Au-Cu-Al合金的马氏体预相变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马氏体预相变是广泛存在于形状记忆合金、超导、巨磁电阻材料中的一种相变临界现象。从上世纪60年代马氏体预相变首次被发现以来,围绕其机制的讨论一直没有间断。之前的学者们提出了很多解释马氏体预相变的理论,但是到目前为止还未有一个理论能被实验所完全证实。对马氏体预相变的研究不仅仅可以丰富物理理论,还对类似体系(如铁电体系)的研究具有参考意义。
     本文研究分三部分,分别为:(1) Au-Cu-Al合金马氏体预相变花呢状组织与应变玻璃行为;(2)母相至中间相转变的“pseudospinodal decomposition”机制;(3)中间相结构的演化及中间相与母相界面的表征。
     马氏体预相变的花呢状组织是马氏体预相变的重要特征之一。近年来,一些理论假说认为这种花呢状组织是由点缺陷或成分起伏钉扎马氏体相变造成,并且这种花呢状组织可以类比“自旋玻璃”,属于一种全新的物理现象—应变玻璃态。但是,也有观点认为马氏体预相变的花呢状组织与应变玻璃态并不兼容,两者分别属于两种不同的机制。本文通过系统的实验研究和理论分析,在Au-Cu-Al合金体系中观察到马氏体预相变花呢状组织,并且发现花呢状组织表现出应变玻璃行为。因此本文认为马氏体预相变花呢状组织与应变玻璃行为在本质上是一致的。
     另外,一些学者预测马氏体预相变的本质并不是马氏体相变的前驱效应,而是马氏体相变之前的母相发生失稳,即从母相中均匀析出纳米中间相。这种中间相的晶体结构对称性低于母相的晶体结构对称性,并且母相→中间相转变是一种全新的相变机制—“Pseudospinodal decomposition”。然而,这个假说尚未被实验证实。本文设计了一系列不同成分的Au-Cu-Al合金,研究了马氏体预相变花呢状组织在不同热处理条件下的演化过程。实验发现,花呢状组织的本质就是一种纳米中间相在母相中的均匀形核,而非点缺陷钉扎马氏体相变造成。随着母相初始成分的不同,花呢状组织最终可以演化出不同的组织结构(如棋盘花纹纳米线或孪晶)。通过实验并综合文献结果,本文证实了之前学者关于“Pseudospinodaldecomposition”的假说。
     本文表征了中间相的晶体结构,发现其随着成分变化很大,最终稳定的孪晶结构有三斜与四方两种。因此推测Au-Cu-Al合金中有类似于铁电体系中准同型相界(MPB)。三斜晶系与四方晶系的交界可能就是造成花呢状组织的准同型相界(MPB)。本文还观察了母相/中间相的界面。对比实验结果,认为母相/中间相界面处的6M亚稳超点阵结构可能来自于淬火过程中扩散不完全。
Premartensitic transition is a critical phenomenon which has been documented ina wide range of materials, including shape memory alloy, superconductors, andcolossal magnetoresistance materials, and its mechanism has been frequentlydiscussed since it was observed in1960s。Many theories have been proposed toaccount for such a transition, yet none of them has been well experimentally confimed.Investigation of Premartensitic transition not only enriches the phase transformationtheories, but also sheds light on similar systems such as ferroelectric systems.
     The content of this paper includes:(1) the relationship between the precursortweed morphology and strain glassy behavior;(2) the “pseudospinodaldecomposition” mechanism of parent→intermediate phase transition;(3) structuralcharacterization of intermediate phase and the interface of intermediate/parent phase.
     The premartensitic tweed, as an important feature of premartensitic transition,was usually interpreted as indication of local static lattice strain of martensitestabilized by point defects or compositional disorder. Based on this viewpoint, a newconcept “strain glass” was proposed to explain this anomaly. Yet another theorysuggested that premartensitic tweed and strain glass are incompatible, in other words,the premartensitic tweed and strain glass stem from different mechanisms. However, apremartensitic strain glassy behavior was observed in the Au7Cu5Al4alloy via a seriesof experiments in the present paper. Therefore, we suggest that the premartensitictweed and strain glass origin from the same nature.
     Some scholars also suggested that the premartensitic tweed is not a precursorstate of martensite, and on the contrary, should be associated with the embryos ofsingle-domain nano-particles whose symmetry is lower than that of parent, at theearly stage of “pseudospinodal decomposition” developing at the temperature aboveMartensitic transformation where, according to thermodynamics, the compositionalhomogeneous parent phase is unstable against decomposition. However, thishypothesis has not been verified by experiments. In this paper, the premartensitic tweed in Au-Cu-Al alloys, contrary to previous thought that relies on defects, isconfirmed to be a result of intermediate phase embedding in the parent phase via“pseudospinodal decomposition”, being different from the martensite formed at lowertemperature. Accompanying the parent phase→intermediate phase transition, thetweed can further transform to chessboard nanowires or twins, in consistence withprevious theoretical prediction on “pseudospinodal decomposition”.
