非饱和土体变试验研究及其在地面沉降中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非饱和土是一种由固相、液相和气相所组成的三相土。非饱和土在实际工程中分布十分广泛,其工程特性相对于饱和土要更为复杂,理论尚不完善。在非饱和土力学中,非饱和土体变理论一直是非饱和土理论研究的一个重要研究内容,体积变化的本构方程将变形状态变量与应力状态变量联系起来。由于非饱和土含有固相、液相和气相,使得非饱和土的力学性质相对于饱和土要更为复杂。在试验中,试样孔隙水压和气压的控制和测量较为复杂,非饱和土试验资料仍然十分缺乏。并且,非饱和土力学在实际工程的应用中还明显落后于理论的发展,许多工程师仍然采用传统的饱和土理论来解决非饱和工程问题。如何进一步完善非饱和土理论,将传统的土力学理论发展为广义的土力学理论,并在实际工程中得到应用和推广是非饱和土力学领域工作者的一个重大挑战。因此,本文利用GDS非饱和三轴仪在分别控制试样净平均应力和基质吸力条件下开展了大量试验研究。基于试验研究结果,根据非饱和土力学理论提出了可以全面考虑非饱和区和饱和区沉降变形的数学模型,并对地下水位的降低引起地面沉降问题进行了详细分析和研究。本文的工作主要包括下列内容。
     (1)利用高进气值压力板仪对非饱和重塑砂土、粉土、黏土和粉质黏土开展了土水特征曲线试验,并结合试样收缩曲线,考察了四种类型土体干燥收缩过程中在净平均应力σ_m-u_a=0 kPa条件下基质吸力和孔隙比关系。一般认为,屈服吸力s_0将土体收缩过程分为弹性和弹塑性两个阶段。但试验结果表明,当试样基质吸力达到某一特定值后,基质吸力的增大不引起试样的进一步收缩变形,本文称此吸力为缩限吸力s_s。因此,屈服吸力和缩限吸力可将整个收缩过程分为三个阶段,即弹性阶段、弹塑性阶段和缩限阶段。通过理论分析可知缩限吸力s_s可假定为试样的缩限含水率在土水特征曲线中所对应的基质吸力,试验结果也验证了假设的正确性。试验结果表明,不同类型土的缩限吸力大小并不相等,试样的塑性指数越大,缩限吸力也越大。并且在干燥收缩过程中,当饱和度在减小至0.90过程中试样孔隙比迅速减小,试样的收缩变形基本在此阶段完成;当试样饱和度减小到0.70时,试样的孔隙比基本保持不变。
     (2)本文采用GDS非饱和土三轴仪,在分别控制试样基质吸力和净平均应力条件下对非饱和重塑黏土的体积变化和含水率变化特性进行了详细试验研究。在非饱和三轴试验研究中,本文开展了2组不同应力路径试验:①各向同性压缩试验:在控制基质吸力u_s=u_a-u_w的条件下施加不同的净平均应力p=σ_m-u_a;②三轴收缩试验:在控制净平均应力条件下施加不同的基质吸力。在控制非饱和黏土吸力条件下的压缩试验中,根据所测得各个试样的总体积变化变化考察了试样的压缩指数和屈服应力与基质吸力的相关性,当试样的净平均应力加载到设定的最高值后,在保持基质吸力不变条件下,将净平均应力直接卸载到0,来考察不同基质吸力下试样的回弹指数;在给定的基质吸力条件下,随着净平均应力的增加,水不断从试样中排出,通过水比容概念考察了水体积变化特性。在控制试样净平均应力条件下的干湿循环试验中,分别考察了土水特征曲线和收缩特性与净平均应力的相关性;当试样加载到设定的最大基质吸力值并达到吸力平衡后,将试样重新饱和后(即基质吸力卸载到0 kPa),来考察试样干湿循环特性。
     (3)在地面沉降研究中,人们常采用饱和土有效应力原理来计算沉降量。实际上,地下水位的降低也会引起非饱和区域土体饱和度的减小,导致净平均应力降低和基质吸力增大。随着非饱和土力学的发展,人们逐渐认识到基质吸力的增大也可造成土体的压缩变形。结合饱和-非饱和渗流与非饱和土体变本构模型,本文提出了一种可以全面考虑非饱和区域与饱和区域沉降的数学模型。由于地下水位下降引起的饱和土区域和非饱和土区域的沉降变形有着本质的区别,因此需分别估算饱和土区域(即u_a-u_w≥0)和非饱和土区域(即u_a-u_w<0)的沉降变形量。对于饱和区,利用饱和土的有效应力原理来计算土体有效应力增大而引起的压缩变形量;对于非饱和区,采用非饱和土的体变本构模型可分别计算土体由于基质吸力增大而引起的收缩变形量和净平均应力减小而引起的回弹量。
     (4)根据饱和-非饱和沉降数学模型,对Kai-Yuan Ke试验模型进行模拟分析,并与实测数据进行了对比分析,验证了本文提出的饱和一非饱和沉降数学模型的合理性和可行性。模型试验结果表明在某些情况下非饱和区域的沉降变形量是不可忽略的,如果按照传统的计算方法仅仅考虑饱和区的变形量,则计算结果与实际情况相差较大。基于非饱和土层基质吸力分布为静水平衡的假设,针对不同的地下水位降低,本文根据饱和-非饱和沉降数学模型分别估算了非饱和区域和饱和区域的沉降量。通过非饱和区沉降量和地表总沉降量的对比,验证了考虑非饱和区沉降变形量的重要性。对于非饱和区,本文分别估算了由于净平均应力的降低引起的地面回弹量和基质吸力的增大引起的地面沉降量。计算结果表明,在这两种变形中收缩变形量在非饱和区变形中占有主导地位,净平均应力的减小而引起的地面回弹量可以忽略不计。
     (5)在基坑开挖过程中,为防止基坑渗透破坏,往往采用井点降水等措施来降低地下水位,但地下水位的降低会引起周围建筑物和地下管线附加沉降而产生不良影响。基于井点降水形成的二维饱和-非饱和稳态渗流模拟分析,本文对某一基坑分别估算了饱和土区域和非饱和土区域沉降变形量。计算结果表明,在基坑降水时非饱和区的变形量往往是不可忽略的。并对降水深度、初始水位高度、土体压缩指数、收缩指数、渗透系数各向异性、土层初始吸力大小、净平均应力和基质吸力耦合关系各种影响因素进行了详细分析。基于饱和-非饱和非稳态渗流,本文对基坑降水后引起周围土层沉降随时间不断发展的过程进行了动态模拟,详细分析和探讨了沉降变形与时间和空间的相关性。
Unsaturated soil is a three-phase media and is composed of soil gain, water and air. And, unsaturated soils are widely distributed and display more complex behaviour compared with saturated soils in engineering practice. The theory of volume change is an important topic in unsaturated soils mechanics, state variables of strain and stress are related by constitutive equation of unsaturated soils. Unsaturated soil is composed of solid phase, fluid phase and gas phase, the pore water pressure and pore air pressure of samples is hard to be controlled and measured in tests, so it is serious lack of testing data of unsaturated soils. Besides, the application of unsaturated soils to practice fall behind of its theory development, many engineers are like to utilize conventional method to solve the unsaturated soil problems. How to perfect the theory of unsaturated soil and develope conventional soil mechanics to generalized soil mechanics is a big challenge for researchers. So, using GDS unsaturated triaxial apparatus, the volume change tests of unsaturated soils are conducted under the condition of controlling matric suction and net mean stress respectively in a predetermined stress path. Based on experimental results and the theory of unsaturated soil, the saturated-unsaturated settlement model is established, this model can be used to consider the settlement taken place in zone of saturated soils and in zone of unsaturated soils. Land subsidence due to drawdown of groundwater table is analyzed by using of the new model. The following portions are included in this dissertation.
