应用MR阻尼器的相邻建筑地震反应半主动控制理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变(MR)阻尼器就作为一种新型的半主动控制装置,具有构造简单、速度响应快,阻尼力连续可调等优点。基于MR阻尼器的半主动控制系统可以有效控制结构的地震反应。本文对应用MR阻尼器的相邻建筑地震反应半主动控制进行了理论与试验研究,主要研究工作和成果如下:
     (1)在不同振幅和不同频率正弦波激励下,对施加不同励磁电流的MR阻尼器进行了动力性能测试试验。提出了MR阻尼器的修正的sigmoid模型,该模型表达式简单、含义明确、参数较少,其参数可以根据阻尼器试验曲线做灵活的修改,能够准确描述MR阻尼器的动力特性。
     (2)基于Kalman滤波器的特点,将加速度反馈方法扩展应用于IOC、COC和LQR等算法。数值分析表明,基于不同算法的加速度反馈方法不需要被控结构响应的全状态反馈就能达到原控制算法对被控结构的控制效果。说明采用该方法可以减少控制系统中传感器的数量,降低控制系统的软硬件成本,适于实际工程应用。
     (3)基于MR阻尼器控制力幅值对被控结构控制效果的影响,指出应按照优化后的控制力幅值设计制造MR阻尼器。计算表明,当控制力幅值达到一定值时,被控结构的控制效果提升缓慢,说明可以用较小的MR阻尼器控制力幅值达到理想的控制效果。由于控制力幅值将作为MR阻尼器设计制造的依据,故按照优化后控制力幅值制造的阻尼器体积更小、重量更轻、MR液需求量更少,方便MR阻尼器在工程实际应用中的设置、安装和调试。
     (4)分别对半主动控制、开关控制和两种被动控制方法下,MR阻尼器对相邻结构地震反应的控制效果进行了仿真分析计算。计算结果表明,基于MR阻尼器的半主动控制系统对相邻结构的控制效果在四种控制方法中最好,说明半主动控制方法考虑了MR阻尼器在出力范围内控制力连续可调的特点,充分发挥了MR阻尼器的性能,对相邻结构是一种非常有效的控制方法。
     (5)在不同地震激励下采用两种被动控制和三种加速度反馈控制方法,应用MR阻尼器对相邻结构模型进行了地震模拟振动动台试验。试验结果表明,基于MR阻尼器的半主动控制系统可以有效的降低模型结构的振动响应,半主动控制系统充分利用了MR阻尼器的性能,对相邻结构达到了较好的控制效果。而且三种加速度反馈方法仅需要结构的加速度响应作为反馈信息,大大减少了试验中传感器数量,使半主动控制更容易应用于工程实际。
Magnetorheological (MR) fluid damper is one of the new semi-active control devices. It has great features of mechanical simplicity, rapid response, and adjustable damping force capacity. The semi-active control system can effectively control the seismic responses of structures based on MR dampers. In this dissertation, semi-active control of seismic responses of adjacent buildings using MR dampers is investigated through theoretical and experimental study, the main work and achievement are as follows:
     (1) The dynamic performance test of MR damper with different applied current levels is conducted under sinusoidal excitations with different frequencies and amplitudes. A modified Sigmoid model, which has simple expression, clear meaning, and less parameters, is proposed. The parameters in this model can be modified according to the performance test results.
     (2) Based on the characteristics of Kalman filter, the acceleration feedback control method is introduced to Instantaneous Optimal Control algorithm, Classical Optimal Control algorithm and Linear Quadratic Regulator Optimal Control algorithm. The numerical analysis results indicate that the acceleration feedback based control algorithms can obtain similar control effects as full state feedback control algorithms, which results in fewer sensors needed in the control system and more suitable for engineering application.
     (3) After investigating the relationship between the control effectiveness and the amplitude of the control force, it is suggested that the optimized control force amplitude should be designed for the MR damper used in a particular control system. The simulation results indicate that the control effectiveness improves slowly with the increasing of the control force when it reaches a certain value. And because the control force amplitude is the basis for designing and manufacturing of MR damper, so the volume and weight of manufactured MR damper based on the optimized control force amplitude can be reduced and less MR fluid is required in the device. Therefore, it would be more convenient for installing and debugging the MR damper in practical engineering application.
