光学显微成像及在生物样品显示与测量中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命科学研究的突破在很大程度上依赖于各种先进的分析测试系统,显微成像系统是其中最常见和最重要的分析测试系统之一。传统的显微镜已经远不能满足目前生命科学的要求,发展新的显微成像分析技术,对细胞等微小生物样品实现无创伤、定量、动态的显微分析是目前生命科学研究的迫切需求。本文分别基于干涉和无透镜全息原理,发展了两种新型光学显微技术,来实现对生物样品的成像与测量,取得的主要研究成果有:
     在广泛调研生物显微技术的基础上,设计并研制了一套离轴干涉显微成像系统,以血红细胞为样品,实现了其光相位场的定量成像。干涉图的处理选择以傅里叶变换为基础的相位提取技术和基于离散余弦变换的无加权最小二乘法的相位解包技术,得到的光相位场分布结果与文献报道吻合。
     利用上述研制的干涉显微系统,首次通过相位成像分析了金属离子对细胞的影响,给出了细胞受影响后的定量相位分布,计算出相位面积和相位体积等参数,实现了对血红细胞状态的实时、定量的全程分析,并由此判定金属离子对细胞的破坏趋势和程度。所得的定量分析结果与微分干涉差(DIC)显微镜的定性观测一致。
     为了得到被测生物样品更多的细节信息,进一步研究了微离轴干涉模式,提出了将希尔伯特变换相位提取算法引入到微离轴单幅干涉图的处理中,有效改善了波前恢复的高频分量,使细胞轮廓更加清晰。通过直径、面积、圆度和相位分布直方图等参数评价基于微离轴干涉模式的希尔伯特定量相位成像系统的性能,结果表明该系统在灵敏度和边缘轮廓提取等方面具有较强的优势,兼备快速采样和多细节成像能力。
     为了突破现有显微成像技术视场的瓶颈,研究了无透镜全息显微成像术,其视场大小和记录用数字传感器的有效感光面积一样。为保证大视场前提下的高分辨率,引入了亚像元高分辨率成像术,实现了单幅图视场达18cm2的1.5G(等效)像素成像,半节距分辨率达2.19μmn。
     大视场成像为跟踪动态生物样品的运动轨迹提供了便利,据此发展了双光源无透镜全息显微成像系统,同时追踪了成千上万的精子的三维运动轨迹,揭示了部分精子游动服从螺旋型运动规律,并且右手型螺旋运动数目占总螺旋型数目的90%以上,给出了精子运动线速度、角速度等运动参数。在此基础上,研制了便携式双光源无透镜全息显微成像系统,具有体积小,质量轻等特点,在远程医疗中具有潜在应用价值。
To a great degree, the breakthrough in the field of life science depends on various novel and powerful measurement systems. The microscopy apparatus is the most widely used and important device for magnifying imaging. However, the conventional microscope cannot meet the rapid development of the scientific research. Therefore, it is necessary to grope for innovative microscopic imaging tools that can realize real-time, non-invasive and quantitative analysis. In this dissertation, two kinds of optical microscopy imaging techniques are developed based on interferometry and lensfree holography, to realize bio-sample display and measurement. The detailed contents can be generalized as:
     A interferometric phase microscopy imaging system is proposed based on extensive research literature on bio-microscopy techniques. Red blood cells (RBCs) are samples and used for phase imaging. The captured interferograms are processed via fast Fourier transform based phase retrieval method and2D discrete cosine transform unweighted least-squares algorithm based phase unwrapping method. The phase distributions of RBCs are recovered quantitatively, which agree with the literature findings.
     Infection of cells by metallic ions leads to both biochemical and structural modifications, and interferometric phase microscopy is adopted for the first time to detect such effects. The phase distributions of RBCs damaged by the lithium and lead ions are recovered in a real-time, quantitative and whole-process analytical manner, which are identical with the cell shape and qualitative phase distribution observation under differential interference contrast (DIC) microscopy. Furthermore, accurate phase area and phase volume values could be calculated. The results could be used for damage estimation and trend assessment of infected cells.
     A slightly-off-axis interferometry is further discussed to acquire more details on biosamples. Hilbert phase microscopy (HPM) method is developed as a phase retrieval approach in the post-processing with more information about the cells edge and high frequency components. Slightly-off-axis interferometry based HPM is evaluated by parameters such as diameter, phase area, phase volume and phase distribution histogram. The experimental results show that the proposed method owns fine spatial details and real-time imaging capability, which are useful for cells detection.
