椎间隙与腰椎负荷分布的关系及椎间盘置换对椎间隙高度的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
椎间隙狭窄后可改变经过腰椎的负荷分布,并被认为这是引发和/或加速关节突关节退变的原因之一。因此,对退行性椎间盘疾病的外科处理,有必要使用具有良好抗压性能的刚性内植物重建腰椎前柱高度。然而,随着时间的推移,部分刚性内植物植入椎间隙后有下沉现象,使椎间隙高度不能长期维持;另一方面,当椎间隙周围韧带及软组织挛缩严重时,或同时需处理多个间隙时,术中椎间隙的撑开程度可能难以达到预期要求。虽然对椎间盘和关节突关节的生物力学功能有了相当了解,但椎间隙高度下降到何种程度后,分布于腰椎前后部的压力负荷才发生明显变化,目前未见报道。为此,我们通过调节L4/5椎间隙高度来直接测量经过该节段椎间隙和关节突关节的压力负荷状态,确定了腰椎前后部应力分布出现显著性变化时椎间隙高度下降的临界值,为明确手术恢复和维持椎间隙高度的重要性和对重建脊柱时的术式选择及术后疗效预测提供指导。
     虽然椎体间融合能够稳定腰椎前柱而缓解下腰痛症状,但该方法本身却是非生理性的,有可能改变相邻节段的应力分布而引发新的退变和症状再现。理论上人工椎间盘可在恢复腰椎解剖结构的同时重建椎间盘本身的力学功能。目前,临床上应用最广泛的是SB Charite型人工椎间盘假体,且早期临床研究结果显示了其良好的临床应用前景。但该型椎间盘假体能否同时重建椎间盘的解剖和力学功能,即有效维持手术及相邻椎间隙高度,目前并无系统研究。在本研究的临床部分,我们随访调查了行SB Charite
    
    型人工椎间盘置换患者的临床表现和手术与相邻椎间隙高度变化,以明确
    该型椎间盘假体是否能有效地鲤椎间盘的解剖和力学功能,脓示其减
    戮酗媲和防止5!发邻近节段退变的机制。
     第一章 体夕生物力学实验研究
     目的 改变椎间隙高度,测量度a出准间隙与关节突关节内的压力负荷,
    以揭示椎间隙高度变化对腰椎负荷分布影响的规律。
     方法 取7具青壮年腰工叫腰5节段新鲜标本,无负荷条件下测量腰
    4/5椎间隙的高度。切除腰415椎间盘,将椎体间压力传感器和刚性金属垫
    片置入椎间隙,将关彼那压力传感器u关节突关节内,分6种
    状态(踉5、褴4、舰3、褴2、融1、高度0,每级相差lmm)
    和 4种工况(轴向、前屈、后伸、侧屈)颁分级加载(轴向 1000N及 2000N;
    了湘向SNm及10Nm人测量经过椎间隙及关节突关节内的压力负荷。用
    SPSS10.0 &if软…绷分析,检验水准为 a =0.05。
     结果 腰4/5椎间隙平均踉为13.sled.53mm。在各种加载工况中,
    经过椎间隙内的压力随椎间隙躯下降而减少,经过关节突那内的压力
    随椎间隙高度下降而增高。相邻两个状态下的压力变化差值脯高度的降
    低而趋于减少。与融5时的压力相比,当高度下降2.smxn后,在删加
    载工况下,椎间腿力及那突关节压力靴椭统计学差异(P<0.05);
    在部分加载状态下,即使当敲下降 IAmm时,压力也会发生统计辅义
    上的变化(P<0.05人在4昭向加载工况中,当加载状挪加鳅小相同时,
    经过椎间隙内的压力负荷前屈时最大,侧屈时次之,后伸时最小,除加载
    10Nm且加载状态为髓0时,侧屈加绷前屈加载相*Rl.05外,在其
     -互互.
    