     The crystal structure of intermediate phase in Au-Cu-Al alloys was characterized,which varies obviously as a function of composition. The final stable intermediatephase has a trigonal or tetragonal twinned structure. Thus we infer that the phaseboundary between trigonal and tetragonal intermediate phase can be paralleled withMPB in ferroelectric system, where tweed structure is often formed. In addition, theparent/intermediate interface was also observed, where the6M superstructure wasfound and is probably due to incomplete diffusion during quenching process.
引文
[1] K. Otsuka K, T. Kakeshita, Science and Technology of Shape Memory Alloys: NewDevelopment [J], MRS Bulletin,2,91-100(2002).
    [2] F.E.Feninat, G. Laroche, M. Fiset, D. Mantovani, Shape Memory Materials for BiomedicalApplications [J], Advanced Engineering Materials,4(3),91-104(2002).
    [3]徐祖耀,江伯鸿等,形状记忆材料,上海:上海交通大学出版社,2000.
    [4]舟九保熙康,形状记忆合金,机械工业出版社,1992.
    [5] P.C. Clapp,How would we recognize a martensitic transformation if it bumped into us on adark&austy night?[J]. Journal de Physique IV,1995,5: C8-11–C18-19.
    [6]徐祖耀,,马氏体相变与马氏体,北京:科学出版社,1980.
    [7] W.J. Buehler, J.W. Gilfrich, R.C. Wiley, Effect of Low-Temperature Phase Changes on theMechanical Properties of Alloys near Composition TiNi [J], J. Appl. Phys.34,1475-1477(1963).
    [8] Z.H. Nie, Y. Ren, Y.D. Wang, D.M. Liu, D.E. Brown, G. Wang, and L.Zuo, Strain-induceddimensionality crossover and associated pseudoelasticity in the Premartensitic phase of Ni2MnGa[J], Applied Physicas Letters97,171905(2010).
    [9] D. Shindo, Y. Murakami, and T. Ohba, Understanding Precursor Phenomena for the R-PhaseTransformation in Ti-Ni-Based Alloys [J], MRS Bulletin27,121-127(2002).
    [10] I.M. Robertson&C.M. Wayman, Tweed microstructures I. Characterization in NiAl [J],Philosophical Magazine A,48(3),421-442(1983).
    [11] Y. Noda, M. Takimoto, T. Nakagawa and Y. Yamada, X-ray study of the premartensiticphenomena in AuCd, Metallurgical and Materials Transactions A [J[,19(2),265-271(1988).
    [12] S. Muto, S. Takeda, R. Oshima and F. Eiichi Fujita, High-Resolution Electron Microscopy ofthe Tweed Microstructure in an Fe-Pd Alloy [J], Japanese Journal of Applied Physics,27(8),1387-1389(1988).
    [13] Z. Xu, Myung-Chul Kim., Jie-Fang Li&Dwight Viehland, Observation of a sequence ofdomain-like states with increasing disorder in ferroelectrics [J], Philo. Mag. A.74(2),395-406(1996).
    [14] Y.W. Xu, M. Suenaga, J. Tafto, R.L. Sabatini, A.R. Moodenbaugh, P. Zolliker,Microstructure, lattice parameters, and superconductivity of YBa2(Cu1-xFex)3O7-for0x0.33[J], Phy. Rev. B39,6667-6680(1989).
    [15] F. Millange, V. Caignaert, B. Domengès, and B. Raveau, E. Suard, Order-DisorderPhenomena in New LaBaMn2O6-xCMR Perovskites, Crystal and Magnetic Structure [J],Chemistry of Materials,10(7),1974-1983(1998).
    [16] D. Wang, Z. Zhang, J. Zhang, et al., Strain glass in Fe-doped Ti-Ni [J], Acta Mater.58,6206-6215(2010).
    [17] E. Goo and R. Sinclair, The B2to R Transformation in Ti50Ni47Fe3and Ti49.5Ni50.5alloys [J],Acta Metallurgica,33(9),1717-1723(1985).
    [18] S.K. Wu and C.M.Wayman, On the reciprocal lattice of the “premartensitic” R-phase in TiNishape memeory alloys [J], Acta Metallurgica,37(10),2805-2813(1989).