     (4) The application of MR damper in the adjacent structures is studied. Adjacent structures employed with semi-active control algorithm, switch control algorithm, and two passive control algorithms are simulated. The numerical results show that the semi-active control method can obtain the best control effectiveness within four control algorithms. The results further prove that the semi-active control algorithm takes into account the continuous adjustability characteristic of the MR damper, and thus it can make full use of the control devices and obtains great performance on the control of adjacent structure.
     (5) A series of shaking table tests of the adjacent model structures installed with MR damper were carried out under different seismic excitations. Two passive cases and three acceleration feedback based control cases are considered. The experimental results show that the semi-active control systems can reduce the structural responses significantly. And the acceleration feedback based control algorithms can greatly reduce the number of sensors required in the control system, which makes it more convenience for applying the control algorithms in engineering application.
引文
[1] Yao J T P. Concept of Structural Control. ASCE Journal of Structural Division. 98(7): 1567~1574, 1972
    [2] Xu Z, Agrawal A K, Yang J N. Semi-active and passive control of the phase I linear base-isolated benchmark building model. Structural Control and Health Monitoring. 13(2-3): 626-648, 2006
    [3] Ribakov Y. Semi-active predictive control of non-linear structures with controlled stiffness devices and friction dampers. The Structural Design of Tall and Special Buildings. 13(2): 165-178, 2004
    [4] Ribakov Y. Predictive controlled stiffness devices in MDOF structures. Journal of Structural Control. 10(2): 101-115, 2003
    [5] Lu L Y. Predictive control of seismic structures with semi-active friction dampers. Earthquake Engineering & Structural Dynamics. 33(5): 647-668, 2004
    [6]赵大海,李宏男.采用模糊逻辑的半主动摩擦阻尼器对偏心结构的振动控制.振动工程学报, 20(2): 112-117, 2007
    [7]梁继东,董聪,苗启松.北京饭店消能减振抗震加固的静力弹塑性分析.建筑结构, 35(8): 24-26, 2005
    [8]吴波,李惠,林立岩等.东北某政府大楼采用摩擦阻尼器进行抗震加固的研究.建筑结构学报, 19(5):28-36, 1998
    [9]杨飏,欧进萍.基于瞬时最优算法的磁流变阻尼隔震结构半主动控制.世界地震工程, 19(2): 145-150, 2003
    [10]谭平,周云,周福霖.大底盘多塔楼结构的混合隔震控制.世界地震工程, 23(2): 12-19, 2007
    [11]李忠献,岳福青,周莉.城市隔震高架桥梁地震反应的半主动控制.土木工程学报, 40(1): 42-48, 2007
    [12] Nitta Y, Nishitani A, Spencer B F. Semiactive control strategy for smart base isolation utilizing absolute acceleration information. Structural Control and Health Monitoring. 13(2-3): 649-659, 2006
    [13] Ruangrassamee A, Srisamai W, Lukkunaprasit P. Response mitigation of the base isolated benchmark building by semi-active control with the viscous-plus-variable-friction damping force algorithm. Structural Control and Health Monitoring. 13(2-3): 809-822, 2006
    [14] Nagarajaiah S, Narasimhan S. Seismic control of smart base isolated buildings with new semiactive variable damper. Earthquake Engineering & Structural Dynamics. 36(6): 729-749, 2007
