. E. Carlsson. Direct three-dimensional shape measurement by digital light-in-flight holography. Appl Optics.1998,37(34):7954-7959.
    [17]W. Osten, S. Seebacher, T. Baumbach etal. A measurement system for the determination of material properties of microcomponents on the basis of digital holography. Technisches Messen.2001,68(2):80-85.
    [18]S. G. Andrushchenko and P. D. Krotenko. Displacement determination by holographic interferometry for residual stress analysis in elastic bodies. Int Appl Mech.2005,41 (8):929-933.
    [19]S. S. Gorthi, G. Rajshekhar and P. Rastogi. Strain estimation in digital holographic interferometry using piecewise polynomial phase approximation based method. Opt Express.2010,18(2):560-565.
    [20]S. S. Gorthi and P. Rastogi. Simultaneous measurement of displacement, strain and curvature in digital holographic interferometry using high-order instantaneous moments. Opt Express.2009,17(20):17784-17791.
    [21]W. Steinchen, L. Yang, G. Kupfer etal. Non-destructive testing of aerospace composite materials using digital shearography. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering.1998,212(1):21-30.
    [22]D. Gabor. A new microscopic principle. Nature.1948,161 (4098):777-778.
    [23]J.W. Goodman and RW Lawrence. Digital image formation from electronically detected holograms. Applied Physics Letters.1967, 11(3):77-79.
    [24]M.A. Kronrod, N.S. Merzlyakov and L.P. Yaroslavskii.Reconstruction of a hologram with a computer. Soviet Physics Technical Physics.1972,17:333.
    [25]Y. Takaki and H. Ohzu. Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy. Appl Optics.1999,38(11):2204-2211.
    [26]E. Marquardt and J. Richter.Digital image holography. Opt Eng.1998,37(5):1514-1519.
    [27]L. Chen, X. Ma, and Q. Wang. Color holographic image by using digital lensless Fourier transform holography with optical fiber. Opt Eng.2012,51 (4)
    [28]J. L. Zhao, H. Z. Jiang and J. L. Di. Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography. Opt Express.2008,16 (4):2514-2519.
    [291范琦,赵建林,向强等.改善数字全息显微术分辨率的几种方法.光电子·激光,2005,16(02):226-230.
    [30]姜宏振,赵建林,邸江磊等.数字无透镜傅里叶变换全息术中非傍轴及离焦像差的校正.光学学报,2008,28(08):1457-1462.
    [31]王华英,张志会,廖薇等.无透镜傅里叶变换显微数字全息成像系统的焦深.物理学报,2012,61(04):244-250.
    [32]吴友朋,王红霞,周战荣.无透镜傅里叶变换数字全息图再现像质的影响因素分析.红外与激光工程,2006,(z4):538-542.
    [33]谢建军,王大勇,王华英等.离轴无透镜傅里叶变换数字全息三维物场重建.激光杂志,2007,28(06):44-45.
    [34]T.F. Knight Jr, D.M. Freeman, and M.S. Mermelstein, (Ph. D. Thesis), Massachusetts Institute of Technology,1999.
    [35]F. Le Clerc, M. Gross, and L. Collot. Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography. Opt Lett.2001,26 (20):1550-1552.
    [36]L. Martinez-Le6n and B. Javidi. Synthetic aperture single-exposure on-axis digital holography. Opt Express.2008,16(1):161-169.
    [37]J.H. Massig. Digital off-axis holography with a synthetic aperture. Opt Lett.2002,27 (24):2179-2181.
    [38]V. Mico, Z. Zalevsky, P. Garcia-Martinez etal. Synthetic aperture superresolution with multiple off-axis holograms. JOSA A.2006,23(12):3162-3170.
    [39]钟丽云,张以谟,吕晓旭.合成孔径数字全息的分析模拟及多参考光合成孔径数字全息.光子学报,2004,33(11):1343-1347.
    [40]李红燕,马志俭,钟丽云等.一种相移合成孔径数字全息图高精度合成方法.光学学报,2011,31(05):77-82.