     Field of view (FOV) of system is one of the key parameters in the microscopic imaging. In this system, FOV is the same size as the effective photosensitive imaging area of the image sensor. For each lensfree hologram, the pixel size of sensor chip limits the spatial resolution of the reconstructed image. To circumvent this limitation, a sub-pixel shifting super-resolution algorithm is implemented to improve the resolution. Gigapixel imaging is achieved based on such a platform with a FOV of~18cm2and2.19μm half-pitch resolution.
     Wide FOV provides a platform for tracking bio-samples trajectories. Dual-view lensfree on-chip imaging technique that can track3D trajectories of thousands of individual human sperms is demonstrated. The large statistics provided by this lensfree imaging platform reveal that rare motile human sperms swim along well-defined helices. Furthermore, among these observed helical human sperms, approximately90%prefer right-handed helices over left-handed ones. What's more, some parameters such as helical rotation speed and linear speed can be determined. The portable lab-on-a-chip device is manufactured with unique features like compactness and light weight. It could in general be quite valuable for telemedicine.
引文
[1]Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects. Physica,1942,9 (7):686-698
    [2]Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica,1942,9 (10):974-986
    [3]Zernike F. How I Discovered Phase Contrast. Science,1955,121 (3141):345-349
    [4]Goldstein J. Scanning Electron Microscopy and X-Ray Microanalysis. Springer London, Limited,2003
    [5]Giessibl F J. Advances in atomic force microscopy. Rev. Mod. Phys.,2003,75 (3): 949-983
    [6]Geisse N A. AFM and combined optical techniques. Mater. Today,2009,12 (7-8): 40-45
    [7]Pawley J B. Handbook Of Biological Confocal Microscopy. Springer,2006
    [8]Cremer C,Cremer T. Considerations on a laser-scanning-microscope with high resolution and depth of field. Microscopica acta,1978,81 (1):31-44
    [9]吕志坚,陆敬泽,吴雅琼,陈良怡.几种超分辨率荧光显微技术的原理和近期进展.生物化学与生物物理进展,2009,36(12):1626-1634
    [10]Cui X,Lee L M,Heng X,Zhong W,Sternberg P L W,Psaltis D,Yang C. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl. Acad. Sci. USA.,2008,105 (31):10670-10675
    [11]吴爱国,魏刚,李壮.原子力显微镜技术对生物样品的研究.分析化学,2004,32(11):1538-1543
    [12]Klar T A,Jakobs S,Dyba M,Egner A,Hell S W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA.,2000,97 (15):8206-8210
    [13]Rust M J,Bates M,Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods,2006,3 (10):793-795
    [14]Betzig E,Patterson G H,Sougrat R,Lindwasser O W,Olenych S,Bonifacino J S,Davidson M W,Lippincott-Schwartz J,Hess H F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science,2006,313 (5793): 1642-1645
    [15]Shroff H,Galbraith C G,Galbraith J A,Betzig E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods,2008,5 (5):417-423
    [16]卜敏,雷海娜,王亚伟.生物细胞形态检测光学技术的新进展.激光与光电子学进展,2010,47(7):48-54
    [17]卜敏.血液细胞逼近模型及其光散射特征的研究.博士,江苏大学2011
    [18]Nomarski G. Microinterferometrie differentiel a ondes polarisees. J. Phys. Radium, 1955,16:9s-11s
    [19]金卫凤,王亚伟,卜敏,王先凯,姜守望,岳去畏.生物细胞相位显微技术研究进展.激光生物学报,2011,20(3):417-424
    [20]Popescu G. Quantitative phase imaging of nanoscale cell structure and dynamics. Methods Cell. Biol.,2008,90:87-115