    [15] Nagarajaiah S, Sahasrabudhe S. Seismic response control of smart sliding isolated buildings using variable stiffness systems: an experimental and numerical study. Earthquake Engineering & Structural Dynamics. 35(2): 177-197, 2006
    [16] Yang G, Spencer B F Leban F. Shock isolation using smart damping. Journal of Structural Control. 9(2): 135-152, 2002
    [17] Y. Ribakov, J. Gluck. Selective controlled base isolation system with magnetorheological dampers. Earthquake Engineering & Structural Dynamics. 31(6): 1301-1324, 2002
    [18] Loh C H, Wu L Y, Lin P Y. Displacement control of isolated structures with semi-active control devices. Journal of Structural Control. 10(2): 77-100, 2003
    [19]黄斌,刘晖.智能TMD对高层建筑风振响应的抑制.振动与冲击, 22(4): 58-61, 65, 2003
    [20]周星德,明宝华.采用半主动TMD的建筑结构振动控制研究.振动测试与诊断, 26(2): 116-118, 2006
    [21]周建中,赵鸿铁. SATMD与消能减震相结合的混合控制研究.世界地震工程, 19(1): 136-140, 2003
    [22]何玉敖,李忠献.电视塔结构地震反应最优控制.建筑结构学报, 11(4):2-11, 1990
    [23] Zhang Y F, Iwan W D. Active interaction control of civil structures. Part 1: SDOF systems. Earthquake Engineering & Structural Dynamics. 31(1): 161-178, 2002
    [24] Zhang Y F, Iwan W D. Active interaction control of civil structures. Part 2: MDOF systems. Earthquake Engineering & Structural Dynamics. 2002. 31(1): 179-194, 2002
    [25]欧进萍.结构振动控制-主动、半主动和智能控制.北京:科学出版社, 2003
    [26] Yang J N, Wu J C, Agrawal A K. Sliding Mode Control for Nonlinear and Hysteretic Structures. ASCE Journal of Engineering Mechanics, 121(12): 1330-1339, 1995
    [27]刘栋栋,李淑玉. H∞优化控制理论在半主动控制中的应用.世界地震工程, 19(3): 110-116, 2003
    [28]陈无畏,王启瑞,朱婉玲.基于遗传算法和H∞控制的悬架系统集成设计.振动工程学报, 16(2): 143-148, 2003
    [29] Shing P B, Dixon M E, Kermiche N, et al. Control of building vibrations with active/passive devices. Earthquake Engineering & Structural Dynamics. 25(10): 1019-1039, 1996
    [30] Arfiadi Y, Hadi M N S. Passive and active control of three-dimensional buildings. Earthquake Engineering & Structural Dynamics. 29(3): 377-396, 2000
    [31] Spencer B F, Sain M K. Controlling Buildings: a New Frontier in Feedback. Special Issue of the IEEE Control Systems Magazine on Engineering Technology, 17(6): 19-35, 1997
    [32] Xu J Y, Tang J, Li Q S. Semi-active control devices in structural control implementation. The Structural Design of Tall and Special Buildings. 14(2): 165-174, 2005
    [33] Symans M D, Constantinou M C. Seismic Testing of a Building Structure with a Semi-active Fluid Damper Control System. Earthquake Engineering & Structural Dynamics. 26(7): 759-777, 1997
    [34] Rodgers G W, Mander J B, Chase J G, Mulligan K J, Deam B L, Carr A. Re-shaping hysteretic behaviour - spectral analysis and design equations for semi-active structures. Earthquake Engineering & Structural Dynamics. 36(1): 77-100, 2007
    [35]王刚,姚谦峰.考虑阻尼器被动特性的半主动控制算法研究.工程抗震与加固改造, (6): 20-24, 2004
    [36]黄昆,邹立华,艾叶青.基于磁流变阻尼器的层间隔震结构半主动控制研究.世界地震工程, 22(3): 142-147, 2006