     (1) The empirical relationship between matric suction and void ratio on drying path are established from four types of soils including sand, silt, clay and silty clay by utilizing the shrinkage curves and the soil-water characteristic curves which are determined through pressure-plate tests. It is indicated that during the process of drying path, the soil sample continuously shrinks with increase of matric suction. However, increase of suction will display no effect on the shrinkage deformation of the soil sample once the matric suction increases to a given value which is defined as the shrinkage limit suction s_s. The values of s_s are dependent on plasticityindex of soil. The process of shrinkage of soil is divided by yielding suction s_0 and shrinkage limit suction s_s into three stages, i.e., elastic stage, elasto-plastic stage and stage of shrinkage limit. Moreover, in the process of drying-shrinkage of soil sample, shrinkage of the soil sample is almost fulfilled when degree of saturation of soil sample decreases to 90% and void ratio of the soil sample almost keeps unchanged while degree saturation of soil is reduced to 70%.
     (2) By using the GDS unsaturated triaxial apparatus, this paper study the change of total volume change and the change of water content under controlled matric suction and net mean stress condition in a predetermined stress path. Two groupe of tests with different stress path are conducted in unsaturated triaxial tests.①Isotropic compression tests. Different net mean stress is applied under the condition that matic suction is controlled;②Triaxial shrinkage tests. Different matric suction is applied under under the condition that net mean stress is controlled. The results show that the parameter related to compression is suction-dependent and rebound coefficient is dependent on matric suction in a certain degree, shrinkage index and the soil-water characteristic curve are also dependent on net mean stress. At a given matric suction, With the increase of net mean stress, the void ratio and water content of soil sample is decrease, but thedegree of saturation is increased. There is about linear relationship between water content of soil and net mean stress for the soil samples under higher suction. At a given net mean stress, the soil sample will shrinkage in accordance with increase of matric suction. In wetting stage, i.e., zero suction is applied to soil samples in saturated state, the circulating character be analysed.
     (3) People often like to utilize the theory of effective stress of saturated soil to calculate land subsidence. In fact, Drawdown of groundwater table will cause the change of net mean stress and matric suction in unsaturated soils and then induces volume change of the soil mass. Combined with saturated-unsaturated seepage flow and the constitutive model of volume change, this paper present a new settlement model which can consider settlement in both of saturated zone and unsaturated zone There is an essential distinction between settlement occured in saturated zone and unsaturated zone, so this model utilize effective stress theory to calculate settlement of saturated zone; for unsaturated zone, this model can calculate shrinkage of soil because of increase of matric suction and rebound of soil because of decrease of net mean stress.