    [21]De Boer J F,Milner T E,Van Gemert M J,Nelson J S. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett.,1997,22 (12):934-936
    [22]Yang C,Wax A,Georgakoudi I,Hanlon E B,Badizadegan K,Dasari R R,Feld M S. Interferometric phase-dispersion microscopy. Opt. Lett.,2000,25 (20):1526-1528
    [23]Yang C,Wax A,Dasari R R,Feld M S. Phase-dispersion optical tomography. Opt. Lett.,2001,26 (10):686-688
    [24]Rylander C.G.,Dave D. P.,Akkin T.,Milner T.E.,Diller K. R.,Welch A. J. Quantitative phase-contrast imaging of cells with phase-sensitive opticalcoherence microscopy. Opt. Lett.,2004,29 (13):1509-1511
    [25]Choma M A,Ellerbee A K,Yang C,Creazzo T L,Izatt J A. Spectral-domain phase microscopy. Opt. Lett.,2005,30 (10):1162-1164
    [26]Joo C,Akkin T,Cense B,Park B H,De Boer J F. Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. Opt. Lett.,2005,30 (16): 2131-2133
    [27]Park J. Analysis of phase retardation in the retinal nerve fiber layer of cynomolgus monkey by polarization sensitive optical coherence tomography. University of Texas at Austin,2003
    [28]Akkin T,Dave D,Milner T,Rylander Iii H. Detection of neural activity using phase-sensitive optical low-coherence reflectometry. Opt. Express,2004,12 (11): 2377-2386
    [29]Fang-Yen C,Chu M C,Seung H S,Dasari R R,Feld M S. Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer. Opt. Lett.,2004,29 (17):2028-2030
    [30]Youn J I,Akkin T,Milner T E. Electrokinetic measurement of cartilage using differential phase optical coherence tomography. Physiol. Meas.,2004,25 (1): 85-95
    [31]Kim J,Oh J,Milner T E. Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography. J. Biomed. Opt.,2006,11 (4):041122
    [32]Dunn G A,Zicha D. Dynamics of fibroblast spreading. J. Cell Sci.,1995,108 (3): 1239-1249
    [33]Dunn G A,Zicha D,Fraylich P E. Rapid, microtubule-dependent fluctuations of the cell margin. J. Cell Sci,1997,110 (Pt 24):3091-3098
    [34]Zicha D,Genot E,Dunn G A,Kramer I M. TGFbetal induces a cell-cycle-dependent increase in motility of epithelial cells. J. Cell Sci.,1999,112 (Pt 4) 447-454
    [35]Lue N,Choi W,Popescu G,Yaqoob Z,Badizadegan K,Dasari R R,Feld M S. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy. J. Phys. Chem. A,2009,113 (47):13327-13330
    [36]Wang Z,Popescu G. Topography and refractometry of biological nanostructures using Spatial Light Interference Microscopy (SLIM). Biomedical Optics, OSA Technical Digest (CD) 2010, Novel Approaches in Microscopy:BMD4
    [37]Popescu G,Park Y K,Dasari R R,Badizadegan K,Feld M S. Coherence properties of red blood cell membrane motions. Phy. Rev. E,2007,76 (3):031902
    [38]Popescu G. Cell dynamics studied by quantitative phase imaging. Digital Holography and Three-Dimensional Imaging, OS A Technical Digest,2012, Biomedical Applications of Digital Holography II DW2C.1
    [39]Wang Z,Popescu G. Quantitative phase imaging with broadband fields. Appl. Phys. Lett.,2010,96 (5):051117
    [40]Wang Z,Chun I S,Li X,Ong Z Y,Pop E,Millet L,Gillette M.Popescu G. Topography and refractometry of nanostructures using spatial light interference microscopy. Opt. Lett.,2010,35 (2):208-210
    [41]Ding H,Popescu G. Structure and Dynamics of Live Cells Studied by Fourier Transform Light Scattering (FTLS). Biomedical Optics, OSA Technical Digest, 2010, New Ideas and Techniques:BTuE4