    [41]姜宏振,赵建林,邸江磊等.合成孔径数字无透镜傅里叶交换全息图的分幅再现.光学学报,2009,29(12):3304-3309.
    [42]C. Liu, Z. Liu, F. Bo etal. Super-resolution digital holographic imaging method. Applied physics letters.2002,81:3143.
    [43]张雯,周皓,顾济华等.多光束数字全息的研究.光子学报,2010,39(03):533-536.
    [44]Y. M. Zhang, Q. N. Lu, and B. Z. Ge. Elimination of zero-order diffraction in digital off-axis holography. Opt Commun.2004,240 (4-6):261-267.
    [45]S. De Nicola, P. Ferraro, A. Finizio etal. Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography. Opt Laser Eng.2002,37(4):331-340.
    [46]S. C. Lai, B. King and M. A. Neifeld.Wave front reconstruction by means of phase-shifting digital in-line holography. Opt Commun.2000,173(1-6):155-160.
    [47]Y. Takaki, H. Kawai and H. Ohzu. Hybrid holographic microscopy free of conjugate and zero-order images. Appl Optics.1999,38(23):4990-4996.
    [48]E. Cuche, P. Marquet and C. Depeursinge.Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl Optics.2000,39 (23):4070-4075.
    [49]G. Pedrini, S. Schedin and H. J. Tiziani. Spatial filtering in digital holographic microscopy. Journal of Modern Optics.2000,47(8):1447-1454.
    [50]徐莹,赵建林,向强等.无透镜傅里叶变换全息图数值再现中的图像处理.光学学报,2004,24(11):1503-1506.
    [51]T.M. Kreis and W.P.O. Jiiptner. Suppression of the dc term in digital holography. Optical Engineering.1997,36 (8):2357-2360.
    [52]N. Demoli, J. Mestrovic and I. Sovic. Subtraction digital holography. Appl Optics.2003,42 (5):798-804.
    [53]刘诚,李良钰,李银柱等.无直透光和共轭像的数字全息.光学学报,2002,22(04):427-431.
    [54]刘诚,李银柱,李良钰等.数字全息测量技术中消除零级衍射像的方法.中国激光,2001,28(11):1024-1026.
    [55]刘雯雯,戴宜全,康新等.基于有限脉冲响应滤波器的数字全息零级像消除.光学学报,2008,28(05):856-859.
    [56]刘雯雯,康新,戴宜全等.一种去除数字全息零级像的新方法(英文).东南大学学报(英文版),2009,25(01):113-116.
    [57]周灿林,亢一澜.数字全息干涉法用于变形测量.光子学报,2004,33(002):171-173.
    [58]U. Schnars and W. Juptner. Direct recording of holograms by a CCD target and numerical reconstruction. Appl Optics.1994,33(2):179-181.
    [59]U. Schnars and W. P. Juptner. Digital recording and reconstruction of holograms in hologram interferometry and shearography. Appl Optics.1994,33(20):4373-4377.
    [60]U. Schnars and W. P. O. Juptner. Digital recording and numerical reconstruction of holograms. Meas Sci Technol.2002,13(9):R85-R101.
    [61]D. Mas, J. Garcia, C. Ferreira etal. Fast algorithms for free-space diffraction patterns calculation. Opt Commun.1999,164(4-6):233-245.
    [62]D. Mas, J. Perez, C. Hernandez etal. Fast numerical calculation of Fresnel patterns in convergent systems. Opt Commun.2003,227(4-6):245-258.
    [63]F. C. Zhang, I. Yamaguchi and L. P. Yaroslavsky.Algorithm for reconstruction of digital holograms with adjustable magnification. Opt Lett.2004,29(14):1668-1670.
    [64]J. F. Restrepo and J. Garcia-Sucerquia. Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform. Appl Optics.2010,49(33):6430-6435.
    [65]T. M. Kreis.Frequency analysis of digital holography. Opt Eng.2002,41(4):771-778.
    [66]T. M. Kreis. Frequency analysis of digital holography with reconstruction by convolution. Opt Eng.2002,41(8):1829-1839.
    [67]邸江磊,赵建林,范琦等.数字全息显微术中重建物场波前的相位校正.光学学报,2008,28(01):56-61.