     (4) Based on saturated-unsaturated settlement model, simulation analysis is conducted for Kai-Yuan Ke test model. Through the compare of analysis results and test data, this paper certificates the rationality and feasibility of saturated-unsaturated settlement model. The results of model test indicate that the settlement of unsaturated zone can not be omitted in some case. If we use conventional model to calculate the settlement of ground, the results will not coincidence with facts.Based on the assumed that pore air pressure equal to zero consistently and the magnitude of matric suction in unsaturated stratum is equilibrium with water table, using the saturated-unsaturated model, subsidence occurred in unsaturated soil zone and saturated zone are estimated respectively for different drawdown depth. Computed results indicate that in total amount of subsidence, the portion of subsidence of unsaturated soil zone cannot be overlooked. For unsaturated zone, the shrinkage of soil because of increase of suction and rebound of soil because of decrease of net mean stress are calculated. Also, the result show that shrinkage of soil has the leading position in deformation of unsaturated zone and the rebound of soil can be omitted.
     (5) During cutting of foundation ditch stage, well-point dewatering is often used to drawdown of groundwater table to avoid the seepage damage of foundation ditch. But, drawdown of groundwater table maybe causes the damage of surrounding building and underground pipeline. Based on simulation of two dimensional steady-state flows induced by foundation pit dewatering, this paper calculate the subsiedce occurred in saturated zone and unsaturated zone respectively. Computed results indicate that in total amount of subsidence, the portion of subsidence of unsaturated soil zone cannot be overlooked. The analyse of influencing factors are conducted, including drawdown depth, initial groundwater table, compression index and shrinkage index of soil, anisotropic permeability, initial matric suction in soil layer, coupIing relationship between suction and net mean stress. Base on simulation of two dimensional saturated-unsaturated unsteady flows, this paper analyse the dynamic process of settlement of ground caused by foundation pit dewatering, and the dependency relation of subsidence and time-space is discussed in detail.
引文
[1] 钱家欢,殷宗泽.土工原理与计算[M].北京:水利电力出版社,1996.
    [2] Craig R F. Soil Mechanics[M]. U.K.: Van Nostrand Reinhold Company Limited, 1983.
    [3] 陈希哲.土力学地基基础[M].北京:清华大学出版社,1989.
    [4] 陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,1994.
    [5] Terzaghi K. Theoretical soil mechanics. New York: Wiley and Sons Ltd., Co, 1943.
    [6] Fredlund D G, Rahadjo H. Soil mechanics for unsaturated soils[M]. New York: John Wiley and Sons,1993.
    [7] Gens A, Alonso E E. A framework for the behavior of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 1992, 29:1013-1032.
    [8] 陈正汉.重塑非饱和黄土的变形、强度、屈服和水量变化特性[J].岩土工程学报,1999,21(1):82-90.
    [9] 孔官瑞.膨胀土边坡稳定性试验及数值分析[博士学位论文][D].武汉:武汉水利电力大学,1990.
    [10] Alonso E E, Lloret A, Gens A, et al. Experimental behavior of highly expensive double-structure clay[A]. Proceedings of 1st International Conference on Unsaturated Soils[C]. Paris, France, 1995.
    [11] 包承纲,刘特洪.豫西南膨胀土的工程特性和渠道边坡稳定性问题[A].非饱和土理论与实践学术讨论会论文集[C].北京,1992,162—173.
    [12] 缪林昌,殷宗泽.膨胀土边坡稳定中的吸力预测[J].水利学报,1998,7:46-49.
    [13] 刘特洪.工程建设中的膨胀土问题[M].北京:中国建筑工业出版社,1997.
    [14] Steinberg M. Geomembranes and the Control of expansive soil in construction[M]. McGraw-Hill, New York, 1998.
    [15] 龚晓南.21世纪岩土工程发展展望[J].岩土工程学报,2000,22(2):238-242.
    [16] 施斌.粘性土结构研究回顾与展望[J].工程地质学报,1996,4(1):39-44.
    [17] 蒋彭年.非饱和土工程性质简论[J].岩土工程学报,1989,11(6):39-57.
    [18] 徐永福.膨胀土地基承载力研究[J].岩石力学与工程学报,2000,19(3):38%390.
    [19] 谢定义.对非饱和土基本特性的学习与思考[A].第二届全国非饱和土学术研讨会议论文集[C].杭州,2005,1-32.
    [20] 包承纲,詹良通.非饱和土性状及其与工程问题的联系[A].第二届全国非饱和土学术研讨会议论文集[C],杭州,2005,47-76..
    [21] Fredlund D G,杨宁.非饱和土的力学性能与工程应用[J].岩土工程学报,1991,13(5):24-35.
    [22] 陈正汉,王权民,李刚等.非饱和土的力学理论[J].重庆大学学报,2000,23(增刊):197-199.