    [42]Popescu G,Deflores L P,Vaughan J C,Badizadegan K,Iwai H,Dasari R R,Feld M S. Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett.,2004,29 (21):2503-2505
    [43]Lue N,Choi W,Popescu G,Ikeda T,Dasari R R,Badizadegan K,Feld M S. Quantitative phase imaging of live cells using fast Fourier phase microscopy. Appl. Opt.,2007,46 (10):1836-1842
    [44]Popescu G,Badizadegan K,Dasari R R,Feld M S. Motility of live cancer cells quantified by Fourier phase microscopy. European Conference on Biomedical Optics,2005, Imaging Tools II-Microscopy:MD4
    [45]Ikeda T,Popescu G,Dasari R R,Feld M S. Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett.,2005,30 (10):1165-1167
    [46]Lue N,Bewersdorf J,Lessard M D,Badizadegan K,Dasari R R,Feld M S,Popescu G. Tissue refractometry using Hilbert phase microscopy. Opt. Lett.,2007,32 (24): 3522-3524
    [47]Lue N,Popescu G,Ikeda T,Badizadegan K,Dasari R R,Feld M S. Live cell refractometry using Hilbert phase microscopy. Biomedical Optics, Technical Digest, 2006, Poster Session Ⅰ:SH1
    [48]Popescu G,Ikeda T,Best C A,Badizadegan K,Dasari R R,Feld M S. Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. J. Biomed. Opt., 2005,10 (6):060503
    [49]Popescu G,Ikeda T,Best C A,Goda K,Badizadegan K,Dasari R R,Feld M S. Observation of apparent membrane tension in red blood cells using actively stabilized Hilbert phase microscopy. Biomedical Optics, Technical Digest,2006, Microscopy I TuH8
    [50]Popescu G,Ikeda T,Dasari R R,Feld M S. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett.,2006,31 (6):775-777
    [51]Popescu G,Park Y K,Badizadegan K,Dasari R R,Feld M S. Diffraction phase and fluorescence microscopy. Opt. Express,2006,14 (18):8263-8268
    [52]Park Y K,Popescu G,Ikeda T,Badizadegan K,Dasari R R,Feld M S. Diffraction Phase Microscopy. Biomedical Topical Meeting,2006, Poster Session III:Tul
    [53]Bhaduri B,Pham H,Mir M,Popescu G. Diffraction phase microscopy with white light. Opt. Lett.,2012,37 (6):1094-1096
    [54]Choi W,Fang-Yen C,Badizadegan K,Oh S,Lue N,Dasari R R,Feld M S. Tomographic phase microscopy. Nat. Methods,2007,4 (9):717-719
    [55]Lue N,Popescu G,Ikeda T,Dasari R R,Badizadegan K,Feld M S. Live cell refractometry using microfluidic devices. Opt. Lett.,2006,31 (18):2759-2761
    [56]Mir M,Wang Z,Tangella K,Popescu G. Diffraction Phase Cytometry:blood on a CD-ROM. Opt. Express,2009,17 (4):2579-2585
    [57]Wang Z,Popescu G. Topography and Refractometry of Biological Nanostructures Using Spatial Light Interference Microscopy (SLIM).2010, BMD4
    [58]Lue N,Choi W,Popescu G,Badizadegan K,Dasari R R,Feld M S. Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion. Opt. Express,2008,16 (20):16240-16246
    [59]Shaked N T,Rinehart M T,Wax A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Opt. Lett.,2009,34 (6):767-769
    [60]Shaked N T,Zhu Y,Rinehart M T,Wax A. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells. Opt. Express,2009,17 (18):15585-15591
    [61]Zhu Y,Shaked N T,Satterwhite L L,Wax A. Spectral-domain differential interference contrast microscopy. Opt. Lett.,2011,36 (4):430-432
    [62]Yang C,Wax A,Feld M S. Measurement of the anomalous phase velocity of ballistic light in a random medium by use of a novel interferometer. Opt. Lett.,2001,26 (4): 235-237
    [63]Chalut K J,Brown W J,Wax A. Quantitative phase microscopy with asynchronous digital holography. Opt. Express,2007,15 (6):3047-3052