    [68]李世扬,赵建林,范琦等.基于自聚焦透镜的光纤数字全息系统实验研究.光子学报.2005,(12):1829-1832.
    [69]葛宝臻,罗文国,吕且妮等.数字再现三维物体菲涅耳计算全息的研究.光电子·激光.2002,13(12):1289-1292.
    [70]吕且妮,葛宝臻,张以谟.一种消除数字离轴全息零级像的实验方法.光子学报,2004,33(08):1014-1017.
    [71]吕且妮,葛宝臻,张以谟.数字全息再现像质的影响因素分析.光电子·激光,2005,16(01):83-88.
    [72]吕且妮,葛宝臻,张以谟.数字同轴和数字离轴全息系统分析.光电工程.2005,32(02):15-18.
    [73]吕且妮,葛宝臻,张以谟.数字离轴全息实验系统及其零级像分析.天津大学学报,2005,38(08):701-705.
    [74]于瀛洁,郭路,周文静.数字全息位相拼接实验研究.光学仪器,2011,33(04):55-59.
    [75]于瀛洁,倪萍,周文静.基于全息图放大的数字全息显微结构测量.光学精密工程,2008,16(05):827-831.
    [76]周文静,胡文涛,郭路等.少量投影数字全息层析重建实验研究.物理学报,2010,59(12):8499-8511.
    [77]周文静,于瀛洁,倪萍.基于菲涅耳近似实现数字全息相位再现的误差分析及抑制.光学精密工程,2008,16(05):899-906.
    [78]邓丽军,王辉,马利红.基于滤波成像的大视角数字全息技术.光子学报,2010,39(12):2168-2173.
    [79]马利红,王辉,金洪震等.数字全息显微定量相位成像的实验研究.中国激光,2012,39(03):215-221.
    [80]马利红,王辉,李勇等.数字全息显微系统结构参量对再现像质的影响.光子学报,2011,40(02):300-306.
    [81]崔华坤,王大勇,王云新等.无透镜傅里叶变换数字全息术中非共面误差的自动补偿算法.物理学报,2011,60(04):209-216.
    [82]刘长庚,王大勇,张亦卓等.数字全息成像中基于导数的自动对焦算法.中国激光,2009,36(11):2989-2996.
    [83]王华英.宋修法,赵洁等.数字全息成像系统的景深和焦深分析.光子学报,2008,37(07):1406-1411.
    [84]王华英,王大勇,谢建军.用极值频率法分析数字全息的记录条件.光子学报,2007,36(04):645-649.
    [85]刘诚,刘志刚,薄峰等.数字全息中再现像分离问题的研究.光子学报,2003,32(05):588-591.
    [86]刘诚,朱健强.数字全息形貌测量的基本特性分析.强激光与粒子束,2002,14(003):328-330.
    [87]程欣,薛冬梅,国承山.数字全息中参考光波面畸变对再现像的影响及消除.山东师范大学学报(自然科学版),2006,21(01):62-64.
    [88]宋佼,郭小伟,陈铭勇等.用DMD光学再现全息图的研究.四川大学学报(自然科学版)2008,45(3):576-580.
    [89]陈立功,朱建华,魏涛等.修正离轴参考光计算全息图的数值再现及像质评价研究.四川大学学报(自然科学版),2007,44(2):346-350.
    [90]魏涛,朱建华,陈立功等.基于DMD的数字全息显示及其再现像质增强.光子学报,2008,37(5):952-956.
    [91]刘晓珂,苏显渝.基于图像部分加入的数字全息水印技术.光子学报,2008,37(4):740-744.
    [92]Junchang Li and Chongguang Li. Algorithm study of Collins formula and inverse Collins formula. Appl Optics.2008,47(4):A97-A102.
    [93]Junchang Li, Chongguang Li and Agnes Delmas. Calculation of diffraction patterns on a spatial surface. Journal of the Optical Society of America a-Optics Image Science and Vision.2007,24(7):1950-1954.
    [94]Junchang Li and Zujie Peng. Statistic optics discussion on the formula of digital holographic 3D surface profiling measurement. Measurement.2010,43(3):381-384.