    [37]吴波,刘汾涛,魏德敏.变刚度半主动控制结构的抗震设计方法.振动工程学报, 16(3): 306-310, 2003
    [38]谭平,阎维明,周福霖.主动变刚度-阻尼系统预测最优控制的理论与试验研究.地震工程与工程振动, 27(4): 139-146, 2007
    [39]刘汾涛,魏德敏,吴波.变刚度半主动控制结构的地震影响系数分析.华南理工大学学报(自然科学版), 31(7): 52-57, 2003
    [40]李敏霞,刘季.非线性阻尼变刚度半主动结构振动控制.振动工程学报, 11(3): 333-339,1998
    [41]李敏霞,欧进萍,王刚,硅丽萍.足尺变刚度控制系统性能试验与计算模型.地震工程与工程振动,20(4): 96-100,2000
    [42]杨润林,周锡元,闫维明等.结构半主动变阻尼控制性能评估.振动与冲击, 26(3): 37-41, 2007
    [43]孙作玉,隋丽丽.变阻尼半主动结构控制振动台试验.地震工程与工程振动, 20(4): 106-111, 2000
    [44]孙作玉,何玉敖.结构振动的变阻尼半主动遗传控制算法.天津大学学报, 33(1): 29-32, 2000
    [45]杨润林,周锡元,闫维明等.结构半主动变阻尼控制的研究.建筑科学, 23(3): 6-9, 2007
    [46]孙清,史庆轩,张可,文建波,王学明,周进雄,张陵.半主动变阻尼结构的振动台试验研究.建筑结构学报, 24(6): 11-17, 2003
    [47] Butz T, Stryk O. Modelling and Simulation of Electro- and Magnetorheological Fluid Dampers. ZAMM. 2002. 82(1): 3-20, 2002
    [48] Qu W L, Xu Y L. Semi-active control of seismic response of tall buildings with podium structure using ER/MR dampers. The Structural Design of Tall Buildings. 10(3): 179-192, 2001
    [49]王民,费仁元,杨建武等.电流变材料在结构振动控制中的非线性特性及理论模型.机械工程学报, 38(6): 88-92, 2002
    [50]刘鹏,刘红军,滕军,曹天义.电流变阻尼器的设计及模型参数识别.功能材料, 37(5): 774-775, 2006
    [51]曹天义,刘红军,滕军,刘鹏.利用电流变阻尼器的索振动控制实验研究.功能材料, 37(5): 821-822, 2006
    [52]夏品奇.基于系统识别理论的磁流变阻尼器模型.工程力学, 20(3): 115-119, 2003
    [53]杨光,陈祝平.振动系统中磁流变流体阻尼模型的研究.功能材料, 38(10): 1587-1589, 2007
    [54]李忠献,吴林林,徐龙河,周云.磁流变阻尼器的构造设计及其阻尼力性能的试验研究.地震工程与工程振动, 23(1): 128-132, 2003
    [55]李忠献,姜南,徐龙河,周云.不同控制策略下安装磁流变阻尼器的模型结构振动台试验与分析.建筑结构学报, 25(6): 15-21, 2004
    [56]方子帆,邓兆祥.磁流变阻尼器简化力学模型研究.工程力学, 24(11): 32-35, 46, 2007
    [57]周云,吴志远,邓雪松.高层建筑磁流变阻尼器风振半主动控制系统的优化.振动与冲击, 22(1): 1-5, 2003
    [58] Yoshida O, Dyke S J, Giacosa L, Truman K Z. Experimental verification of torsional response control of asymmetric buildings using MR dampers. Earthquake Engineering & Structural Dynamics. 2003. 32(13): 2085-2105
    [59]周丽,张志成.基于磁流变阻尼器的结构振动优化控制.振动工程学报, 16(1): 109-113, 2003
    [60] Xu Y L, Qu W L, Ko J M. Seismic response control of frame structures using magnetorheological/electrorheological dampers. Earthquake Engineering & Structural Dynamics. 2000. 29(5): 557-575
    [61]周强,瞿伟廉.安装MR阻尼器工程结构的非参数模型自适应控制.地震工程与工程振动, 24(4): 127-132, 2004
    [62]邬喆华,楼文娟,朱瑶宏等. MR阻尼器控制算法对斜拉索的减振效果.功能材料, 37(5): 833-836, 2006
    [63] Spencer B F, Dyke S J, Sain M K, et al. Phenomenological Model for Magnetorheological Dampers. ASCE Journal of Engineering Mechanics. 123(3): 230-238, 1997
    [64]王修勇,陈政清,倪一清.斜拉索-磁流变阻尼器系统半主动控制的神经网络法.振动与冲击, 22(4): 49-53, 2003
    [65] Johnson E A, Voulgaris P G, Bergman L A. Multiobjective Optimal Structural Control of the Notre Dame Building Model Benchmark. Earthquake Engineering and Structural Dynamics. 27(10): 1165-1187, 1998
    [66]杨飓,欧进萍.导管架式海洋平台模型结构磁流变阻尼隔震数值分析.应用基础与工程科学学报, 15(2): 183-189, 2007
    [67]欧进萍,关新春.磁流变耗能器的性能试验研究.地震工程与工程振动,19(4): 76-81, 1999
    [68]欧进萍,隋莉莉.结构振动控制的半主动磁流变质量驱动器(MR-AMD).地震工程与工程振动, 20(6): 108-114, 2002
    [69]关新春,欧进萍.磁流变减振驱动器的响应时间试验与分析.地震工程与工程振动, 22(6): 96-102, 2002
    [70]张纪刚,吴斌,欧进萍.海洋平台冰振控制试验研究.东南大学学报(自然科学版), 35(z1): 31-34, 2005