    [64]Shaked N. T.,Rinehart M. T.,Wax A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics. Opt Lett,2009,34 (6):767-9
    [65]Gass J,Dakoff A,Kim M K. Phase imaging without 2pi ambiguity by multiwavelength digital holography. Opt. Lett.,2003,28 (13):1141-1143
    [66]Rinehart M T,Shaked N T,Wax A. Two-Wavelength Quantitative Phase Unwrapping of Dynamic Biological Processes. Conference on Lasers and Electro-Optics,2009, CFA5
    [67]Mcintyre T J,Maurer C,Fassl S,Khan S,Bernet S,Ritsch-Marte M. Quantitative SLM-based differentialinterference contrast imaging. Opt. Express,2010,18 (13): 14063-14078
    [68]王亚伟,卜敏,崔青义,洪云,吴大建,蔡兰.有核细胞光散射强度分布的动态特性.中国激光,2006,33(10):1434-1436
    [69]王亚伟,雷海娜,卜敏,韩广才.几种典型血细胞的光学相位模型及其分布特征与识别方法.中国激光,2009,36(10):2629-2635
    [70]王亚伟,韩广才,刘莹,程晓农,Wyrowski Frank.血液细胞光相位分布特征的虚拟仿真研究.中国激光,2009,36(6):1595-1600
    [71]雷海娜.基于VirtualLab的血液细胞光散射相位分布特征的研究.硕士,江苏大学2010
    [72]李新弘.基于白光干涉的自稳定定量相位成像技术及系统研究.博士,浙江大学2008
    [73]张亦卓.生物样品的数字全息显微相衬成像技术研究.博士,北京工业大学 2012
    [74]Wang S Y,Xue L,Lai J C,Li Z H. Three-dimensional refractive index reconstruction of red blood cells with one-dimensional moving based on local plane wave approximation. J. Opt.,2012,14 (6):065301
    [75]Gabor D. A new microscopic principle. Nature,1948,161 (4098):777-778
    [76]Leith E,Upatnieks J. Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. A,1962,52(10):1123-1128
    [77]Goodman J W,Lawrence R W. Digtal image formation from electronically detected holograms. Appl. Phys. Lett.,1967,11 (3):77-79
    [78]Huang T S. Digital holography. Proceedings of the IEEE,1971,59 (9):1335-1346
    [79]Schnars U,Juptner W. Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt.,1994,33 (2):179-181
    [80]王艳萍.数字全息术中一些基本问题的初步研究.硕士,昆明理工大学2004
    [81]巩琼,秦怡.LED光源数字全息技术研究.应用光学,2010,31(2):237-241
    [82]Garcia-Sucerquia J,Ramirez J a H,Prieto D V. Reduction of speckle noise in digital holography by using digital image processing. Optik,2005,116 (1):44-48
    [83]Maycock J,Hennelly B M,Mcdonald J B,Frauel Y,Castro A,Javidi B,Naughton T J. Reduction of speckle in digital holography by discrete Fourier filtering. J. Opt. Soc. Am. A,2007,24 (6):1617-22
    [84]Dubois F,Requena M L,Minetti C,Monnom O,Istasse E. Partial spatial coherence effects in digital holographic microscopy with a laser source. Appl. Opt.,2004,43 (5):1131-1139
    [85]Huang D,Swanson E A,Lin C P,Schuman J S,Stinson W G,Chang W,Hee M R,Flotte T,Gregory K,Puliafito C A,Et Al. Optical coherence tomography. Science, 1991,254(5035):1178-1181
    [86]Dubois F,Joannes L,Legros J C. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt.,1999, 38 (34):7085-7094
    [87]Kemper B,Sturwald S,Remmersmann C,Langehanenberg P,Von Bally G. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces. Opt. Laser. Eng.,2008,46 (7):499-507
    [88]Seo S,Su T W,Tseng D K,Erlinger A,Ozcan A. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip,2008,9 (6):777-787
    [89]Su T W,Seo S,Erlinger A,Ozcan A. Large depth-of-field lensfree imaging and characterization of cells over an ultra-wide field-of-view. Biomedical Optics, OSA Technical Digest 2008, BIOMED Poster Session Ⅲ:PDPBTuF4
    [90]Isikman S O,Bishara W,Mudanyali O,Sencan I,Su T W,Tseng D K,Yaglidere O,Sikora U,Ozcan A. Lensfree On-Chip Microscopy and Tomography for Biomedical Applications. IEEE J. Sel. Top. Quant.,2012,18 (3):1059-1072