    [95]Junchang Li, Zujie Peng, and Yunchang Fu. Diffraction transfer function and its calculation of classic diffraction formula. Opt Commun.2007,280(2):243-248.
    [96]Junchang Li and Yanmei Wu. An indirect algorithm of Fresnel diffraction. Opt Commun.2009,282 (4):455-458.
    [97]J. C. Li, J. Zhu and Z. J. Peng. The S-FFT calculation of Collins formula and its application in digital holography. European Physical Journal D.2007,45(2):325-330.
    [98]李俊昌.散射光数字全息检测过程的统计光学讨论.光子学报,2008,37(04):734-739.
    [99]李俊昌.角谱衍射公式的快速傅里叶变换计算及在数字全息波面重建中的应用.光学学报,2009,29(05):1163-1167.
    [100]李俊昌.彩色数字全息波前重建算法概论.中国激光,2011,38(05):6-13.
    [101]李俊昌,陈仲裕,赵帅等.柯林斯公式的逆运算及其在波面重构中的应用.中国激光,2005,(11):1489-1494.
    [102]李俊昌,樊则宾.彩色数字全息的非插值波面重建算法研究.物理学报,2010,59(04):2457-2461.
    [103]李俊昌,郭荣鑫,樊则宾.非平面参考光波的数字实时全息研究.光子学报,2008,37(06):1156-1160.
    [104]李俊昌,楼宇丽,桂进斌.散射光波场卷积重建的三种方法研究.光子学报,2009,38(05):1176-1181.
    [105]李俊昌,彭祖杰,Tankam Patrice等.散射光彩色数字全息光学系统及波面重建算法研究.物理学报,2010,59(07):4646-4655.
    [106]吕晓旭,张以谟,钟丽云等.相移同轴无透镜傅里叶数字全息的分析与实验.光学学报,2004,24(11):1511-1515.
    [107]罗鹏,吕晓旭,钟丽云.近距离数字全息术记录和再现问题.光学学报,2007,27(10):1735-1739.
    [108]钱晓凡,王占亮,胡特等.用单幅数字全息和剪切干涉原理重构光场相位.中国激光,2010, 37[07):1821-1826.
    [109]钱晓凡,张磊,董可平.基于相移技术的显微数字全息重构细胞相位.光子学报,2006,35(10):1565-1568.
    [110]钟丽云,吕晓旭.无透镜傅里叶变换数字全息图记录和再现研究.昆明理工大学学报(理工版),2004,29(04):226-230.
    [111]钟丽云,张以谟,吕晓旭等.数字全息中的一些基本问题分析.光学学报,2004,24(4):465-471.
    [112]钟丽云,张以谟,吕晓旭等.球面参考光波数字全息的一些特点分析及实验.光学学报,2004,24(09):1209-1213.
    [113]吕且妮,葛宝臻,罗文国等.数字全息术及其在粒子场测试中的研究进展.光电子·激光,2002,13(10):1087-1091.
    [114]M. Adams, T. Kreis and W. Juptner. Particle measurement with digital holography, In:Laser Metrology and Inspection,Munich, germany, SPIE,1999
    [115]M. Adams, T. Kreis and W. Juptner. Particle analysis with digital holography, In:Laser Interferometry X:Techniques and Analysis and Applications, San diego,SPIE,2000
    [116]M. Adams, T. M. Kreis and W. P.O. Juptner. Particle size and position measurement with digital holography, In:Optical Inspection and Micromeasurements Ii,Munich, germany,European Opt Soc,1997
    [117]D. Lebrun, A. M. Benkouider, S. Coetmellec etal. Particle field digital holographic reconstruction in arbitrary tilted planes. Opt Express.2003,11(3):224-229.
    [118]S. Murata and N. Yasuda. Potential of digital holography in particle measurement. Optics and Laser Technology.2000,32 (7-8):567-574.
    [119]S. K. Kim, H. H. Choi, J. S. Kim etal.Recording of high spatial frequency using two confocal lenses in-digital holography. Japanese Journal of Applied Physics Part 1.2003,42 (11):6935-6936.