    余加载状态下,上述三种加载工胶间躺计学差异(P<0.05);经过关节
    突关节的压力负荷MIJ屈时最大,后伸时次之,前屈时最小,在高度3、
    高度2、高度1和舱0等四种状态下,关节突关节内压力有统计学差异
     (P<0.05)。
     结论1、首次应用逐步减少椎间隙朗的方法研究腰椎前后部压力负
    荷分布变化,为脊柱的生物力学研究提供了新的实验手段。2、首次在体外
    生物力学研究中揭示腰椎压力负荷分布变化在椎间隙高度下降的开始阶段
    变化最明显,并确定了椎间隙高度下降超过2.smm是导致经过腰稚前、后
    部压力负荷分布发生明显变化的临界值。这对退行性椎间盘疾病的术式选
    择和术后疗效判断有重要指导价值。3、3蛐向加载可改变腰椎的压力负荷
    分布,这有助于揭示因姿势变化而出现下腰痛的产生机制,对指导患者缓
    解下腰痛有重要意义。
"Low back pain is the price for standing up of human being". The statistical data shows that up to 80% of the population will experience a significant episode of low back pain in their lifetimes. Although the mechanism of low back pain is not clear, degenerative disc disease and disc space narrow are important factors for contributing to low back pain. Because the intervertebral disc is responsible for providing the flexibility and bearing the load beyond the joints complex and is a relatively weak link, it is more vulnerable to degeneration, which can result in disc space narrow. Studies showed that the stress distribution would be variation after disc narrowed, and it would contribute to the degeneration of facet joints. So it is necessary to rebuild the anterior column by rigid implants with great compressive strength during degenerative disc disease surgery. However, because of high stiffness of those rigid implants, there is concern of implants subsidence with time, which can result in the disc height losing again. On the other hand, it is impossible to distract the disc space to an ideal height in certain conditions and the surgeons have to choice smaller size implants. There are many biomechanic studies about stress distribution of disc or facet joints, but no study discovered the
    critical height of intervertebral space subsidence that could cause stress
    
    
    
    variation significantly between anterior column and posterior column at lumbar spine. The stress distribution in disc space and facet joint followed disc space height alteration at L4/5 was discussed in the current study. The author hope the current reseach can discover the critical height of disc space that would result in stress distribution altering significantly.
    Since it first was introduced more than 90 years ago, disc arthrodesis remains the main surgical method for the treatment of degenerative disc disease. Although this procedure does relatively well in stabilizing the anterior column and relieving low back pain by eliminating motion, it is not physiologic and it alters the stress distribution on the adjacent segment, which would cause degeneration on adjacent segment and recurrent low back pain. The ultimate solution for reestablishing anterior column stability is to restore not only the anatomy but also the normal mechanical function by using a more functional device, artificial disc prosthesis. During the past 40 years, many different designs have been attempted for artificial disc prosthesis. Today, the most clinical used artificial disc is SB Charite prosthetic disc, and the early clinical studies have shown promising results. However, no clinical study has revealed the efficiency of this treatment on restoring and maintaining the disc space height at the operated and adjacent segments. To answer the question mentioned above, the clinical data from 20 patients who operated with artificial disc replacements was retrospected and analyzed in the current study.
    
    
    