    [91]Tomasz K,Romuald J. Near field hologram registration with partially coherent illumination. Opt. Commun.,2004,237 (4/6):235-242
    [92]Yamaguchi I,Kato J,Ohta S,Mizuno J. Image formation in phase-shifting digital holography and applications to microscopy. Appl. Opt.,2001,40 (34):6177-6186
    [93]吕且妮,葛宝臻,张以谟.数字显微像面全息技术研究.光电子·激光,2006,17(4):475-478
    [94]Yamaguchi I,Zhang T. Phase-shifting digital holography. Opt. Lett.,1997,22 (16): 1268-1270
    [95]Xu W,Jericho M H,Kreuzer H J,Meinertzhagen I A. Tracking particles in four dimensions with in-line holographic microscopy. Opt. Lett.,2003,28 (3):164-166
    [96]Cuche E,Marquet P,Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt.,2000,39 (23):4070-4075
    [97]Kuhn J,Colomb T,Montfort F,Charriere F,Emery Y,Cuche E,Marquet P,Depeursinge C. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Opt. Express,2007,15 (12):7231-7242
    [98]Charriere F,Pavillon N,Colomb T,Depeursinge C D,Heger T J,Mitchell E a D,Marquet P,Rappaz B. Living specimen tomography by digital holographic microscopy:morphometry of testate amoeba. Opt. Express,2006,14 (16): 7005-7013
    [99]Pavillon N,Arfire C,Bergoend I,Depeursinge C. Iterative method for zero-order suppression in off-axis digital holography. Opt. Express,2010,18 (15): 15318-15331
    [100]Tishko T V,Titar V P,Tishko D N,Nosov K V. Digital holographic interference microscopy in the study of the 3D morphology and functionality of human blood erythrocytes. Laser Phys.,2008,18 (4):486-490
    [101]Kemper B,Von Bally G. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt.,2008,47 (4):A52-A61
    [102]Mann C,Yu L F,Lo C M,Kim M K. High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express,2005,13 (22):8693-8698
    [103]Kozacki T,Krajewski R,Kujawinska M G. Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system. Opt. Express,2009,17 (16):13758-13767
    [104]Chen W,Quan C,Tay C J,Fu Y. Quantitative detection and compensation of phase-shifting error in two-step phase-shifting digital holography. Opt. Commun., 2009,282 (14):2800-2805
    [105]Kemper B,Carl D,Schnekenburger J,Bredebusch I,Schafer M,Domschke W,Von Bally G. Investigation of living pancreas tumor cells by digital holographic microscopy. J. Biomed. Opt.,2006,11 (3):34005
    [106]翁嘉文.动态定量相衬数字全息显微成像技术.博士,暨南大学2012
    [107]Colomb T,Cuche E,Dahgren P,Marian A M,Montfort F,Depeursinge C D,Marquet P,Magistretti P J.3D imaging of surfaces and cells by numerical reconstruction of wavefronts in digital holography applied to transmission and reflection microscopy. IEEE International Symposium on Biomedical Imaging,2002,773-776
    [108]Pavillon N,Ruhn J,Moratal C,Jourdain P,Depeursinge C,Magistretti P J,Marquet P. Early Cell Death Detection with Digital Holographic Microscopy. PLoS ONE,2012, 7 (1):e30912
    [109]钱晓凡,张磊,董可平.基于相移技术的显微数字全息重构细胞相位.光子学报, 2006,35(10):1565-1568
    [110]董可平,钱晓凡,张磊,张永安.数字全息显微术对细胞的研究.光子学报,2007,36(11):2013-2016
    [111]赵雅晶,钟金钢.全数字全息术在图像信息隐藏中的应用.光学技术,2005,31(6):55-58
    [112]赵雅晶,钟金钢.黄氏傅里叶计算全息图的数字再现及零级像的消除.光子学报,2004,33(11):1339-1342
    [113]钟金钢,陈家楠,赵雅晶.全数字全息术在音频信息加密中的应用.信息安全与通信保密,2006,(12):128-130
    [114]丁航,胡翠英,翁嘉文,钟金钢.相移式反射数字全息显微成像术研究.中国激光,2011,38(12):1209001
    [115]胡翠英,钟金钢,高应俊,翁嘉文.显微数字全息相位重构的窗口选取和倾斜校正.光学学报,2009,29(12):3317-3322