    [23] Hogentogler A, Barber E S. Discussion in soil water phenomena[R]. Highway Research Board. 1941,21: 452-465.
    [24] Ostashev N A. The law of distribution of moisture in soils and methods for study of same[A]. Proceedings of 1st International Conference on Soil Mechanics and Foundation Engineering[C]. Cambridge, U.K., 1936, 1: 227-228.
    [25] Boulichev V. Apparatus for testing compressibility and capillary properties of soils[A]. Proceedings of lst International Conference on Soil Mechanics and Foundation Engineering[C]. Cambridge, U. K., 1936, 2: 37-38.
    [26] Valle-Rodas R. Capillarity in sands[R]. Highway Research Board. 1944, 24: 389-396.
    [27] Lane K S, Washburn S E. Capillarity tests by capillarimeters and by soil filled tubes[R]. Highway Research Board. 1946, 26: 460-473.
    [28] Sitz M. Discussion on Terzaghi's ideas on surface tension of water and the rise of water in capillaries[A]. Proceeding of 2rid International Conference on Soil Mechanics and Foundation Engineering[C]. Rotterdam, Netherlands, 1948, 5: 289-292.
    [29] Bernatzik W. The determination of the capillary rise in sand by means of Prism pressure test[A]. Proceeding of 2nd International Conference on Soil Mechanics and Foundation Engineering[C], Rotterdam, Netherlands, 1948, 5: 28-30.
    [30] Lambe T W. Capillary phenomenain cohesionless soils[J]. Journal of Transportation Engineering, ASCE, 1951, 116: 401-423.
    [31] 沈珠江.非饱和土力学的回顾与展望[J].水利水电科技进展,1996,16(1):1-5.
    [32] 朱伟,山村和也.非饱和土吸力中的路径问题[J].兰州大学学报(自然科学版),1999,35(3):202-207.
    [33] 詹良通,吴宏伟,包承纲,等.降雨入渗条件下非饱和膨胀土边坡原位监测[J].岩土力学,2003,24(2):151-158.
    [34] Gudenhus G A. A comprehensive concept for non-saturated granular bodies[A]. Proceeding of lst International Conference on Unsaturated Soils[C]. Paris, France, 1995.
    [35] 丰土根,张印杰,王志玲.非饱和土的有效应力与抗剪强度[J].岩土力学,2002,23(4):432-436.
    [36] 孔令伟,郭爱国,陈善雄,等.膨胀土的承载强度特征与机制[J].水利学报,2004,(11):54-61.
    [37] Toll D G. A framework for unsaturated soil behavior[J]. Geotechnique, 1990, 40(1): 31-44.
    [38] 缪林昌,殷宗泽.非饱和土的剪切强度[J].岩土力学,1999,20(3):1-6.
    [39] 杨代泉,沈珠江.非饱和土孔隙压力系数研究[J].水利水运科学研究,1992(3):265-274.
    [40] 雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [41] 吴宏伟,陈守义.雨水入渗非饱和土坡稳定性影响的参数研究[J].岩土力学,1999,20(1):1-14.
    [42] 李锡夔,范益群.非饱和土变形及渗流过程的有限元分析[J].岩土工程学报,1998,20(4):20-24.
    [43] 杨代泉,沈珠江.非饱和土孔隙气、水、汽、热耦合运动之模拟[J].岩土工程学报,2000,22(3):357-361.
    [44] 邵龙潭.相间相互作用原理与土壤水动力学基本方程[J].水科学进展,2002,13(5):605-610.
    [45] Zhan L T and Charles W. W. Ng. Analytical analysis of rainfall infiltration mechanism in unsaturated Soils[J]. International Journal of Geomechanics, Vol.4, No. 4, December 1, 2004: 273-284.
    [46] Kasim, F. B., Fredlund D G., and Gan J K M. Effect of steady sate rainfall on long term matric suction condition in slopes[A]. Procceeding of 2nd International on Unsaturated Soils[C]. Beijing, 1998: 78-83.
    [47] Fei Cai, Keizo Ugai. Numerical analysis of rainfall effects on slope stability[J]. International Journal of Geomechanics, Vol. 4, No. 2, junel, 2004: 69-78.
    [48] 徐永福.非饱和土本构模型研究综述[J].水利水电科技进展,1996,16(5):4-9.
    [49] 武文华,李锡夔.非饱和土的热—水力—力学本构模型及数值模拟[J].岩土工程学报,2002,24(4):411-416.
    [50] 张志红:赵成刚:邓敏.非饱和土固结理论新进展[J].岩土力学,2005,26(4):667-672.
    [51] 李顺群;栾茂田;杨庆.考虑基质吸力变化时非饱和土的—维本构模型[J].岩土力学,2006,27(9):1575-1578.
    [52] Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils[J]. Geotechnique, 1990, 40(3): 405-430.
    [53] Gens A, Alonso E E. A framework for the behaviour of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 1992(29): 1013-1032.
    [54] Alonso E E,Gens A,Josa A,et al.非饱和土弹塑性应力应变特性模拟[J].岩土工程学报,1995 17(16):42-51.
    [55] 陈正汉,谢定义,刘祖典.非饱和土固结的混合物理论[J].应用数学和力学,1993,14(2):127-137.