    [19] T. Hara, T. Ohba, E. Okunishi, and K. Otsuka, Structure Study of R-Phase in Ti-50.23at%Niand Ti-47.75at%-1.50at%Fe Alloys [J], Materials Transactions, JIM,38(1),11-17(1997).
    [20] D. Schryvers and P.L. Potapov, R-Phase Structure Refinement Using Electron DiffractionData [J], Materials Transactions, JIM,43(5),774-779(2002).
    [21] N. Hatcher, O.Yu. Kontsevoi, and A.J. Freeman, Role of elastic and shear stabilities in themartensitic transformation path of NiTi [J], Phys Rev B80,144203(2009).
    [22] M.S. Choi, T. Fukuda, T. Kakeshita&H. Mori, Incommensurate-commensurate transitionand nanoscale domain-like structure in iron doped Ti-Ni shape memory alloys [J], Philo. Mag,86(1),67-78(2006).
    [23] C.M. Huang, M. Meichle, M.B. Salamon&C.M. Wayman, Transformation behavior of aTi50Ni47Fe3alloy I. Premartensitic phenomena and the incommensurate phase [J], Philo Mag. A,47(1),9-30(1983).
    [24] R. Oshima, Successive martensitic transformations in Fe-Pd alloys [J], Scripta Metallurgica,15,829-833(1981).
    [25] S. Muto, S. Takeda, R. Oshima and F.E. Fujita, High-Resolution Electron Microscopy of theTweed Microstructure in an Fe-Pd Alloy [J], Japanese Journal of Applied Physics,27(8),1387-1389(1988).
    [26] H. Seto, Y. Noda, and Y. Yamada,Precursor Phenomena at Martensitic Phase Transition inFe-Pd Alloy. I. Two-Tetragonal-Mixed Phase and Crest-Riding-Periodon [J], Journal of thePhysical Society of Japan,59(3),965-977(1990).
    [27] V.A. hernenko, J. Pons, C. Segui, E. Cesari, Premartensitic phenomena and other phasetransformations in Ni-Mn-Ga alloys studied by dynamic mechanical analysis and electrondiffraction [J], Acta Mater.50,53-60(2002).
    [28] P.C. Clapp, A Localized soft mode theory for martensitic transformations [J], phys.stat.sol (b)57,561-569(1973).
    [29] G.R. Barsch and J.A. Krumhansl, Nonlinear and Nonlocal Continuum Model ofTransformation Precursors in Martensities [J], Metallurgical Transactions A,19A,761-775(1988).
    [30] Y. Yamada, Modulated lattice relaxation in based premartensitic phase [J],Metallurgical and Materials Transactions A,19(4),777-781(1988).
    [31] A. Saxena, T. Castan, A. Planes, et al., Origin of Magnetic and Magnetoelastic TweedlikePrecursor Modulations in Ferroic Materials [J], Phys. Rev. Lett.92,197203(2004).
    [32] S. Kartha, T. Castan, J.A. Krumhansl, J.P. Sethna, Spin-glass nature of tweed precursors inmartensitic transformations [J], Pys. Rev. Lett.67,3630-3633(1991).
    [33] S. Semenovskaya and A.G.Khachaturyan, Coherent structural transformations in randomcrystalline systems [J], Acta Mater.45,4367-4384(1997).
    [34] P. Lloveras, T. Castan, Marcel Porta, A. Planes, and A. Saxena, Influence of ElasticAnisotropy on Structural Nanoscale Textures [J], Phy. Rev. Lett.100,165707(2008).
    [35] D. Wang, Y. Wang, Z. Zhang, and X. Ren, Modeling Abnormal Strain Sates in FerroelasticSystems: The role of point defects [J], Phys. Rev. Lett.105,205702(2010).
    [36] W. Rao, M. Wuttig, A.G. Khachaturyan, Giant Nonhysteretic responses of two-phasenanostructured alloys [J], Phys. Rev. Lett.106,105703(2011).
    [37] M.B. Salamon, M.E. Meichle, and C.M. Wayman, Transformation behavior of a Ti50Ni47Fe3alloy I. Premartensitic phenomena and the incommensurate phase [J], Philo. Mag. A,47(1),9-30(1983).
    [38] M. Todai, T. Fukuda, and T. Kakeshita, Relation between incommensurate satellites andphonon softening in Ti-Ni-based shape memory alloys [J], Scripta Mater.64,541-543(2011).
    [39] T.Yamamoto, M.S. Choi, S. Majima, T. Fukuda, and T. Kakeshita, Origin of diffusescattering appearing in iron-doped Ti-Ni shape memory alloys [J], Eur.Phys.J. Special Topics158,1-5(2008).