    PART ONE: In vitro Biomechanic Study between Disc Space Height and Stress Distribution
    Objective: To explore the relationship between the stress distribution of lumbar spine and the intervertebral space height, to reveal the importance of restoring and maintaining disc space height during intervertebral surgery.
    Methods: Seven lumbar spine segments (L3-L5) from young people who died from accidents were used to test in vitro. The intervertebral space height of L4/5 was measured before loading. The L4/5 disc tissues were cleared but the subchondral bone and posterior longitudinal ligament were reserved. In order to get the pressures in intervertebral space and facet joint of L4/5, one transducer was placed in the intervertebral space and the other was in the left facet joint of the same segment. Five rigid washers (the height of each washer was 1.4mm) were placed on the transducer in intervertebral space to control and regulate the intervertebral space height. And when all the five washers were at intervetebral space, then the intervetebral space height was defin
引文
[1] Ferguson RL, Allen BL: A mechanistic classification of thoracolumbar spine fractures. Clin Orthop Rel Res 1984;189:77-88
    [2] Marchand F, Ahmed AM: Investigation of the laminate structure of the lumbar annulus fibrosus. Spine. 1990 May;15(5):402-10.
    [3] Krismer M, Haid C, Rabi W: The contribution of annulus fibers to torque resistance. Spine. 1996 Nov 15;21(22):2551-7.
    [4] Roberts S, Menage J, Urban JPG: Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine. 1989 Feb;14(2): 166-74.
    [5] Qi-Bin Bao, Hansen A. Yuan. Prosthetic disc replacement: The future? Clinical Orthopaedics and Related Research 2002 Number 394:139-145
    [6] Silva MJ, Keaveny TM, Hayes WC: Load sharing between the shell and centrum in the lumbar vertebral body. Spine. 1997 Jan 15;22(2):140-50.
    [7] Yamashita T, Minaki Y, Ozaktay AC, et al: A morphological study of the fibrous capsule of human lumbar facet joint. Spine. 1996 Mar 1;21(5):538-43.
    [8] Adams MA, Hutton WC: The mechanical function of the lumbar apophyseal joints. Spine. 1983 Apr;8(3):327-30.
    [9] Arbit E, Pannullo S: Lumbar stenosis. A clinical revrew. Clinical Orthopardics And Related Research 2001;384:137-143
    [10] 戴力扬,徐应坎,张文明:对于腰椎后部结构切除手术的生物力学探讨。上海医学,1991;14(12):703-705
    [11] Stonecipher T, Wright S: Posterior lumbar interbody fusion with facet-screw fixation. Spine 1989 Apr;14(4):468-71
    [12] Murata M, Morio Y, Kuranobu K: Lumbar disc degeneration and segmental instability: a comparison of magnetic resonance images and plain radiographs of patients with low back pain. Arch Orthop Trauma Surg 1994;113(6):297-301
    [13] Zollner J, Low R, Sancaktarogh T, et al: Radiological assessment of loss of disk height in acute and chronic degenerative lumbar disk changes. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 2001 Mar;173(3):187-90
    [14] Lu YM, Hutton WC, Gharpuray VM: Can variations in intervcrtcbral disc height affect the mechanical function of the disc? Spine 1996 Oct 1;21(19):2208-16; discussion 2217
    
    
    [15] Burton AK, Battie MC, Gibbons L, et al: Lumbar disc degeneration and sagittal flexibility. J Spinal Disord 1996 Oct;9(5):418-24
    [16] 黄东生,郝松林,刘尚礼,等:新型人工腰椎间盘的研制及其静态力学性能。中山医科大学学报,1998,19(2):124-127
    [17] Dolan P, Adams MA: Recent advances in lumbar spinal mechanics and their significance for modelling. Clin Biomech (Bristol, Avon) 2001;16 Suppl 1:S8-S16
    [18] Dai L: The relationship between vertebral body deformity and disc degeneration in lumbar spine of the senile. Eur Spine J 1998;7(1):40-4
    [19] Krismer M, Haid C, Ogon M, et al: Biomechanics of lumbar instability. Orthopade 1997 Jun;26(6):516-20
    [20] Thomas PH, Geoffrey RF: Mechanical response of the lumbar spine to seated postural bads. Spine 1997;22(7):734-743
    [21] Chen D, Fay LA, Lok J, et al. Increasing neuroforaminal volume by anterior interbody distraction in degenerative lumbar spine. Spine 1995 Jan 1;20(1):74-9
    [22] Milette PC, Fontaine S, Lepanto L, et al. Differentiating lumbar disc protrusions, disc bulges, and discs with normal contour but abnormal signal intensity. Magnetic resonance imaging with discographic correlations. Spine 1999 Jan 1;24(1):44-53
    [23] 胡有谷,郭世绂:1993年国际腰椎研究会议纪要。中华骨科杂志,1994,14:56-59
    [24] 陈其听,陈维善:腰椎管狭窄症后路减压术后不稳定及其对手术结果的影响。中华骨科杂志,1997,17:603—606
    [25] Hasengawa K, Ikeda M, Washio T, et al. An experimental study of porcine lumbar segmental stiffness by the distraction compression principle using a threaded interbody cage. J Spinal Disord 2000;13:247-52
    [26] Lund T, Oxland TR, Jost B, et al. Interbodycage stabilization in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 1998;80:351-9
    [27] Soini J: Lumbar disc space heights after external fixation and anterior interbody fusion: a prospective 2-year follow-up of clinical and radiographic results. J Spinal Disord 1994 Dec;7(6):487-9
    [28] Liljenqvist U, O'Brien JP, Renton P: Simultaneous combined anterior and posterior lumbar fusion with femoral cortical allograft. Eur Spine J 1998;7(2):125-31
    
