二甲醚氧化羰基化二元体系相平衡及高压固液平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文独创了国内第一套带石英可视窗的可变体积高压釜,利用霍尔探测仪实现体积的准确测量,利用自动控温、恒温法和用手摇泵调节实现宽温度、压力范围的准确调控,用微型高压钢瓶实现高压状态直接取样,因此可方便地实现对高压气液平衡的准确测量。并用文献数据对该装置的可靠性进行了验证。同时还建立了一套操作方便的组分解析装置,对气液相组成进行分析。采用静态分析法测定了二甲醚氧化羰基化反应体系中氧气、一氧化碳、二氧化碳、氮气以及二甲醚分别与碳酸二甲酯组成的二元系统的高压气液相平衡组成、相密度和体积。结果表明五种气体在碳酸二甲酯中的溶解度随着压力的增加而明显加大。碳酸二甲酯在二甲醚气体中随着压力的增加含量逐渐增加,但是在氧气、一氧化碳、二氧化碳和氮气四种气体中却增加不明显。
     选择PR和PRSV方程分别与van der waals-1型、van der waals-2型、Margules型混合规则和活度系数表达的混合规则搭配成六种不同的计算方法,采用搜索法对上述二元高压气液平衡(GLE)实验数据进行优化计算,系统地分析了状态方程、混合规则、回归方法等对计算结果的影响。结果表明,PRSV方程与van der waals型混合规则组成的方法、PR方程与活度系数表达的混合规则组成的方法的计算结果与实验值符合较好。
     本文测定的二甲醚氧化羰基化制碳酸二甲酯反应体系中氧气、一氧化碳、二氧化碳、氮气以及二甲醚分别与碳酸二甲酯组成的二元系统的高压气液相平衡数据填补了国内外对这五个体系的研究空白,为研究二元系统的溶液理论和GLE(气液平衡)计算提供了丰富的基础数据,也推进了气液相平衡理论及计算方法的进展。同时为二甲醚氧化羰基化制碳酸二甲酯反应实现工业化生产设计提供了必需的热力学数据数据。
     本论文还讨论了四氯化碳、氯仿、溴仿、四氯化硅、苯、氯苯、溴苯和硝基苯八种纯物质的熔点曲线,温度范围为226 K到915 K,压力最高为3500 MPa。通过对数据的拟合可以得到熔点方程。熔化过程中的摩尔焓变和摩尔热力学能变化可以同利用所得的熔点方程参数计算得到。
A set of variable-volume autoclave with a quartz window has been made domestically for the first time. The accurate volume of a sample could be measured with a hall-effect probe, and the precise adjustment within wide range of temperatures and pressures could be actualized. At high pressure, the samples were taken directly from the autoclave with a small steel vessel. So the accurate vapor-liquid equilibrium data could be obtained. The experiment equipment was proved to be reliable and accurate comparing with literature data. A simple equipment was also built up for analysizing the composition of the vapor and liquid samples. The vapor-liquid equilibrium data (including ingredient, density and volume) of the five binary systems of synthesizing dimethyl carbonate by oxidation carbonylation of dimethyl ether (oxygen+ dimethyl carbonate(O2 + DMC), carbon monoxide+ dimethyl carbonate(CO + DMC), carbon dioxide + dimethyl carbonate(CO2 + DMC), nitrogen+ dimethyl carbonate(N2 + DMC) and dimethyl ether+ dimethyl carbonate(DME + DMC)) have been measured at different temperatures and pressures with isothermal static analytical method. The vapor-liquid equilibrium data show that the solubilities of five gases in dimethyl carbonate increase drastically with increasing pressures at the given temperatures. The contents of dimethyl carbonate in the dimethyl ether gas rise with increasing pressures, but the contents of dimethyl carbonate in other four gases increase faintly.
     The high-pressure GLE data are also calculated with eight methods for above five systems. The PR and PRSV EOS and four different mixing rules were used. The Suitability of those EOSs and calculated precision were discussed systemically. Three methods showed excellent calculation effects which each other were made up of (PR EOS with activity coefficient and associated theory) and (PR EOS with var der waals mixing rules).