    [56] 陈正汉,黄海,卢再华.非饱和土的非线性固结模型和弹塑性固结模型及其应用[J].应用数学和力学,2001,22(1):93-103.
    [57] 沈珠江.非饱和土简化固结理论及其应用[J].水利水运工程学报,2003,(4):1-6.
    [58] Boit M A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics, 26: 182-185.
    [59] 苗天德,慕青松,刘忠玉,等.低含水率非饱和土的有效应力及抗剪强度[J].岩土工程学报,2001,23(4):393-396.
    [60] 卢肇钧.非饱和土抗剪强度的探索研究[J].中国铁道科学,1999,20(2):10-16.
    [61] 卢肇钧,吴肖茗,孙玉珍,等.膨胀力在非饱和强度中的作用[J].岩土工程学报,1997,19(5):20一27.
    [62] Gens A, Alonso E E. A framework for the behaviour of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 1992, (29): 1013-1032.
    [63] 谢定义 邢义川,刘奉银.非饱和土中力的传递机理与有效应力分析[J].西安理工大学学报,2001,17(1):1-5.
    [64] 邢义川,谢定义,李振.非饱和土的应力传递机理与有效应力原理[J].岩土工程学报,2001,23(1):53-57.
    [65] Croney D, Coleman J D, Black W P M. The movement and distribution of water in soil in relation to highway design and performance[R]. Highway Research Board, 1958, Special Report No. 40.
    [66] 杨庆,张传庆,栾茂田.基于微结构定量分析的非饱和土广义有效应力原理[J].大连理工大学学报,2004,44(4):556-559.
    [67] Coleman J D. Stress strain relation for partly saturated soils[J]. Geotechnique, 1961, 4(12): 348-350.
    [68] Artchsor G D. Relationship of moisture stress and effective stress function in unsaturated soils[A]. Proceeding of Pore Pressure and Suction in Soils[C]. London, U.K., 1961, 47-52.
    [69] Jennings J E. A revised effective stress law for use in the prediction of behavior of unsaturated Soils[A]. Proceeding of Pore Pressure and Suction in Soils[C]. London, U.K., 1961, 26-30.
    [70] 陈正汉,王永胜,谢定义.非饱和土的有效应力探讨[J].岩土工程学报,1994,16(3):64-71.
    [71] Bishop W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106(39): 859-863.
    [72] Bishop A W, Blight G E. Some aspects of effective stress in saturated and partly saturated soils[J]. Geotechnique, 1963, 3(13): 177-196.
    [73] Bishop A W, Donald I B. The experimental study of partly saturated soil in the triaxial apparatus[A]. Proceeding of 5th International Conference on Soil Mechanics and Foundation Engineering[C], Paris, France, 1961, 1: 13-21.
    [74] Jennings J E, Burland J B. Limitations to the use of effective stresses in partly saturated soils[J]. Geotechnique, 1962, 12(2): 125-144.
    [75] Aitchison G D. Separate rote of site inverstigation quantification of soil properties and selection of operational environment in the determination of foundation design of expansive soils[A]. Proceeding 3rd Asian Regional Conference Soil Mechanics and Founding Engineering[C]. 1967, 72-77.
    [76] 徐永福.我国膨胀土分形结构的研究[J].河海大学学报,1997,25(1):18-23.
    [77] Xu Y F, Liu S Y. Fractal character of grain-size distribution of expansive soils[J]. Fractals, 1999, 7(4): 459-466.
    [78] Fredlund D. G, Morgenstem N R. Constitutive relations for volume change in unsaturated soils [J] Canadian Geotechnical Journal. Ottawa, 1976, 13(3): 261-276.
    [79] Fredlund D. G. Appropriate concepts and technology for unsaturated soils[J] Canadian Geotechnical Journal, 1979, 16(2): 121-139.
    [80] Fredlund D G, Morgenstem N R. Stress state variables for unsaturated soils[J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(GT5): 447-466.
    [81] Chen ZH H, Zhao H Q. A non-linear model for unsaturated soils[A]. Proceeding 2nd International Conference Unsaturated soils[C]. Beijing, 1998.
    [82] Chen Z H, Fredlund D G, Gan J K M. Overall volume change, water volume change, and yield associated with an unsaturated Compacted loess[J]. Canadian Geotechnical .Journal, 1999(36): 321-329.
    [83] 黄海,陈正汉,李刚.非饱和土在p-s平面上屈服轨迹及土.水特征曲线的探讨[J].岩土力学,2000,21(4):316-321.
    [84] Wheeler S J, Sivakumar V. An elasto-plastic critical state framework for unsaturated soil[J]. Geotechnique, 1995, 45(1): 35-53.
    [85] 刘祖德,王园.膨胀土浸水三向变形研究[J].武汉水利电力大学学报,1994,27(6):616-621.
    [86] 张原丁.论黄土湿陷敏感性[J].岩土工程学报,1996,18(5):79-83.
    [87] 孙建中,刘健民.黄土的未饱和湿陷、剩余湿陷和多次湿陷[J].岩土工程学报,2000,22(3):365-367.