    
    [29] J. Kenneth Burkus: Intervertebral fixation: clinical results with anterior cages. Orthop clin N Am 2002;33:349-357
    [30] Brantigan JW, Steffee AD, Lewis ML, et al: Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial. Spine 2000 Jun 1 ;25(11): 1437-46
    [31] Griffith SL, Shelokov AP, Buttner-Janz K, et al: A multicenter retrospective study of the clinical results of the LINK SB Charite intervertebral prosthesis. The initial European experience. Spine 1994 Aug 15;19(16):1842-9
    [32] Adams MA, Hutton WC: The effect of posture on the role of the apophyseal joints in resisting intervertebral compressive force. J Bone Jt Surg 1980;62-B:358-62
    [33] Dunlop RB, Adams MA, Hutton WC: Disc space narrowing and the lumbar facet joints. J Bone Jt Surg 1984;66-B:706-10
    [34] Shirazi-Adl A: Finite-element evaluation of contact bads on facets of an L2-L3 lumbar segment in complex loads. Spine 1991;16(5):533-41
    [35] 董凡,戴克戎,侯筱魁:小关节完整性与腰椎稳定性的相关研究。中华骨科杂志,1993;13(5);366—369
    [36] Williams MW, Hawley JA, McKenzie RA, et al: A comparison of the effects of two sitting postures on back and referred pain. Spine 1991;16:1185-91
    [37] 戴力扬,徐印坎,张文明,等:腰椎后部结构切除对腰椎抗压强度的影响。中华神经外科杂志,1989;5(2):87—89
    [38] 李康华,王华,雷光华,等:腰椎间盘切除与人工椎间盘对关节突关节内压力的影响。中国临床康复杂志,2003年第4期
    [39] 李华,侯筱魁,洪钟瑜,等:腰椎关节突关节和椎间盘内应力测量方法的研究。医用生物力学,2001,16:33-38
    [40] Potvin JR, Norman RW, McGill SM: Reduction in anterior shear forces on the L4/5 disc by the lumbar musculature. Clin Biomech 1991;6:88-96
    [41] Yorimitsu E, Chiba K, Toyama Y, et al: Long-term outcomes of standard discectomy for lumbar disc herniation: a follow-up study of more than 10 years. Spine 2001 Mar 15;26(6):652-7
    [42] Frymoyer JW, Phillips RB, Newberg AH, et al: A comparative analysis of the interpretations of lumbar spinal radiographs by chiropractors and medical doctors. Spine 1986 Dec;11(10):1020-3
    