    [71]吴林林.磁流变阻尼器的构造设计与性能试验.天津大学硕士学位论文, 2002
    [72] Wu B, Wang Q Y, Shing P B, Ou J P. Equivalent force control method for generalized real-time substructure testing with implicit integration. Earthquake Engineering & Structural Dynamics. 36(9): 1127-1149, 2007
    [73] Ramallo J C, Yoshioka H, Spencer B F. A two-step identification technique for semiactive control systems. Structural Control and Health Monitoring. 2004. 11(4): 273-289, 2004
    [74] Kurata N, Kobori T, Koshika N. Performance-based design with semi-active structural control technique. Earthquake Engineering & Structural Dynamics. 31(2): 445-458, 2002
    [75]闫明明,陈恩利,王军,王林.结构智能半主动控制系统仿真设计.系统仿真学报, 19(21): 4998-5001, 5019, 2007
    [76]徐建功,王肇民,何玉敖.基于预测控制的结构振动半主动控制研究.世界地震工程, 19(2): 126-131, 2003
    [77] Yang J N, Lin S, Jabbari F. H2-based control strategies for civil engineering structures. Journal of Structural Control. 2003. 10(3-4): 205-230
    [78]张春巍欧进萍.结构磁流变阻尼半主动控制的改进算法与仿真分析.世界地震工程, 19(1): 37-43, 2003
    [79]杨飏,欧进萍.基于瞬时最优算法的磁流变阻尼隔震结构半主动控制.世界地震工程, 19(2): 145-150, 2003
    [80]颜桂云,吴国荣,陈福全.高层建筑非线性地震反应的半主动H∞控制.振动与冲击, 26(2): 93-97, 2007
    [81] Scruggs J T, Taflanidis A A, Iwan W D. Non-linear stochastic controllers for semiactive and regenerative systems with guaranteed quadratic performance bounds - Part 1: State feedback control. Structural Control and HealthMonitoring. 14(8): 1101-1120, 2007
    [82] Scruggs J T, Taflanidis A A, Iwan W D. Non-linear stochastic controllers for semiactive and regenerative systems with guaranteed quadratic performance bounds - Part 2: Output feedback control. Structural Control and Health Monitoring. 14(8): 1121-1137, 2007
    [83] Inaudi J A. Modulated Homogeneous Friction: A Semi-active Damping Strategy. Earthquake Engineering & Structural Dynamics. 26(3): 361-376, 1997
    [84] Roberti V, Lamarque C H, Jezequel L. Control strategies for a slender structure. Journal of Structural Control. 2(1): 25-48, 1995
    [85] Iemura H, Igarashi A, Kalantari A. Experimental verification and numerical studies of an autonomous semi-active seismic control strategy. Structural Control and Health Monitoring. 13(1): 301-323, 2006
    [86] Kurata N, Kobori T, Takahashi M, Niwa N, Midorikawa H. Actual seismic response controlled building with semi-active damper system. Earthquake Engineering & Structural Dynamics. 28(11): 1427-1447, 1999
    [87]何亚东,黄金枝,何玉敖.智能磁流变(MR)阻尼器半主动控制的研究.振动工程学报, 16(2): 198-202, 2003
    [88] Ribakov Y, Gluck J. Selective combined control stiffness and magnetorheological damping system in nonlinear multistorey structures. The Structural Design of Tall Buildings. 11(3): 171-195, 2002
    [89]董平,唐家祥. MR智能材料在结构振动控制中的应用.工程抗震, (2): 15-18, 23, 2000
    [90] Yang G, Spencer B F, Carlson J D, et al. Large-Scale MR Fluid Dampers: Modeling, and Dynamic Performance Considerations. Engineering Structures, 24(3): 309-323, 2002
    [91]徐龙河.基于MR阻尼器的半主动结构控制的理论与试验研究.天津大学博士论文, 2003
    [92]隋莉莉,王刚,欧进萍. ;基于加速度反馈的结构地震反应半主动MR阻尼控制试验.地震工程与工程振动, 22(6): 89-95, 2002