    [88] Richard L A. Capillary conduction of liquids through prorous medium[J]. Physics 1, 1931, 318-333.
    [89] E. C. Childs, N. Collis-George. The permeability of porous materials [A]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences[C]. 1995, 392-405.
    [90] Richard L A. Capillary Conduction of Liquids Through Prorous Medium[J]. Physics, 1931, 1: 318-333.
    [91] Brooks H, Corey A T. Hydraulic Properties of Porous Media[R]. Colorada: Colorada State University, Hydrology Paper, 3, 1964.
    [92] Brooks H, Corey A T. Properties of porous media affecting fluid flow[J]. Journal of the Irrigation and Drainage Division, ASCE, 1966, 92(2): 61-88.
    [93] Gardner W R. Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J], soil science, 1958, 85: 228-232.
    [94] Childs E C, Collis-George G N. The permeability of porous materials[A].Proceedings of the Royal Society of London[C], 1950, Series A, 201: 392-405.
    [95] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity for unsaturated soils[J] Soil Science Society of America Journal. 1980(44): 892-898.
    [96] Fredlund D G, Anqing Xing, Shangyan Huang. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal. 1994, 31: 533-546.
    [97] Neuman S P. Saturated-unsaturated seepage by finite elements[J] Journal of Hydraulic Division, ASCE, 1973, 99(12): 2233-2250.
    [98] Lam L, Fredlund D G. Saturated-unsaturated transient finite element seepage model for geotechnical engineering[J] Water Resources, 1984, 7: 132-136.
    [99] Rahardjo H, HanK K. Application of unsaturated soil mechanics in understanding residual soil behavior[A] 中加非饱和土学研讨会[C](Sino-Canadian Symposium on Unsaturated/Expansive Soils), 中国, 武汉, 1994, 6: 41-56.
    [100] Gasmo J M, Rahardjo H, Leong E C. Infiltration effect on stability of a residual soil slope[J] Computers and Geotechnics, 2000, 26(2): 145-165.
    [101] Melinda F, Rahardjo H, Han K K, et al. Shear strength of compacted soil under infiltration condition[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(GT8): 807-817.
    [102] Yang D Q, Rahardjo H, Leong E C. Coupled model for hat, moisture, air flow, and deformation problems in unsaturated soils[J] Journal of Engineering Mechanics, 1998, 124(12): 1331-1338.
    [103] 张家发.三维饱和土非饱和稳定渗流场的有限元模拟[J].长江科学院院报,1997,14(3):35-38.
    [104] 朱伟,刘汉龙,高玉峰,等.河堤内非稳定渗流地实测与分析[J].水利学报,2001,(3):92-96.
    [104] 陈守义等.考虑入渗和蒸发影响的土坡稳定性分析方法[J].岩土力学,1997,18(2):8-12.
    [105] 包承纲.非饱和土的性状及膨胀土边坡稳定问题[J].岩土工程学报,2004,26(1):1-15.
    [106] 詹良通,吴宏伟,包承纲,等.降雨入渗条件下非饱和膨胀土地原位综合检测[J].岩土力学,2003,24(2):151-158.
    [107] Zhan L T, Charles W W N. Analytical analysis of rainfall infiltration mechanism in unsaturated soils[J]. International Journal of Geomechanics, 2004, 4(4): 273-284.
    [108] 吴宏伟,陈守义,庞宇威.雨水入渗对非饱和土坡稳定性影响的参数研究[J].岩土力学,1999,20(01):1-13.
    [109] 袁俊平.非饱和膨胀土裂隙地量化模型与边坡稳定分析[博士学位论文][D].南京:河海大学,2003.
    [110] 姚海林,郑少河,李文斌,等.降雨入渗对非饱和膨胀土边坡稳定性影响的参数研究[J].岩石力学与工程学报,2002,(07):1034-1039.
    [111] 李兆平,张弥.考虑降雨入渗影响地非饱和土边坡瞬态安全系数研究[J].土木工程学报,2001,34(5):57-61.
    [112] Scott R F. Principles of Soil Mechanics[M]. Addison-Wesly Pub Company, Inc, 1963, 62-78
    [113] Barden L. Consolidation of compacted and unsaturated clays[J]. Geotechnique, 1965, 15(3): 257-286.
    [114] Fredlund D G, Hasan J U. One dimensional consolidation theory: unsaturated soils[J]. Canadian Geotechnical Journal, 1979, 16(3): 521-531.
    [115] Dakshanarmurthy V, Fredlund D G, Rahardj0, H. Couple there-dimensional consolidation theory of unsaturated porous media[J]. The 5th International Conference on Expansive Soils, Adeaide, South Australia, 1984, 99-103.
    [116] 陈正汉.非饱和土固结理论[A].岩土力学新分析方法研讨会[C].同济大学,1989.
    [117] 杨代泉,沈珠江.非饱和土孔隙压力系数研究[J].水利水运工程研究,1992,9:265-274.
    [118] 杨代泉.非饱和土二维广义固结非线性数值模拟[J].岩土工程学报,1992,14(9),(增刊),2-12.