     The high pressure GLE data of the five binary systems could provide abundant fundamental data for the study of the solution theory and the calculation of GLE, which could develop of the phase equilibrium theory and the calculation methods. At the same time, it could provide the necessary data for the process design of synthesizing dimethyl carbonate by oxidation carbonylation of dimethyl ether.
     This paper also reports the fusion curves of carbon tetrachloride, chloroform, bromoform, silicon tetrachloride, benzene, nitrobenzene, bromobenzene and chlorobenzene at pressures up to 3500 MPa between 226 K and 915 K. The fusion equations based on the two– and one-phase approaches were used to fit experimental data. The changes of the molar enthalpy and molar thermdynamical energy on fusion were calculated using the parameters of fitted equation.
引文
[1]朱自强,徐汛,化工热力学,第二版,北京:化学工业出版社,1991,P188
    [2] Christov M., Dohrn R., High-pressure fluid phase equilibria Experimental methods and systemsinvestigated (1994–1999), Fluid Phase Equilibria, 2002, 202: 153~218
    [3]朱自强,超临界流体技术-原理和应用,第一版,北京:化学工业出版社,2003.:P517~538
    [4]朱自强,姚善泾,金彰礼等,流体相平衡原理及应用,浙江:浙江大学出版社,杭州:1990年.
    [5] Hala E , Pick J, Fried V, et al., Vapour-Liquid Equilibrium, 2nd Eng. Ed., London: Pergamon Press, 1967. 147~148
    [6] Marteau Ph, Tobaly P, Ruffier-Meray V, et al, in Situ Determination of High Pressure Phase Diagrams of Methane-Heavy Hydrocarbon Mixtures Using an Infrared Absorption Method, Fluid Phase Equilib., 1996,119:213~230
    [7] Ebeling H, Frank E U, Ber. Bunsenges, Physi.Chem., 1984, 85:862
    [8] Yonker C R, Linehan J C, Fulton J L, The Use of High Pressure NMR for the Determination of Phase Behavior for Select Binary Solvent Systems, J. Supercrit. Fluids, 1998,14:9~16.
    [9] Brunner G. Gas Extraction. (Steinkopff, Darmstadt, Germany)New York: Springer,1994
    [10] BüNz A P, Zitko-Stemberger N, Dohrn R, J. Supercrit. Fluids, 1994,7:43~50
    [11] Schulze W, Vapor-Liquid Equilibria and Saturation Densities in the Ternary System Helium-Nitrogen-Methane, Fluid Phase Equilib. 1997,134:213~224
    [12] Borch-Jensen Ch, Mollerup J, Phase Equilibria of Fish Oil in Sub- and Supercritical Carbon Dioxide, Fluid Phase Equilib., 1997,138:179~211
    [13] Pfohl O Avramova, Brunner G, Two- Phase and Three-Phase Equilibria in Systems Containing Benzene Derivatives, Carbon Dioxide, and Water at 373.15 K and 10-30 Mpa, Fluid Phase Equilib., 1997,141:179~206
    [14] Baba-Ahmed S, Guilbot P, Richon D, New Equipment Using a StaticAnalytic Method for the Study of Vapour–Liquid Equilibria at Temperatures down to 77 K, Fluid Phase Equilib., 1999,166:225~236
    [15] Brunner G, Teich J, Dohrn R, Phase Equilibria in Systems Containing Hydrogen, Carbon Dioxide, Water and Hydrocarbons, Fluid Phase Equilib., 1994,100:253~268
    [16] Kordikowski A, Schneider G M, Fluid Phase Equilibrium Studies on Ternary and Quaternary Mixtures of Carbon Dioxide with 1-Dodecanol, Dodecanoic Acid, Quinoxaline and 1,8-octanediol at 393.2 K and at Pressures up to 40 Mpa, Fluid Phase Equilib., 1995,105:129~139
    [17] Pfohl O, Pagel A, Brunner G, Phase Equilibria in Systems Containing O-Cresol, P-Cresol, Carbon Dioxide, and Ethanol at 323.15–473.15 K and 10–35 Mpa, Fluid Phase Equilib., 1999,157:53~79
    [18] Zaboloy M S, Gros H P, Bottini S B, et al, Isothermal Vapor-Liquid Equilibrium Data for the Binaries Isobutane-Ethanol, Isobutane-Propanol, and Propan-Ethanol, J. Chem. Eng. Data, 1994,39:214~218
    [19] Deiters U K, Shneider G M, Fluid Phase Equbilirium,1986,29:145~160., Phase Equilibria of Liquid and Gaseous Mixtures at High-Pressures, In: Le Neindre B, Vodar B(Eds), Experimental Thermodynamics, Vol.Ⅱ,Part 2, Butterworth, London,1975, 787~801
    [20] Camy S, Pic J S, Badens J S, et al, Fluid Phase Equilibria of the Reacting Mixture in the Dimethyl Carbonate Systhesis from Supercritical CO2, Journal of Supercritical Fluid, 2003,25:19~23.