    
    [43] Lundin O, Hellstrom M, Nilsson I, et al: Back pain and radiological changes in the thoraco-lumbar spine of athletes. A long-term follow-up. Scand J Med Sci Sports 2001 Apr;11(2):103-9
    [44] Hasegawa T, An HS, Haughton VM, et al: Lumbar formal stenosis: critical heights of the intervertebral discs and foramina. A cryomicrotome study in cadavera. J Bone Joint Surg Am 1995 Jan;77(1):32-8
    [45] uoma KL, Vehmas T, Riihimaki H, et al. Disc height and signal intensity of the nucleus pulposus on magnetic resonance imaging as indicators of lumbar disc degeneration. Spine 2001 Mar 15;26(6):680-6
    [46] Berlemann U, Gries NC, Moore RJ. The relationship between height, shape and histological changes in early degeneration of the lower lumbar discs. Eur Spine J 1998;7(3):212-7
    [47] Berlemann U, Jeszenszky DJ, Buhler DW, et al. The role of lumbar lordosis, vertebral end-plate inclination, disc height, and facet orientation in degenerative spondylolisthesis. J Spinal Disord 1999 Feb;12(1):68-73
    [48] Zhou SH, McCarthy ID, McGregor AH, et al: Geometrical dimensions of the lower lumbar vertebrae--analysis of data from digitised CT images. Eur Spine J 2000 Jun;9(3):242-8; discussion 249
    [49] Nicholson AA, Robert GM, Williams LA: The measured height of the lumbosacral disc in patients with and without transitional vertetrae. British J. Radiol. 61:454-455, 1988
    [50] 刘学勇,王欢,王海义:前、后路腰椎间盘摘除远期疗效对比。中华骨科杂志,1997,17:311-314
    [51] 靳安民,陈仲,邵振海,等:腰椎间盘突出症三术式远期疗效的比较。中华骨科杂志,1998,18:711-714
    [52] 武长林,吴国平,何杨,等:腰椎间盘突出后路手术对腰椎稳定的影响。颈腰痛杂志,1998,19:26-27
    [53] Cloward RB: Posterior lumbar interbody fusion updated. Clin Orthop 193:16-19, 1985
    [54] Hutter CG: Spinal stenosis and posterior lumbar interbody fusion. Clin Orthop 193:103-114, 1985
    [55] Miyakoshl N, Abe E, Shimada Y, et al: Outcome of one-level posterior lumbar interbody fusion for spondylithesis and postoperative intervertebral disc degeneration adjacent to the fusion. Spine 25:1837-1842, 2000
    
    
    [56] Nakai S, Yoshizawa H, Kobayashi S: Long-term follow-up study of posterior lumbar interbody fusion. J Spine Disord 12:293-299, 1999
    [57] Brodke DS, Dick JC, Kinz DN, et al:Posterior lumbar interbody fusion: A biomechanical comparison, including a new threaded cage. Spine 22:26-31, 1997
    [58] Kanayama M, Cunningham BW, Haggerty CJ, et al: In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg 93 (2 Suppl) :259-265, 2000
    [59] Tsantrizos A, Baramki HG, Zeidman S, et al:Segmental stability and compressive strength of posterioe lumbar interbody fusion implants. Spine 25:1899-1907, 2000
    [60] Bao Q-B, McCullen GM, Higham PH, et al: The artificial disc: Theory, design and materials. Biomaterials 17:1157-1168, 1996
    [61] Brock M, Mayer HM, Weigel K (eds): The Artificial Disc. Berlin, Springer-Verlag 1991
    [62] Langrana NA, Parsons JR, Lee CK, et al: Materials and design concepts for the intervertebral disc spacer: Ⅰ. Fiber reinforced composition design. J Appl Biomater 5:125-132, 1994
    [63] Lemaire JP, Skalli W, Lavaste F, et al: Intevertebral disc prosthesis: Results and prospects for the year 2000. Clin Orthop 337:64-76, 1997
    [64] Hedman TP, Kostuik JP, Fernie GR, et al: Design of an intervertebral disc prosthesis. Spine 16:256-260, 1991
    [65] Enker P, Steffee AD, McMillin CR, et al: Artificial disc replacement. Spine 18:1061-1070, 1993
    [66] Ahrens JE, Shelokov AP, Carver JL: Normal joint mobility is maintained with an artificial disc prosthesis. Proceedings of the Twelfth Annual Meeting of the North American Spine Society, New York 110—111, 1997
    [67] Cinotti G, David T, Postacchini F: Results of disc prosthesis after a minimum follow-up period of 2 years. Spine 1996 Apr 15;21(8):995-1000
    [68] Zeegers WS, Bohnen LM, Laaper M, et al: Artificial disc replacement with the modular type SB Charite Ⅲ: 2-year results in 50 prospectively studied patients. Eur Spine J 1999;8(3):210-7)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700