    [120]Gang Pan and Hui Meng.Digital Holography of Particle Fields:Reconstruction by Use of Complex Amplitude. Appl. Opt.2003,42 (5):827-833.
    [121]陈鹏飞,李泽仁,赵建林等.同轴全息术用于粒子场测量的数值模拟.强激光与粒子束,2005,17(09):1294-1298.
    [122]吕且妮,高岩,葛宝臻等.基于霍夫变换的数字全息粒子尺寸测量.中国激光,2009,36(04):940-944.
    [123]吕且妮,葛宝臻,高岩等.乙醇喷雾场粒子尺寸和速度的数字全息测量.光子学报,2010,39 (02):266-270.
    [124]吕且妮,赵晨,马志彬等.柴油喷雾场粒子尺寸和粒度分布的数字全息实验.中国激光,2010,37(03):779-783.
    [125]罗振雄,李泽仁,刘振清等.同轴数字全息技术在高速射流粒子测量中的应用.爆炸与冲击,2007,27(03):278-282.
    [126]魏润杰,申功炘,丁汉泉.数字全息粒子图像测速技术研究.北京航空航天大学学报,2004,30(05):456-460.
    [127]张延曹,赵建林,范琦等.Tukey窗切趾全息图用于粒子场在焦位置测量的实验研究.中国激光,2008,35(10):1542-1547.
    [128]E. Cuche, P. Marquet, P. J. Magistretti etal. Quantitative phase contrast microscopy of living cells by numerical reconstruction of digital holograms, In:Optical Diagnostics and Living Cells Ii,San jose,Spie,1999
    [129]I. Yamaguchi, J. Kato, S. Ohta etal. Image formation in phase-shifting digital holography and applications to microscopy. Appl Optics.2001,40(34):6177-6186.
    [130]M.A. Schulze, M.A. Hunt, E. Voelkl etal. Semiconductor wafer defect detection using digital holography, In:Advanced Microelectronic Manufacturing, Santa Clara,SPIE,2003.
    [131]J. M. Desse, P. Picart and P. Tankam. Digital color holography applied to fluid and structural mechanics. Opt Laser Eng.2012,50(1):18-28.
    [132]冯伟,李恩普,范琦等.数字全息干涉术用于微波等离子体推进器羽流场的研究.光子学报.2005,34(12):1833-1836.
    [133]徐莹,赵建林,范琦等.利用数字全息干涉术测定材料的泊松比.中国激光,2005,32《06):787-790.
    [134]G. Pedrini, F. M. Santoyo, S. Schedin etal. Whole 3D-digital holographic measurements of vibrating objects, In:Laser Metrology and Inspection,Munich, Germany,SPIE,1999
    [135]S. Schedin, G. Pedrini, H. J. Tiziani etal. Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography. Appl Optics.1999,38 (34):7056-7062.
    [136]I. Yamaguchi, J. Kato and H. Matsuzaki. Measurement of surface shape and deformation by phase-shifting image digital holography. Opt Eng.2003,42 (5):1267-1271.
    [137]P. Picart, J. Leval, D. Mounier etal. Time-averaged digital holography. Opt Lett.2003,28 (20):1900-1902.
    [138]P. Picart, J. Leval, D. Mounier etal. Some opportunities for vibration analysis with time averaging in digital Fresnel holography. Appl Optics.2005,44(3):337-343.
    [139]P. Picart, J. Leval, J.C. Pascal etal.2D full field vibration analysis with multiplexed digital holograms. Opt Express.2005,13(22):8882-8892.
    [140]L. Xu, X. Peng, J. Miao etal. Studies of digital microscopic holography with applications to microstructure testing. Appl Optics.2001,40(28):5046-5051
    [141]周文静,彭娇,于瀛洁.基于数字全息技术的变形测量.光学精密工程,2005,13(S1):46-51.
    [142]B.B. Djordjevi. Ultrasonic characterization of advanced composite materials,Ljubljana,2009
    [143]C. Garnier, M.L. Pastor, F. Eyma etal. The detection of aeronautical defects in situ on composite structures using Non Destructive Testing. Composite Structures.2011,93 (5):1328-1336.