    [116]李跃宏,钱晓凡,梅冬成,董可平.反射式数字全息显微术重构细胞相位实验数据处理方法研究.云南大学学报(自然科学版),2007,29(5):465-469
    [117]钱晓凡,吕晓旭,钟丽云.显微数字全息重构透明物体相位.激光杂志,2006,27(1):42-43
    [118]钱晓凡,董可平.用同轴菲涅尔全息检测细胞的研究.昆明理工大学学报(理工版),2008,33(1):108-113
    [119]钱晓凡,董可平,张磊,张永安.反射式数字全息显微术对细胞的研究.光子学报,2007,36(7):1318-1321
    [120]崔华坤.生物细胞数字全息显微成像的相位畸变校正.硕士,北京工业大学2011
    [121]王华英,王大勇,谢建军,王广俊.显微数字全息中物光波前重建方法研究和比较.光子学报,2007,36(6):1023-1027
    [122]高本利.数字全息显微技术研究.硕士,苏州大学2009
    [123]沙定国.光学测试技术.北京:北京理工大学出版社,2010
    [124]丁庆安.空间载频移相法研究及应用.硕士,南京理工大学2004
    [125]Itoh Kazuyoshi. Analysis of the phase unwrapping algorithm. Appl. Opt.,1982,21 (14):2470
    [126]Takeda M,Gu Q,Kinoshita M,Takai H,Takahashi Y. Frequency-multiplex Fourier-transform profilometry:a single-shot three-dimensional shape measurement of objects with large height discontinuities and/or surface isolations. Appl. Opt., 1997,36 (22):5347-5354
    [127]Ghiglia D C,Pritt M D. Two-dimensional phase unwrapping:theory, algorithms, and software. Wiley,1998
    [128]Ghiglia D C,Romero L A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. A,1994,11(1):107-117
    [129]Goldstein R M,Zebker H A,Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci.,1988,23 (4):713-720
    [130]Kerr D,Kaufmann G H,Galizzi G E. Unwrapping of interferometric phase-fringe maps by the discrete cosine transform. Appl. Opt.,1996,35 (5):810-816
    [131]杨静.人血红细胞光散射研究及蒙特卡罗仿真.硕士,重庆大学2004
    [132]Mullaney P F,Van Dilla M A,Coulter J R,Dean P N. Cell sizing:a light scattering photometer for rapid volume determination. Rev. Sci. Instrum.,1969,40 (8): 1029-1032
    [133]Brock R S,Hu X H,Weidner D A,Mourant J R,Lu J Q. Effect of detailed cell structure on light scattering distribution:FDTD study of a B-cell with 3D structure constructed from confocal images. J. Quant. Spectrosc. Ra.,2006,102 (1):25-36
    [134]Tsinopoulos S V,Polyzos D. Scattering of he-ne laser light by an average-sized red blood cell. Appl. Opt.,1999,38 (25):5499-5510
    [135]王杰.光学显微层析实验系统设计与研制.硕士,南京理工大学2009
    [136]Feuerstein O,Ginsburg I,Dayan E,Veler D,Weiss E I. Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum. Photochem. Photobiol.,2005,81 (5):1186-1189
    [137]徐可欣,高峰,赵慧娟.生物医学光子学(第二版).北京:科学出版社,2011
    [138]Arimoto H,Watanabe W,Masaki K,Fukuda T. Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy. Opt. Commun.,2012,285 (24):4911-4917
    [139]杨丽娟.红细胞悬浮液后向散射特性的Mueller矩阵表征与实验研究.硕士,南京理工大学2010
    [140]Ferraro P,De Nicola S,Finizio A,Coppola G,Grilli S,Magro C,Pierattini G. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Appl. Opt.,2003,42 (11): 1938-1946
    [141]Kim M K. Applications of Digital Holography in Biomedical Microscopy. J. Opt. Soc. Korea,2010,14 (2):77-89
    [142]邸江磊,赵建林,范琦,姜宏振,孙伟伟.数字全息显微术中重建物场波前的相位校正.光学学报,2008,28(1):56-61
    [143]Gurer-Orhan H,Sabir H U,Ozgunes H. Correlation between clinical indicators of lead poisoning and oxidative stress parameters in controls and lead-exposed workers. Toxicology,2004,195 (2-3):147-154
    [144]Menezes G,D'souza H S,Venkatesh T. Chronic lead poisoning in an adult battery worker. Occupational medicine (Oxford, England),2003,53 (7):476-478
    [145]Song L,Zhou T,Jope R S. Lithium facilitates apoptotic signaling induced by activation of the Fas death domain-containing receptor. BMC Neurosci.,2004,520
    [146]Peces R,Pobes A. Effectiveness of haemodialysis with high-flux membranes in the extracorporeal therapy of life-threatening acute lithium intoxication. Nephrol. Dial. Transplant,2001,16 (6):1301-1303