    [119] 杨代泉,沈珠江.非饱和土—维固结简化计算[J].岩土工程学报,1991,13(5),70-78.
    [120] 杨代泉,沈珠江.非饱和土—维广义固结简化计算[J].水利水运工程研究,1991,4:375-385.
    [121] 包承纲.非饱和压实土的气相形态及其与裂隙压力消散的关系[A].第三届全国土力学与基础工程会议论文集[C].北京:中国建筑工程出版社,1979.
    [122] Hilf J W. An investigation of pore water in compacted cohesive soils[J]. Denver: Bureau of Reclamation, 1956,
    [123] Escario V. Suction Controlled penetration and shear tests[A]. Proceeding 4th International Conference Expansive Soils. Denver, 1980, 2: 781-797.
    [124] 陈正汉,扈胜霞,孙树国,等.非饱和土固结仪和直剪仪的研制以及应用[J].岩土工程学报,2004,26(2):161-166.
    [125] Delage P, Vicol T. Suction controlled testing of non-saturated soils with an omotic consolidometer[A]. Proceeding 7th International Conference on Expansive Soils. Dallas, 1992, 2: 206-211.
    [126] Romero E, Loret A, Gens A, Development of a new suction and temperature controlled oedometer cell[A]. Proc 1 st International Conference on Unsaturated Soils. Paris, 1995, 1: 553-559.
    [127] Bishop A W, Donald I B. The experimental study of partly saturated soil in triaxial apparatus[A]. Proceeding 5th International. Conference on SMFE[C], 13-21.
    [128] 俞培基,陈愈炯.非饱和土的水-气形态及其力学性质的关系[J].水利学报,1965,1:16-23.
    [129] 杨代泉.非饱和土广义固结理论及其数值模拟与试验研究[博士学位论文][D].南京水利科学研究院,1990,9.
    [130] 陈正汉.非饱和土固结的混合物理论—数学模型、试验研究、边值问题[博士学位论文][D].西安理工大学,1991,5.
    [131] 徐永福.非饱和膨胀土的力学特性及其在工程应用[博士学位论文][D].河海大学,1997,5.
    [132] NG C W W, Zhan L T, and Cui Y J. A new simple system for measuring volume change in unsaturated soils. Canadian Geotechnical Journal, 2002(39): 757-764.
    [133] 陈正汉,孙树国,方祥位.非饱和土与特殊土测试技术新进展[J].岩土工程学报,2006,28(2):147-169.
    [134] 陈正汉.非饱和土与特殊土测试技术新进展[A].第二届非饱和土学术研讨会论文集[C].2005,4,杭州,78-136.
    [135] 徐永福,吴正根,刘传新.膨胀土的击实条件与膨胀变形的相关性研究[J].河海大学学报,1997.25(3):57-60.
    [136] 徐永福,龚友平,殷宗泽.宁夏膨胀土膨胀变形特征的试验研究[J] 水利学报,1997,9:27-30.
    [137] 徐永福,史春乐.宁夏膨胀土的膨胀变形规律[J] 岩土工程学报,1997,(03):95-98.
    [138] 袁俊平,陈剑.膨胀土单向浸水膨胀时程特性试验与应用研究[J].河海大学学报,2003,(05):547-551.
    [139] 詹良通,吴宏伟.非饱和膨胀土变形和强度特性的三轴试验研究[J]岩土工程学报,2006,28(2):196-201.
    [140] Jerming, Knight. The prediction of total heaven from the double oedometer test[A]. Proc Symp Expansive Clays. 1957, 7(9): 13-19.
    [141] Smith w. Method for determining the potential vertical rise, PVR. texas test meyhod tex-126-E[A]. Proceeding Work-shop Expansive Clay and Shales IN Highway Design and Construction. 1973, 1: 377-384.
    [142] Shan H Y, Lo W J. Deformation characteristics of shallow aquifer soils[A]. Proceedings of the Second International Conference on Unsaturated Soils[C]. Beijng, 1998, 125-130.
    [143] Ke K Y. Experimental study of consolidation properties of unsaturated soils during draining[J]. Hydrological Processes, 2004, 8: 2565-2578.
    [144] Coleman J D. Stress strain relation for partly saturated soils[J]. Geotechnique, 1962, 12(4): 348-350.
    [145] Griffiths D V, Lu N. Unsaturated slope stability analysis with steady infiltration or evaporation using elasto-plastic fmite element[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005(29), 249-267.
    [146] Croney D, Coleman J D. Soil structure in relation to soil suction[J]. Soil Science Society of America Journal, 1954, 5(1): 75-84.
    [147] Matyas E L, Radhaknstuia H S. Volume change characteristics of partially saturated soils[J]. Geotechnique, 1968, 18(4): 432-448.
    [148] Barden L, Madedor A O and Sides, G R. Volume change characteristics of unsaturated clay[J]. Journal of Soil Mechanics and Foundation Engineering, ASCE 1969, 95, 33-52.
    [149] Lloret A and Alonso E E. State surace for partially saturated soils[A]. Proceedings of the llst International Conference on Soil[C] Mechanics and Foundation Engineering, San Francisco, 1985, 2: 557-562.