    [40] Byung-Hak Choe, et al., Phase Transformation of Metastable Beta Ti Alloys with TweedStructure [J], Metals and Materials International,11(5),365-369(2005).
    [41]顾本源,公度-无公度相变与朗道的相变唯象理论,物理学进展,8(2),125-168(1988).
    [42] S.B. Dugdale, R.J. Watts, J. Laverock, et al., Observation of a Strongly Nested Fermi Surfacein the Shape-Memory Alloy Ni0.62Al0.38[J], Phys. Rev. Lett.96,046406(2006).
    [43] C.P. Opeil, B. Mihaila, R.K. Schulze, et al., Combined Experimental and TheoreticalInvestigation of the Premartensitic Transition in Ni2MnGa [J], Phys. Rev. Lett.100,165703(2008).
    [44] F.H. Stillnger, A topographic view of supercooled liquids and glass formation [J], Science267,1935(1995).
    [45] J.I. Brauman, Glasses and amorphous materials [J], Science267,1887(1995).
    [46] J.A. Mydosh, Spin glass: A experimental introduction, London and Washington, DC: Taylor&Francis,1993.
    [47] L.E. Cross, Relaxor ferroelectrics, Ferroelectrics76,241-267(1987).
    [48] X. Ren, Y. Wang, Y. Zhou, et al., Strain glass in ferroelastic systems: premartensitic tweedversus strain glass [J], Philo. Mag.90,141-157(2010).
    [49] S. Kartha, J.A. Krumhansl, J.P. Sethna, Disorder-driven pretransitional tweed pattern inmartensitic transformations [J],Phy. Rev. B52,803-822(1995).
    [50] S. Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic systemTi50-xNi50+x[J], Phy. Rev. Lett.95,205702(2005).
    [51] Y. Wang, X. Ren, K. Otsuka, and A. Saxena, Evidence for broken ergodicity in strain glass[J], Phys. Rev. B76,132201(2007).
    [52] C. Leroux, A. Loiseau, D. Broddin, and G. Vantendeloo, Electron microscopy study of thecoherent two-phase mixtures L10+L12in Co-Pt alloys [J], Phil. Mag. B64,57-82(1991).
    [53] K.I. Udoh, A.M. EI Araby, Y. Tanaka, K. Hisatsune, K. Yasuda, G.Van Tendeloo, J. VanLanduyt, Structural aspects of AuCu I or AuCu II and a cuboidal block configuration of fccdisordered phase in AuCu-Pt and AuCu-Ag pseudobinary alloys [J], Mater. Sci. Eng. A203,154-164(1995).
    [54] L.A. Bendersky and W.J. Boettinger, Phase transformations in the (Ti;Nb)3Al section of theTi-Al-Nb system II. experimental TEM study of microstructures [J], Acta Metall. Mater.42,2337-2352(1994).
    [55] A. Suzuki and M. Takeyama, Formation and morphology of Kurnakov type D022compoundin disordered face-centered cubic-(Ni;Fe) matrix alloys [J], J. Mater. Res.21,21_26(2006).
    [56] G. Van Tendeloo, and S. Amelincks, Long-period antiphase boundary structures in theordered alloy Au4Zn II. growth mechanism of the LPAPB structure [J], Phys. Status Solidi A50,53-66(1978).
    [57] S. Yeo, Y. Horibe, S. Mori, C.M. Tseng, C.H. Chen, A.G. Khachaturyan, C.L. Zhang, andS.W. Cheong, Solid state self-assembly of nanocheckerboards [J], Appl. Phys. Lett.89,233120(2006).
    [58] C.L. Zhang, S. Yeo, Y. Horibe, Y.J. Choi, S. Guha, M. Croft, S.W. Cheong, S. Mori,Coercivity and nanostructure in magnetic spinel Mg(Mn;Fe)2O4[J], Appl. Phys. Lett.90,133123(2007).
    [59] C.L. Zhang, C.M. Tseng, C.H. Chen, S. Yeo, Y.J. Choi and S.W. Cheong, Magneticnanocheckerboards with tunable sizes in the Mn-doped CoFe2O4spinel [J], Appl. Phys. Lett.91,233110(2007).
    [60] B.S. Guiton, P.K. Davies, Nano-chessboard superlattices formed by spontaneous phaseseparation in oxides [J], Nature Mater6,586-591(2007).
    [61] Y. Ni and A.G. Khachaturyan, From chessboard tweed to chessboard nanowires structureduring pseudospinodal decomposition [J], Nature Mater8,410-414(2009).
    [62] Y. Ni and A.G. Khachaturyan, Mechanism and conditions of the chessboard structureformation [J], Acta Mater56,4498-4509(2008).