    [144]赵清澄.光测力学教程.北京:高等教育出版社,1996.
    [145]佟景伟,李鸿琦.光力学原理及测试技术.北京:科学出版社,2009.
    [146]何世平.光力学在航空领域的一些应用.中国科技大学学报,2007,37(10):1185-1191
    [147]金观昌,孟利波,陈俊达等.数字散斑相关技术进展及应用.实验力学,2006,21(06):689-702
    [148]瞿志豪.光力学方法在机械设计上的应用.上海应用技术学院学报,2001,1(01)1-6
    [149]米红林.基于光力学的剪切散斑技术及其应用.机械与制造.2012,(01):60-62.
    [150]米红林,方如华,张林春等.金瓷双材料力学行为的现代光力学实验研究.实验力学.2006,21(04):473-478.
    [151]米红林,瞿志豪,陆鹏.基于光力学实验方法的生物膜材料性能的研究.中国生物医学工程学报,2009,28(05):797-800.
    [152]潘亮,张青川,伍小平等.基于mems的光力学红外成像.实验力学,2004,19(04):403-407.
    [153]王玮冰,陈大鹏,叶甜春等.应用光力学效应的非制冷红外成像系统.激光与红外,2004,34(02):83-86.
    [154]云大真,云海.影栅云纹法中的离面位移与斜率耦合条纹的光力学分析.光学技术,2005,31(02):299-211.
    [155]R.K. Muller and L.R. Saackel. Complete automatic analysis of photoelastic fringes. Experimental Mechanics.1979,19(7):245-251.
    [156]J. Carazo-Alvarez, S.J. Haake and E.A. Patterson. Completely automated photoelastic fringe analysis. Opt Laser Eng.1994,21 (3):133-149.
    [157]E.N. Leith and J. Upatnieks. Wavefront reconstruction with diffused illumination and three-dimensional objects. Josa.1964,54(11):1295-1301.
    [158]R.J. Collier and K.S. Pennington. Multicolor imaging from holograms formed on two-dimensional media. Appl Optics.1967,6(6):1091-1095.
    [159]R.A. Lessard, P. Langlois and A. Boivin.O rthoscopic color holography of 3-D objects. Appl Optics.1975,14:565.
    [160]Hsuan Chen and F. T. S. Yu. One-step rainbow hologram. Opt. Lett.1978,2 (4):85-87.
    [161]P. Hariharan, W. H. Steel and Z. S. Hegedus. Multicolor holographic imaging with a white-light source. Opt. Lett.1977,1(1):8-9.
    [162]G.W. Stroke and A.E. Labeyrie. White-light reconstruction of holographic images using the Lippmann-Bragg diffraction effect. Physics Letters.1966,20(4):368-370.
    [163]L. H. Lin and C. V. LoBianco. Experimental Techniques in Making Multicolor White Light Reconstructed Holograms. Appl. Opt.1967,6(7):1255-1258.
    [164]Toshihiro Kubota. Recording of high quality color holograms. Appl. Opt.1986,25 (22):4141-4145.
    [165]Toshihiro Kubota and Teruji Ose. Lippmann color holograms recorded in methylene-bluesensitized dichromated gelatin. Opt. Lett.1979,4 (9):289-291.
    [166]H.I. Bjelkhagen and E. Mirlis. Color holography to produce highly realistic three-dimensional images. Appl Optics.2008,47(4):A123-A133.
    [167]I. Yamaguchi, T. Matsumura and J. Kato. Phase-shifting color digital holography. Opt Lett.2002,27(13):1108-1110.
    [168]J. Kato, I. Yamaguchi and T. Matsumura. Multicolor digital holography with an achromatic phase shifter. Opt Lett.2002,27 (16):1403-1405.
    [169]D. Alfieri, G. Coppola, S. De Nicola etal. Method for superposing reconstructed images from digital holograms of the same object recorded at different distance and wavelength. Opt Commun.2006,260 (1):113-116.