    [150] Alonso E E, Gens A, Josa A. Constitutive model for partially saturated soils[J]. Geotechnique, 1990, 40(3): 405-430.
    [151] Lambe T W, Whitman R V. Soil Mechanics[M]. John Wiley, New York, 1969.
    [152] Barden L. Consolidation of compacted and unsaturated clays[J]. Geotechnique, 1965, 15(3): 267-286.
    [153] Toll D G. A conceptual model for the drying and wetting of soil[J]. Unsaturated Soils, Balkema Rotterdam, 805-810.
    [154] Alonso E E, Gens A, Hight D W. Special problems soils[A]. General Report. Proceeding. 9th Europe. Coriference. Soil Mechanics[C], Dublin, 1087-1146.
    [155] Escario V, Saez J. Measurement of the Properties of Sweeling and Collapsing Soils Under Controlled Suction[A]. The 3rd International Conference Expansive Soils, Haifa, 195-200.
    [156] Liakopoulos. Retention and distribution of moisture in soils after infiltration has ceased[J]. Bullutins of International Association Society of Hydrology, 1965, 10: 58-69.
    [157] Richard L A, Fireman M. Pressure plate apparatus for measuring moisture sorption and transmission by soils[J]. Soil Science Society of America Journal, 1943, 56: 395-404.
    [158] Fleureau J M, Siba K S, Ria S. Behavior of clayey soils on drying-wetting paths[J]. Canadian Geotechnical Journal, 1993, 30, 287-296.
    [159] Fredlund D G, Xing A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31: 521-532.
    [160] Miller C J. Impact of soil type and compaction Conditions on soil water characteristic[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(9): 733-742.
    [162] Svanapalli S K, Fredlund D G, Pufahl D E. Relationship between soil-water characteristic curves and as-compacter water content versus soil suction for clay till[A]. Proceedings of the 11th American Conference on Soil Mechanics and Geotechnical Engineering[C]. Iguanzu Falls, Brazil, 1999. 991-998.
    [163] Pereira J H F, Fredlund D G. Volume change behavior of collapsible compacted gneiss soil[J]. Journal of Geotechnical and Geoenvironmental Engineering. A SCE, 2000, 126(10): 907-916.
    [164] Kawai K, Karube K and Kato K. The model of water retention curve considering effects of void ratio. In: Rahardjo H., Toll D G. Leong, E. C. (Eds), Unsaturated Soils for asia. Balkema, Rotterdam. 329-334.
    [165] Ng, Charles W. W, Pang Y W. Influence of stress state on soil-water characteristics and slope stability[J] Journal of Geotechnical and Geoenvironmental Engineering. ASCE. 2000, 126(2): 157-166.
    [166] Zhou J, Yu J L. Influences affecting the soil-water characteristics curve[J]. Journal of Zhejiang University(Sciencs), 2005, 6A(8): 797-804.
    [167] 詹良通,吴宏伟.非饱和膨胀土的变形与强度特性的三轴试验研究[A].第二届全国非饱和土学术研讨会论文集[C].杭州,2005,312-333.
    [168] The GDS laboratory users handbook. GDS Instruments Ltd, 2003.
    [169] Zhan L T. Field and laboratory study of an unsaturated .expansive soil associated with rain-induced slope instability[PhD Thesis][D]. The Hong Kong University of Science and Technology, May, 2003.
    [170] Alonso E E,Gens A,JOSA A,et a1.非饱和土弹塑性应力应变特性模拟[J].岩土工程学报,1995 17(16):42-51.
    [171] 刘传正.环境工程地址学导论[M].北京:地质出版社,1995.
    [172] 姚天强,石振华.基坑降水手册[M].北京:中国建筑工业出版社,2005.
    [173] G Gambolati, R Allan Freeze. Mathematical simulation of the subsidence of venice[J]. Water Resources, 1973, 9(3): 721-733.
    [174] Shearer T R. A numberical model to calculate land subsidence, applied at Hanggu in China[J]. Engineering Geology, 1998, 49(2): 85-93.
    [175] 崔小东.MODFLOW和DP在天津地面沉降数值计算中的应用与开发[J].中国地质灾害与防治学报,1998,9(2):122-128.
    [176] 顾小芸,.地面沉降沉降计算的回顾与展望[J].中国地质灾害与防治学报,1998,9(2):81-85.
    [177] 冉启全,顾小芸.考虑流变特性的流固耦合地面沉降计算模型[J].中国地质灾害与防治学报,1998,9f21:99-103.
    [178] His J P, Carter J P, Small J C. Surface subsidence and drawdown of water table due to pumping[J]. Geotechnique, 1994, 44(3): 381-396.
    [179] Mian B S, Su C L, Chang C L. A numberical model of ground deformation induced by single well pumping[J]. Computer and Geotechnics, 1998, (2): 39-60.
    [180] Schmertmann J H. The undisturbed consolidation behavior of clay[J]. Transactions of ASCE, 1995, 120(2): 1201-1226.
    [181] 金小荣,俞建霖,祝哨晨等.基坑降水引起周围土体沉降性状分析[J].岩土力学,2005, 26(10):1575-1581.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700