    [63] Y. Ni, W. Rao, and A.G. Khachaturyan, Pseudospinodal model of decomposition in films andformation of chessboard-like nanostructure [J], Nano Lett.9(9),3275-3281(2009).
    [64] R. Wagner, R. Kampmann, Phase transformation in materials (Chapter5, Homogeneoussecondphase precipitation)
    [65] W.A. Soffa, E.D. Cantando and K.N. Shugart, Tweed and nanoscale cubic/tetragonal phasemixtures in decomposition alloys: the pseudospinodal concept [J], Solid State Phenomena172-174,344-349(2011).
    [66] I.M. Wolff, M.B. Cortie, The development of Spangold [J], Gold Bull.,27(2),44-54(1994).
    [67] F.C. Levey, M.B.Cortie, L.A. Cornish, Displacive transformations in Au-18Wt%Cu-6Wt%Al[J], Met.Mater.Trans A31(8),1917-1923(2000).
    [68] F.C.Levey, M.B.Cortie, Body-centred tetragonal martensite formed fromAu7Cu5Al4phase [J], Mater Sci Eng A303(1-2),1-10(2001).
    [69] M.B.Cortie, C.S.Kealley, V.Bhatia, G.J. Thorogood, M.M. Elcombe, M. Avdeev, Hightemperature transformations of the Au7Cu5Al4shape memory alloy [J], Journal of Alloys andCompounds509(8),3502-3508(2011).
    [70] M.B. Cortie, F.C. Levey, Formation, modulation and adaptive twinning of martensite in theAu7Cu5Al4shape memory system [J], Intermetallics10(1),23-31(2002).
    [71] L. Battezzati, G. Fiore, M. Massazza, A shape memory gold alloy processed by rapidsolidification [J], Journal of Alloys and Compounds434-435(SPEC.ISS.),264-267(2007).
    [1] S.Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the Ferroelastic-Martensitic systemTi50-xNi50+x[J], Phys. Rev. Lett.95,205702(2005).
    [2] J.A. Mydosh, Spin Glasses (Taylor&Francis, London,1993).
    [3] J. Snyder, J.S. Slusky, R.J. Cava, and P.Schiffer, How spin ices freezes [J], Nature413,48(2001).
    [4] B.E. Vugmeister and M.D. Glinchuk, Dipole glass and ferroelectricity in random-site electricdipole systems [J], Rev. Mod. Phys.62,993(1990).
    [5] S. Kartha, T. Castan, J.A. Krumhansl, J.P. Sethna, Spin-glass nature of tweed precursors inmartensitic transformations [J], Pys. Rev. Lett.67,3630-3633(1991).
    [6] S.M. Shapiro, J.Z. Larese, Y. Noda, S.C. Moss, L.E. Tanner, Neutron scattering study ofpremartensitic behavior in Ni-Al alloys [J], Phys. Rev. Lett.57,3199-3202(1986).
    [7] X. Ren, Y. Wang, Y. Zhou, et al., Strain glass in ferroelastic systems: premartensitic tweedversus strain glass [J], Philo. Mag.90,141-157(2010).
    [8] S. Kartha, J.A. Krumhansl, J.P. Sethna, Disorder-driven pretransitional tweed pattern inmartensitic transformations [J],Phy. Rev. B52,803-822(1995).
    [9] D. Sherrington, Understanding glassy phenomena in materials, Disorder and strain-inducedcomplexity in functional materials, chapter10.
    [10] M.B.Cortie, C.S.Kealley, V.Bhatia, G.J. Thorogood, M.M. Elcombe, M. Avdeev, Hightemperature transformations of the Au7Cu5Al4shape memory alloy [J], Journal of Alloys andCompounds509(8),3502-3508(2011).
    [11] F.C. Levey, M.B.Cortie, L.A. Cornish, Displacive transformations in Au-18Wt%Cu-6Wt%Al[J], Met.Mater.Trans A31(8),1917-1923(2000).
    [12] D. Wang, Z. Zhang, J. Zhang, Y. Zhou, Y. Wang, X. Ding, Y. Wang, X. Ren, Strain glass inFe-doped Ti-Ni [J], Acta Mater.58,6206-6215(2010).
    [13] J. Zhang, Y. Wang, X. Ding, et al., Spontaneous Strain glass to Martensite transition in aTiNiFe strain glass [J], Phys. Rev. B84,214201(2011).
    [14] S. Karmakar, C.L. Huang, B.K. Chaudhuri, Evidence of intrinsic exchange bias and its originin spin-glass-like disorder L0.5Sr0.5MnO3managanites (L=Y, Y0.5Sm0.5, and Y0.5La0.5)[J], Phys.Rev. B77,144409(2008).