    [170]P. Picart, D. Mounier, and L. M. Desse.High-resolution digital two-color holographic metrology. Opt Lett.2008,33 (3):276-278.
    [171]P. Tankam and P. Picart. Use of digital color holography for crack investigation in electronic components. Opt Laser Eng.2011,49(11):1335-1342.
    [172]P. Tankam, P. Picart, D. Mounier etal. Method of digital holographic recording and reconstruction using a stacked color image sensor. Appl Optics.2010,49 (3):320-328.
    [173]李俊昌,樊则宾,Tankam Patrice等.无零级衍射干扰的彩色数字全息研究.物理学报, 2011,60(03):256-261.
    [174]J.M. Desse, F. Albe and J.L. Tribillon.Real-time color holographic interferometry. Appl Optics.2002,41(25):5326-5333.
    [175]N. Demoli, D. Vukicevic and M. Torzynski. Dynamic digital holographic interferometry with three wavelengths. Opt Express.2003,11(7):767-774.
    [176]S. Yeom, B. Javidi, P. Ferraro etal. Three-dimensional color object visualization and recognition using multi-wavelength computational holography. Opt Express.2007,15 (15):9394-9402.
    [177]李俊昌.激光的衍射及热作用计算.修订版.北京:科学出版社,2008.
    [178]王仕璠.信息光学理论与应用.第一版.北京:北京邮电大学出版社,2004.
    [179]李俊昌,熊秉衡.信息光学教程.科学出版社,2011.
    [180]李俊昌,熊秉衡.信息光学理论与计算.北京:科学出版社,2009.
    [181]陈家壁,苏显渝.光学信息技术原理与应用.北京:高等教育出版社,2002.
    [182]P. Ferraro, S. De Nicola, G. Coppola etal. Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. Opt Lett.2004,29 (8):854-856.
    [183]J. Li, P. Tankam, Z. Peng etal. Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification. Opt Lett.2009,34(5):572-574.
    [184]C. Liu, Y. Z. Li, X. T. Cheng etal. Elimination of zero-order diffraction in digital holography. Opt Eng.2002,41(10):2434-2437.
    [185]T. Kakue, T. Tahara, K. Ito etal. Parallel phase-shifting color digital holography using two phase shifts. Appl Optics.2009,48(34):H244-H250.
    [186]I. Yamaguchi and T. Zhang. Phase-shifting digital holography. Opt Lett.1997,22 (16):1268-1270.
    [187]李俊昌,樊则宾,彭祖杰.数字全息变焦系统的研究及应用.光子学报,2008,37(07):1420-1424.
    [188]徐芝纶.弹性力学(第三版).北京:高等教育出版社,2006.
    [189]何惠际.曲轴的三维光弹性分析.华东船舶工业学院学报,2002,16(02):54-58
    [190]计欣华,张丽娜,史丽军等.数字光弹性相移法中全场等倾角和等差线相位.光学学报,2008,28(02):273-279
    [191]雷振坤,云大真.全场数字化测量光弹性等倾角的五步彩色相移法.光学技术,2002,28(2):143-144.
    [192]雷振坤,云大真,亢一澜等.数字光弹性法综述.实验力学,2005,19(4):393-402.
    [193]李兴民,雷振坤.双材料界面端应力奇异性的数字光弹性分析.工程力学,2011,28(12):7-13
    [194]王峰会,万建松.复合材料界面断裂的光弹性研究.机械科学与技术,2000,19(01):50-51.
    [195]于莲芝,应启戛,徐操等.电缆附件接触应力的光弹性实验研究.上海理工大学学报,2004,26《03):255-257.
    [196]禹金云,罗一新.五滚柱式超越离合器外环拉伸应力的光弹性分析.机械科学与技术,2002,21(03):390-393.
    [197]G. Caroena, M. Mori, M. R. R. Gesualdi etal. Mastication effort study using photorefractive holographic interferometry technique. J. Biomech.2010,43 (4):680-686.
    [198]谢东,庹有康.光测应力分析中的全息干涉法.激光与红外.2001,31(01):48-50.
    [199]雷振坤.结构分析数字光测力学.大连:大连理工大学出版社,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700