    [21] Costa M A M, Matos H A S, Nunes Da Ponte M, et al, Binary and Ternary Phase Behavior of A-Pinene, B-Pinene and Supercritical Ethene, J. Chem. Eng. Data, 1996,41:1104~1110
    [22] Ewing M B, Sanchez Ochoa J C, an Ebulliometer for Measurements of Vapour Pressure at Low Temperatures: the Vapour Pressures and the Critical State of Perfluoromethylcyclopentane, J. Chem. Thermodyn., 1998,30:189~198
    [23] Simnick J J, Lawson C C, Lin H M, et al, Vapor-Liquid Equilibrium of Hydrogen Tetralin System at Elevated Temperatures and Pressures, Aiche J. 1977, 23:469
    [24] Li Shufen, Varadarajan G S, Hartland S, Solubilities of the Obromine and Caffeine in Supercritical Carbon Dioxide: Corrlation with Density-Based Models, Fluid Phase Equilib., 1991, 68:263
    [25] Jan D-S, Mai Ch-H, Tsai F-N, Solubilities of Carbon Dioxide in 1-Tetradecanol, 1- Hexadevanol and 1-Octadecanol, J. Chem. Eng. Data, 1994,39:384~387
    [26] Mendes R L, Nobre B P, Coelho J P, et al, Solubility ofΒ-Carotene in Supercritical Carbon Dioxide and Ethane, J. Supercrit. Fluids, 1999,16:99~106
    [27] Sovova H, Jez J, Khachaturyan M, Solubility of Squalane, Dinonyl Phthalate and Glycerol in Supercritical CO2, Fluid Phase Equilibrium, 1997,137:185~191
    [28] Vandana V, Teja A.S, the Solubility of Paclitaxel in Supercritical CO2 and N2O, Fluid Phase Equilibrium, 1997,135:83~87
    [29] Nagahama K, VLE Measurements at Elevated Pressures for Process Development, Fluid Phase Equilibrium, 1996,116:361~372
    [30]邱祖民,汽液相平衡测定的研究进展,江西科学,1996,14(4):254~257
    [31] Chen A-Q, Urbanus G J, Chao K-Ch, A New Vapor-Liquid Equilibrium Cell and VLE Data for Mixtures of 1-propanol + p-xylene, Fluid Phase Equilibrium, 1994,94:281~288
    [32]田宜灵,韩铭,陈丽等,高压下CO2-乙醇二元系统的气液平衡,物理化学学报,2001,17(2):155~160
    [33] Schneider G M, Physicochemical Aspects of Fluid Extraction, Fulid Phase Equilibria, 1983,10:141~157
    [34] Franck E U, Kerschbaum S, Wiegard G, The Density of Toluene at High Pressures to 673K and 300mpa, Ber. Bunsenges, Physi.Chem., 1998, 102(12): 1794~1797
    [35] K. Nagahama, VLE measurements at elevated pressures for process development, Fluid Phase Equilibria, 1996, 116: 361~372
    [36]胡英,叶汝强,吕瑞东等,物理化学参考,北京:高等教育出版社,2003.