    [15] Q. Tan, J. Li, D. Viehland, Role of potassium comodification on domain evolution andelectrically induced strains in La modified lead zirconate titanate ferroelectric ceramics [J], J. App.Phys.88,3433(2000).
    [16] M.S. Blanter, I.S. Golovin IS, H. Neuh¨auser, H.R. Sinning, Internal friction in metallicmaterials, Springer Berlin Heidelbeg,2007; Volume90.
    [17] C. Zener, Elasticity and anelasticity of metals, The Univ.of Chargo press,1948.
    [18] A.S. Nowick, B.S. Berry, Anelastic relaxation in crystalline solids, New York: Academicpress,1972.
    [19] Y. Zhou, D. Xue, X. Ding, Y. Wang, J. Zhang, Z. Zhang, D. Wang, K. Otsuka, J. Sun, X.Ren, Strain glass in doped Ti50(Ni50-xDx)(D=Co, Cr, Mn) alloys: Implication for the generality ofstrain glass in defect-containing ferroelestic system [J], Acta Mater.58,5433-5442(2010).
    [20] G. Fan, Y. Zhou, K. Otsuka, X. Ren, K. Nakamura, T. Ohba, T. Suzuki, I. Yoshida, F. Yin,Effects of frequency, composition, hydrogen and twin boundary density on the internal friction ofTi50Ni50-xCuxshape memory alloys [J], Acta Mater.54,5221-5229(2006).
    [21] W. Rao, M. Wuttig, A.G. Khachaturyan, Giant Nonhysteretic responses of two-phasenanostructured alloys [J], Phys. Rev. Lett.106,105703(2011).
    [22] W. Rao, A.G. Khachaturyan, Giant quasi-elastic responses in decomposed two-phasenanodispersions: Phase field modeling [J], Acta Mater.60,443-456(2012).
    [23] S.H. Chang, S.K. Wu, Effect of cooling rate on transformation temperature measurements ofTi50Ni50alloy by differential scanning calorimetry and dynamic mechanical analysis [J], MaterialsCharacterization59(8),987-990(2008).
    [24] L. Battezzati, G. Fiore, M. Massazza, A shape memory gold alloy processed by rapidsolidification [J], Journal of Alloys and Compounds434-435(SPEC.ISS.),264-267(2007).
    [25] M.B.Cortie, C.S.Kealley, V.Bhatia, G.J. Thorogood, M.M. Elcombe, M. Avdeev, Hightemperature transformations of the Au7Cu5Al4shape memory alloy [J], Journal of Alloys andCompounds509(8),3502-3508(2011).
    [26] M.B. Cortie, F.C. Levey, Formation, modulation and adaptive twinning of martensite in theAu7Cu5Al4shape memory system [J], Intermetallics10(1),23-31(2002).
    [27] P.G. Debenedetti and F.H. Stillinger, Supercooled liquids and the glass transition [J], Nature410,259-267(2001).
    [28] H.B. Yu, K. Samwer, Y. Wu, and W.H. Wang, Correlation between relaxation andself-diffusion of the smallest constituting atoms in metallic glasses [J], Phys. Rev. Lett.109,095508(2012).
    [29] H. Ursic and D. Damjanovic, Anelastic relaxor behavior of Pb(Mg1/3Nb2/3)O3[J], App. Phys.Lett.103,072904(2013).
    [1] A. Saxena, T. Castan, A. Planes, et al., Origin of Magnetic and Magnetoelastic TweedlikePrecursor Modulations in Ferroic Materials [J], Phys. Rev. Lett.92,197203(2004).
    [2] P. Lloveras, T. Castan, Marcel Porta, A. Planes, and A. Saxena, Influence of ElasticAnisotropy on Structural Nanoscale Textures [J], Phy. Rev. Lett.100,165707(2008).
    [3] D. Wang, Y. Wang, Z. Zhang, and X. Ren, Modeling Abnormal Strain Sates in FerroelasticSystems: The role of point defects [J], Phys. Rev. Lett.105,205702(2010).
    [4] Y. Ni, Y.M. Jin, A.G. Khachaturyan, The transformation sequences in the Cubic→Tetragonaldecomposition [J], Acta Mater55,4903-4914(2007).
    [5] Y. Ni and A.G. Khachaturyan, Mechanism and conditions of the chessboard structureformation [J], Acta Mater56,4498-4509(2008).
    [6] Y. Ni and A.G. Khachaturyan, From Chessboard tweed to chessboard nanowires structureduring pseudospinodal decomposition [J], Nature Mater8,410-414(2009).