    [93]代泽兵,黄金枝,郭自兴.加速度反馈磁流变阻尼器半主动控制.上海交通大学学报, 36(11): 1649-1651, 1655, 2002
    [94] Choi K M, Cho S W, Jung H J, LeeI W. Semi-active fuzzy control for seismic response reduction using magnetorheological dampers. Earthquake Engineering & Structural Dynamics. 33(6): 723-736, 2004
    [95]瞿伟廉,王军武,徐幼麟,陈朝晖. ER/MR智能阻尼器耦联的带裙房高层建筑结构地震反应的半主动控制.地震工程与工程振动, 20(4): 87-95, 2000
    [96]陈静,瞿伟廉,徐幼麟. MR阻尼器耦联的带裙房高层建筑的半主动逻辑控制方法.地震工程与工程振动, 23(2): 150-153, 2003
    [97]刘红军,滕军,曹天义.基于dSPACE系统的相邻结构半主动振动控制.系统仿真学报, 17(z2): 134-136, 2005
    [98] Westermo B D. The dynamics of interstructural connection to prevent pounding [J]. Earthquake Engineering & Structural Dynamics, 18(5): 687-699, 1989
    [99] Zhu H P, Xu Y L. Optimum parameters of Maxwell model-defined dampers used to link adjacent structures [J]. Journal of Sound and Vibration, 279(1-2): 253-274, 2005
    [100] Xu Y L, He Q, Ko J M. Dynamic response of damper-connected adjacent buildings under earthquake excitation [J]. Engineering Structures, 21(2): 135-148, 1999
    [101] Aida T, Aso T, Takeshita K, et al. Improvement of the structure damping performance by interconnection [J]. Journal of Sound and Vibration, 242(2): 333-353, 2001
    [102] Bhaskararao A V, Jangid R S. Seismic analysis of structures connected with friction dampers [J]. Engineering Structures, 28(5): 690-703, 2006
    [103] Basili M, Angelis M D, Optimal passive control of adjacent structures interconnected by non-linear hysteretic devices [J]. Journal of Sound and Vibration, 301(1-2): 106-125, 2007
    [104] Ying Z G, Ni Y Q, Ko J M. Non-linear stochastic optimal control for coupled-structures system of multi-degree-of-freedom [J]. Journal of Sound and Vibration, 274(3-5): 843-861, 2004
    [105] Kurata N, Kobori T, Takahashi M, Ishibashi T, Niwa N, Tagami J, Midorikawa H. Forced vibration test of a building with semi-active damper system. Earthquake Engineering & Structural Dynamics. 29(5): 629-645, 2000
    [106]张微敬,田石柱,欧进萍.模型结构的磁流变阻尼减振控制试验研究.工程力学, 23(10): 125-131, 2006
    [107] Sun Q, Zhang L, Zhou J X, Shi Q X. Experimental study of the semi-active control of building structures using the shaking table. Earthquake Engineering & Structural Dynamics. 32(15): 2353-2376, 2003
    [108] Niwa N, Kobori T, Takahashi M, Midorikawa H, Kurata N, Mizuno T. Dynamic loading test and simulation analysis of full-scale semi-active hydraulic damper for structural control. Earthquake Engineering & Structural Dynamics. 29(6): 789-812, 2000
    [109] Renzi E, Serino G. Testing and modelling a semi-actively controlled steel frame structure equipped with MR dampers. Structural Control and Health Monitoring. 11(3): 189-221, 2004
    [110] Chen C Q, Chen G. Shake table tests of a quarter-scale three-storey building model with piezoelectric friction dampers. Structural Control and Health Monitoring. 11(4): 239-257, 2004
    [111]何亚东,何玉敖,黄金枝.建筑结构半主动控制振动台试验研究.建筑结构学报, 23(4): 10-15, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700