    [37]朱自强,姚善泾,金彰礼,流体相平衡原理及其应用,浙江大学出版社,杭州:1990年
    [38] Kolasniska G, Moorwood R A S, Wenzel H G, Calculation of Vapor-Liquid and Liquid- Liquid Equilibrium by an Equation of State, Fluid Phase Equilibria, 1983, 13: 121
    [39] Gibbons R M, Laughton A P, An Equation of State for Hydrochloric Acid Solutions, Fluid Phase Equilibria, 1984, 18: 61
    [40]李伯耿,骆有寿,朱自强,含盐溶液气液平衡的状态方程法研究—单一溶剂盐溶液蒸汽压的测定及关联,化工学报,1986,1:51
    [41] Prausnitz J M, State-of-the-Art review of phase equilibria in phase equilibria and fluid propenties in the chemical industry, ACS Symposium Series, 60, ACS Washington, 1977, 11
    [42]武内胜彦,荒井康彦,状态方程开发的动向,化学工学,Symposium Series 2,化学工学协会,东京,1983,117
    [43]金克新,赵传钧,马沛生,化工热力学,天津:天津大学出版社,第二版,1992,P174
    [44]张智芳,陈建刚,郭文斌,刘昭铁,化工数据,2006,31:66
    [45]谢克昌,李忠,等.甲醇及其衍生物[M].北京:化学工业出版社,2002.317
    [46] Lentz, H., Zeuner, V. Phase diagrams of molar volume against mole fraction at given temperatures and pressures for {xAAr+xBXe+(1-xA-xB)NH3},J. Chem. Thermodynamics, 1995, 27: 997~1015.
    [47] Seung Nam Joung, Chang Woo Yo Etal, Measurements and Correlation of High-Pressure VLE of Binary CO2—Alcohol Systems (Methanol, Ethanol, 2-Methoxyethanol and 2-Ethoxyethanol), Fluid Phase Equilinria,2001, 185:219~230
    [48] Weber W, Petkov S, Brunner G, Vapour–Liquid-Equilibria and Calculations Using the Redlich–Kwong-Aspen-Equation of State for Tristearin, Tripalmitin, and Triolein in CO2 and Propane, Fluid Phase Equilibrium, 1999,158~160:695~706
    [49]赵雪峰,陈丽,田宜灵等,超临界CO2+碳酸二乙酯二元体系高压气液相平衡,高等学校化学学报,2004,25(7): 1298~1302
    [50] Tsonopulos C, Heidma J I, from Redlich-Kwong to the Present, FluidPhase Equilibria, 1985, 24:1
    [51]陈丽,含超临界CO2的二元系统高压相平衡和临界曲线:[博士学位论文],天津大学,2003.
    [52] Prausnitz J M, Molecular Thermodynamics of Fluids, New Jersey, Englewood Cliffs: Prentice-hall, Inc., 1986, 446~447.