    [7] Y. Ni, W. Rao, and A.G. Khachaturyan, Pseudospinodal model of decomposition in films andformation of chessboard-like nanostructure [J], Nano Lett.9(9),3275-3281(2009).
    [8] L. Battezzati, G. Fiore, M. Massazza, A shape memory gold alloy processed by rapidsolidification [J], Journal of Alloys and Compounds434-435(SPEC.ISS.),264-267(2007).
    [9] M.B. Cortie, F.C. Levey, Formation, modulation and adaptive twinning of martensite in theAu7Cu5Al4shape memory system [J], Intermetallics10(1),23-31(2002).
    [10] F.C.Levey, M.B. Cortie, and L.A. Cornish, A500℃isothermal section for the Au-Cu-Alsystem, Metall and Mater Trans A33A,987-993(2002).
    [11] M.B.Cortie, C.S.Kealley, V.Bhatia, G.J. Thorogood, M.M. Elcombe, M. Avdeev, Hightemperature transformations of the Au7Cu5Al4shape memory alloy [J], Journal of Alloys andCompounds509(8),3502-3508(2011).
    [12] K. Otsuka, X. Ren, T. Takeda, Experimental test for a possible isothermal martensitictransformation in a Ti-Ni alloy [J], Scripta Mater45(2),145-152(2001).
    [13] K. Otsuka, X. Ren, Progress in Materials Science60(6),511-678(2005).
    [14] S. Kartha, J.A. Krumhansl, J.P. Sethna, Disorder-driven pretransitional tweed pattern inmartensitic transformations [J],Phy. Rev. B52,803-822(1995).
    [15] Y.Koyama, J. Yoshida, and Y. Nakamura, Stripe-type superstructure in brassalloys [J],Phys. Rev. B40,5378-5386(1989).
    [16] Y. Koyama, M. Hatano, M. Tanimura, Antiphase boundaries, inversion, and ferroelasticdomains in the striped-type superstructure of Cu-Al alloys [J], Phys. Rev. B53,11462-11468(1996).
    [17] M. Eichberger, H. Schafer, M. Krumova, M. Beyer, J. Demsar, H. berger, G. Moriena, G.Sciaini, R.J.D. Miller, Snapshots of cooperative atomic motions in the optical suppression ofcharge density waves, Nature468,799-802(2010).
    [18] J.Y. Liu, M.J. Jin, C. Ni, Y. Shen, G.L. Fan, Z. Wang, Y.F. Zhang, C. Li, Z.Q. Liu, and X.J.Jin, Phys. Rev. B84,140102(R)(2011).
    [19] T. Yano, Y. Murakami, D. Shindo, S. Kuramoto, Acta Mater57,628-633(2009).
    [20] T. Yano, Y. Murakami, D. Shindo, Y. Hayasaka, S. Kuramoto63,536-539(2010).
    [21] J. Zhang, Y. Wang, X. Ding, et al., Spontaneous Strain glass to Martensite transition in aTiNiFe strain glass [J], Phys. Rev. B84,214201(2011).
    [22] W. Rao, A.G. Khachaturyan, Giant quasi-elastic responses in decomposed two-phasenanodispersions: Phase field modeling [J], Acta Mater.60,443-456(2012).
    [23] S.Sarkar, X. Ren, K. Otsuka, Evidence for strain glass in the Ferroelastic-Martensitic systemTi50-xNi50+x[J], Phys. Rev. Lett.95,205702(2005).
    [1] F.C.Levey, M.B. Cortie, and L.A. Cornish, A500℃isothermal section for the Au-Cu-Alsystem, Metall and Mater Trans A33A,987-993(2002).
    [2] K. Otsuka, X. Ren, T. Takeda, Experimental test for a possible isothermal martensitictransformation in a Ti-Ni alloy [J], Scripta Mater45(2),145-152(2001).
    [3] F.C. Levey, M.B.Cortie, L.A. Cornish, Displacive transformations in Au-18Wt%Cu-6Wt%Al[J], Met.Mater.Trans A31(8),1917-1923(2000).
    [4] M.B. Cortie, F.C. Levey, Structure and ordering of the18-carat Al-Au-Cu phase [J],Intermetallics8(7),793-804(2000).
    [5] M.B. Marcinkowski and N.Brown, Direct observation of Antiphase Boundaries in the Fe3Alsuperlattice [J], J. Appl. Phys.33,537(1962).
    [6] M. Ahlers, Martensite and equilibrium phases in Cu-Zn and Cu-Zn-Al alloys [J], Progress inMaterials Science30,135-186(1986).