    [147]Suwalsky M,Fierro P,Villena F,Sotomayor C P. Effects of lithium on the human erythrocyte membrane and molecular models. Biophys. Chem.,2007,129 (1):36-42
    [148]Suwalsky M,Villena F,Norris B,Cuevas Y F,Sotomayor C P,Zatta P. Effects of lead on the human erythrocyte membrane and molecular models. J. Inorg. Biochem., 2003,97 (3):308-313
    [149]葛静.基于光纤Bragg光栅的希尔伯特变换.硕士,苏州大学2011
    [150]Zweig D A,Hufnagel R E. Hilbert transform algorithm for fringe-pattern analysis. Proceedings of SPIE 1990,1333:295-302
    [151]Reinhold N,Wolfgang S. Methods for shape analysis of two-dimensional closed contours-A biologically important, but widely neglected field in histopathology. Electron. J. Pathol. Histol.,2002,8 (2):022-02
    [152]Wheeless L L,Robinson R D,Lapets O P,Cox C,Rubio A,Weintraub M,Benjamin L J. Classification of red blood cells as normal, sickle, or other abnormal, using a single image analysis feature. Cytometry,1994,17 (2):159-166
    [153]Isikman S O,Bishara W,Ozcan A. Partially coherent lensfree tomographic microscopy [Invited]. Appl. Opt.,2011,50 (34):H253-H264
    [154]Mudanyali O,Tseng D,Oh C,Isikman S O,Sencan I,Bishara W,Oztoprak C,Seo S,Khademhosseini B,Ozcan A. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip,2010,10 (11):1417-1428
    [155]Xu W,Jericho M H,Meinertzhagen I A,Kreuzer H J. Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. USA.,2001,98 (20): 11301-11305
    [156]Garcia-Sucerquia J,Xu W,Jericho M H,Kreuzer H J. Immersion digital in-line holographic microscopy. Opt. Lett.,2006,31 (9):1211-1213
    [157]Brady D J. Optical imaging and spectroscopy. Wiley-interscience,2009
    [158]侯莉,练秋生.一种有效的图像超分辨率重建算法.电子测量技术,2007,30(5):14-17
    [159]周春大,张岩.基于微位移技术提高CCD分辨率的方法.光子学报,2006,35(12):1969-1974
    [160]戴光智,孙宏伟,杨欧.微扫描超分辨率超声成像技术研究.科学技术与工程,2010,10(28):6878-6882
    [161]郭晓新.超分辨率重建问题的研究.博士,吉林大学2005
    [162]Bishara W,Su T W,Coskun A F,Ozcan A. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express,2010,18 (11): 11181-11191
    [163]Su T W,Xue L,Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl. Acad. Sci. USA.,2012,109 (40):16018-16022
    [164]朱根娣.现代检验医学仪器分析技术及应用(第二版).上海:上海科学技术文献出版社,2008
    [165]Selinummi J,Seppala J,Yli-Harja O,Puhakka J A. Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques,2005,39 (6):859-863
    [166]尚可可,张西亚,韩胜利,李国晕.精子运动能力评价方法研究进展.中国医疗设备,2010,25(2):46-47,63
    [167]Rowe P J,Comhaire F H,Hargreave T B,Mahmoud A M A. WHO Manual for the Standardized Investigation, Diagnosis and Management of the Infertile Male. Cambridge University Press,2000
    [168]Sarensen L, stergaard J,Johansen P,De Bruijne M. Multi-object tracking of human spermatozoa. Proceedings of SPIE,2008,6914:69142C
    [169]Su T W,Xue L,Ozcan A. Lensfree 3D Tracking of Sperms at High-throughput. Frontiers in Optics Conference, OS A Technical Digest,2012, FiO Postdeadline Session I:FW6A.9
    [170]Su T W,Isikman S O,Bishara W,Tseng D,Erlinger A,Ozcan A. Multi-angle lensless digital holography for depth resolved imaging on a chip. Opt. Express,2010,18 (9): 9690-9711
    [171]Crocker John C,Grier David G. Methods of Digital Video Microscopy for Colloidal Studies. J. Colloid Interface Sci.,1996,179 (1):298-310

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700