    [53] Soave G, Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chem. Eng. Sci.1972, 27:1197
    [54] Van Der Waals, Die Kontinuitat Des Gasformigen und Flussigen Zustandes. 2nd, Vol.1, Barth, Leipzig:1899~1900
    [55] Redlich O, Kwong J N S, Chem Rer, 1949, 44:233
    [56] Peng D Y, Robinson D B, A New Two-Constant Equation of State, Ind. Eng. Chem. Fundamentals, 1976,15:59~64
    [57] Stryjek R, Vera J H, PRSV: An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures, Can. J. Chem. Eng., 1986,64:323~333
    [58] Hong G T, Modell M, Tester J W, Binary Phase Diagrams from a Cubic Equation of State, Chemical Engineering at Supercritical Fluid Condition, Ann Atbot Science, Ann Atbot 1983:263
    [59] Mart C J, Papadopoulos K D, Donohue M D, Application of Perturbed-Hard-Chain Theory to Solid-Supercritical Fluid Equilibria Modeling, Ind. Eng. Chem. Proc. Des. Dev. 1986, 25(2): 394
    [60] Serbanovic S P, Djordjevic B O, Influence of the Optimized Temperature-Dependent Interaction Parameter on Vapor-Liquid Equilibrium Binary Predictions of Supercritical Methane with Some Alkanes By Means of the Soave Equation of State, Ind. Eng. Chem. Proc. Des., 1987, 26(3): 618
    [61]胡英,近代化工热力学,上海:上海科学技术文献出版社,1994,Chap.1~2
    [62]董军航,徐南平,王延儒等,改进的PR方程关联推算N2-CH4-CO2体系高压汽液平衡,南京化工学院学报,1993,15(3):12
    [63] Stryiek R, Vera J H, PRSV2:A Cubic Equation of State for Accurate Vapor-Liquid Equilibria Calculations. Can. J. Chem. Eng., 1986,64:820
    [64] Twu C H, A Modified Redlich-Kwong Equation of State for Highly Polar Supercritical Systems, 1988,Proc of ISTCEI, Beijing: PRChina,48~169
    [65]刘昆元,王文川,Peng-Robinson状态方程计算含氢系统气液平衡-超临界气体的参数处理,化工学报,1989,1:73~81
    [66] Jeanloz, R. Physical chemistry at ultrahigh pressures and temperatures. Annu. Rev. phys. Chem. 1989, 40, 237-259.
    [67] Bridgman, B. W. Freezings and compressions to 50,000kg/cm2. Phys. Rev. 1941, 9, 794-797.
    [68] Bridgman, B. W. Change of phase under pressure. Phys. Rev. 1914, 3, 153-203.
    [69] Bridgman, B. W. Change of phase under pressure. Phys. Rev. 1915, 4, 1-33.
    [70] Osugi, J.; Shimizu, K.; Yasunami, K. Liquid-solid transition at high pressureⅢ: Benzene, monochlorobenzene and toluene at 25℃. Rev. Phys. Chem. Japan. 1968, 38, 90-95.
    [71] Crawford, R.; Daniel, W. Experimental determination of p-T melting curves of Krypon, neon and helium. J. Chem. Phys. 1971, 55, 5651-5656.
    [72] Strong, H. M.; Bundy, F. P. The use of iron and gold for calibration of higher pressure and temperature points; National Bureau of Standards: Washington DC, 1971.
    [73] Akella, J.; Kennedy, G. C. Melting point of gold, silver and copper-proposal for a new high pressure calibration scale. J. Geophys. Rev. 1971, 76, 4969-4977.
    [74] Atkins, P.; Paula, J. D. Atkins’Physical chemistry, 7th ed.; Oxford University Press: Oxford, 2002.
    [75] Kechin, V. V. Thermodynamically based melting-curve equation. J.Phys.: Condens. Matter. 1995, 7, 531-535.
    [76] Hausletner, C.; Hafner, J. A theoretical study of the melting curve of iron to very high pressure. J.Phys.: Condens. Matter. 1989, 1, 5234-5252.
    [77]Fried, L. E.; Howard, W. M. Explicit Gibbs free energy equation of state applied to the carbon phase diagram. Phys. Rev. B. 2000, 61, 8734-8743.
    [78] Lindemann, F. A. The calculation of molecular vibration frequencies. Physik. Z. 1910, 11,609-612.
    [79] Babb, S. E. Parameters in the Simon equation relating pressure andmelting temperature. Rev. Mod. Phys. 1963, 35, 400-413.
    [80] Tian, Y. L.; Zhao, X. F.; Chen, L.; Xue, Y.; Yin, L. High pressure phase equilibria and critical phemomena of water + isobutene and water + n-butane system to 695 K and 306 MPa. J. Supercritical Fluids, 2004, 30, 143-153.
    [81] Jager, J.; Wanninger, W. Strain gauge dilating-cylinder transducer for pressures up to 14 kbar. Feinwerke-Technik. 1976, 84, 387-391.
    [82] Tammann, G. Kristallisieren und Schmelzen; Johann Ambrosius Barth: Leipzig, 1903

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700