    [7] R. Kainuma, N. Satoh, X.J. Liu, I. Ohnuma, K. Ishida, Phase equilibra and Heusler phasestability in the Cu-rich portion of the Cu-Al-Mn system [J], Journal of alloys and Compounds266,191-200(1988).
    [8] M.J. Jin, J.Y. Liu, X. Jin, Ordering transitions in quenched Au7Cu5Al4alloy and effect of orderon martensitic transformation [J], Intermetallics18,846-850(2010).
    [9] M.J. Jin, Y.J. Gu, X. Jin, Characterization of ordering transitions in Au-Cu-Al alloys [J],Materials Characterization60,1395-1399(2009).
    [10] M.B.Cortie, C.S.Kealley, V.Bhatia, G.J. Thorogood, M.M. Elcombe, M. Avdeev, Hightemperature transformations of the Au7Cu5Al4shape memory alloy [J], Journal of Alloys andCompounds509(8),3502-3508(2011).
    [11] V. Sanchez-Alarcos, V. Recarte, J.I. Perez-Landazabal, G.J. Cuello, Correlation betweenatomic order and the characteristics of the structural and magnetic transformations in Ni-Mn-Gashape memory alloys [J], Acta Mater55,3883-3889(2007).
    [12] Y.Koyama, J. Yoshida, and Y. Nakamura, Stripe-type superstructure in brassalloys [J],Phys. Rev. B40,5378-5386(1989).
    [13] Y. Koyama, M. Hatano, M. Tanimura, Antiphase boundaries, inversion, and ferroelasticdomains in the striped-type superstructure of brassCu-Al alloys [J], Phys. Rev. B53,11462-11468(1996).
    [14] G. Torres-Villasenor, M. Avalos-Borja, C.Pina-Barba, Transmission Electron MicroscopyStudy of the Gamma Phase of the Cu-Al system [J], Acta Microscopica4,21-31(1995).
    [15] S. Westman, Phase analysis at660℃of the Gamma Region of the Copper-AluminiumSystem [J], Acta Chemica Scandinavica19,2369-2372(1965).
    [16] A.J. Bradley, and P. Jones, An X-ray investigation of the copper-aluminium alloys [J], J. Inst.Metals51,131(1933).
    [17] R.L. Withers, L. Bourgeois, A. Snashall, Y. Liu, L. Noren, C. Dwyer, and J. Etheridge,Chessboard/Diamond Nanostructures and the A-site Deficient, Li1/2-3xNd1/2+xTiO3, DefectPerovskite Solid Solution [J], Chemistry of Materials25,190-201(2013).
    [18] J. Schimer, R. Withers, L. Noren, Y. Liu, L. Bourgeois, and G. Stewart, Detailed PhaseAnalysis and Crystal Structure Investigation of a Bi1-xCaxFeO3-x/2Perovskite-Related SolidSolution Phase and Selected Property Measurements Thereof [J], Chemistry of Materials21,4223-4232(2009).
    [19] F. Yang, D.R. Coughlin, P.J. Phillips, L. Yang, A. Devaraj, L. Kovarik, R.D. Noebe, M.J.Mills, Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shapememory alloy [J], Acta Mater61,3335-3346(2013).
    [20] A.G. Khachaturyan, T.F. Lindsey, J.W. Morris, Theoretical investigation of the precipitationof 'in Al-Li [J], Metallurgical Transaction A19,249-258(1988).
    [21]戎咏华,分析电子显微学导论,高等教育出版社,北京,2006.
    [22] B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics,(Academic, New York,1971) P.92.
    [23] N. Yasuda, N. Hidayah, M. Isobe, H. Ohwa, Y. Tachi&Y. Yamashita, The change indomain structures from tweed in Rhombohedral phase to twin structure in Othorhombic one withstress in relaxor ferroelectric solid solutions, Ferroelectrics443,37-44(2013).
    [24] A.B. Glossop and D.W. Pashley, The direct observation of anti-phase domain boundaries inordered copper-gold (CuAu) alloy [J], Proc. R. Soc. Lond. A250,131-146(1959).
    [25] E. Klay, F. Diologent, A. Mortensen, L10nanotwinned gold-rich Au-Cu-Pt [J], Acta Mater59,3184-3195(2011).
    [26] Z.W. Wilchinsky, X-ray Measurement of Order in the Alloy of Cu3Au [J], J. Appl Phys.15,806(1944).
    [27] V.K. Bhatia, C.S. Kealley, R. Wuhrer, K.S. Wallwork, M.B. Cortie, Ternary andphases in the Al-Au-Cu system at750℃[J], Journal of Alloys and Compounds488,100-107(2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700