解析法求潜水含水层水文地质参数的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反映地下水在含水层或透水层中运动和储存特性的水文地质参数,是进行各种水文地质计算时不可缺少的参数。利用解析法求水文地质参数,是实践工作中经常利用的方法。其优点是解析解是连续的函数,可以给出任意空间点和时间点的精确水头值。但对于潜水井流,传统的利用裘布依公式计算的参数往往差距很大,难以直接选用。为了更好的利用解析法计算研究区潜水含水层水文地质参数,本文在详细分析现有资料及前人研究成果的基础上,系统地研究了解析法井流公式的基本原理及计算潜水含水层水文地质参数的优缺点,首次利用博尔顿法及纽曼法计算银川地区潜水含水层水文地质参数,研究成果将为实践工作起到一定的参考意义,论文的主要研究内容及结论如下:
     (1)本次研究采用单抽水井带多观测井的方式,进行了三组非稳定流抽水试验,两组位于炼油厂厂区,另一组位于废渣场试验区。炼油厂厂区弥散试验历时149小时,废渣场弥散试验历时193.5小时。对水位及温度进行了同步观测,取得了科学、准确的数据。
     (2)对仿泰斯井流公式假定条件及理论基础进行了深入分析。在概化研究区水文地质条件的前提下,利用仿泰斯井流公式计算潜水含水层水文地质参数。结果表明:1)炼油厂厂区渗透系数K=6.132m/d,废渣场试验区渗透系数K=4.531m/d。2)炼油厂厂区渗透系数随抽水流量的增大而增大,废渣场试验区的渗透系数随抽水流量的增大而减小。
     (3)对博尔顿井流公式假定条件及理论基础进行了深入分析,进一步了解了该公式考虑重力滞后给水的原理及应用该模型应满足的潜水含水层水文地质条件。利用博尔顿井流公式计算潜水含水层水文地质参数,结果表明:1)炼油厂厂区导水系数T=258m2/d,渗透系数K=8.39m/d,给水度μ=0.23,滞后指数1/α=77;废渣场试验区导水系数T=315m2/d,渗透系数K=6.63m/d,给水度μ=0.173,滞后指数1/α=59。2)由滞后指数可以得到,炼油厂厂区和废渣场试验区的重力滞后给水时间较短。
     (4)对纽曼井流公式假定条件及理论基础进行了深入分析,进一步了解了该公式考虑垂向分量及应用该模型应满足的潜水含水层水文地质条件。利用纽曼井流公式计算潜水含水层水文地质参数,结果表明:炼油厂厂区导水系数T=199m2/d,渗透系数K=5.28m/d,给水度μ=0.24,废渣场试验区导数系数T=238m2/d,渗透系数K=5.72m/d,给水度μ=0.249。
     (5)通过对比三种井流公式假定条件在研究区的适用性及计算潜水含水层水文地质参数的侧重点不同得出,纽曼井流模型的假定条件与研究区的水文地质条件拟合最好,并且利用该井流公式计算结果最接近该研究区经验值。因此,认为在研究区利用纽曼井流公式计算研究区潜水含水层水文地质参数具有优势。
Reflecting the underground water in the aquifer or filter movement and storage characteristics of hydro-geological parameters is to carry out various hydrological calculation of parameters of an indispensable. Analytic method are often used to calculat the hydrogeology parameters in practical work. Its advantage is analytical solution is a continuous functions, you can get precise head of every the space point and time point value. But for the dive well flow, dupuit formula for calculating parameters are often vary, so it is difficult to directly use. In order to better use analytical method for calculation of phreatic water aquifer of hydro-geological parameters, base on the present material and the research results by predecessors, this paper study on the analytical method of well flow formula for the basic principle and calculation of phreatic water aquifer advantages and disadvantages of hydro-geological parameters. The research results provided scientific base for practical work for the play. The results are summarized as following:
     (1) There are three groups of pumping test, two groups in the Refinery Plant while one group in dump zone, base on single pumping well with multi-observation well. The former last 149 hours, while the later 193.5 hours, and obtained water head,water temperature.
     (2) Analysis theroretical basis of Theis well flow formula and its assuming conditions. Under the premise of the generalizability hydrology geological condition, using fake Theis well flow formula for calculation of phreatic water aquifer of hydro-geological parameters. The results show as following:1) permeability coefficient of Refinery Plant K=6.132m/d and permeability coefficient of dump zone K=4.531m/d.2) Permeability coefficient of refinery factory with the increased water flow has increased, and permeability coefficient of dump zone with the increased water flow reduced.
     (3) Analysis theroretical basis of Bolton well flow formula and its assuming conditions. Research on the water-releasing principle of Bolton formula and using it should meet conditions of phreatic aquifer of hydrogeological. Using Bolton well flow formula for calculation of phreatic water aquifer of hydro-geological parameters. The results show as following:1) permeability coefficient, Coefficient of transmissibility, determination of specific and Lagging Index of Refinery Plant K=8.39m/d,T=258m2/d,μ=0.23,1/α=77; permeability coefficient Coefficient of transmissibility, determination of specific and Lagging Index of dump zone K=6.33m/d, T=315m2/d,μ=0.173,1/α=59.2) Lagging Index of Refinery Plant and dump zone is small.
     (4) Analysis theroretical basis of Newman well flow formula and its assuming conditions. Research on the water-releasing principle of Newman formula and using it should meet conditions of phreatic aquifer of hydrogeological. Using Newman well flow formula for calculation of phreatic water aquifer of hydro-geological parameters.1) permeability coefficient, Coefficient of transmissibility, and determination of specific of Refinery Plant K= 5.28m/d, T=199m2/d,μ=0.24; permeability coefficient Coefficient of transmissibility, and determination of specific of dump zone K=5.72m/d,T=238m2/d,μ=0.249.2)Lagging Index of Refinery Plant and dump zone is small.
     (5) By comparing the three well flow formula assumes that conditions in the research on the applicability and calculation of phreatic water aquifer focus of hydro-geological parameters of different come, Newman well flow model assumes condition and research of hydrogeological conditions of fitting the best, and using the well flow formula to calculate the results of the most close to the research experience. It has an advantage to calculation of hydro-geological parameters of phreatic water aquifer in testing area.
引文
[1]邹立芝,潘俊,杨昌兵等.含水层水力参数的尺度效应研究现状[J].长春地质学院学报,1994,24(1):66-69
    [2]HerweijerJC, Young SC. Three-dimensional characterization of hydraulic, conductivity in betergenous sands using pump tests and well tests on different scale[J]. Internation Conference on Calibeation and Reliability in groudwater modeling,1990,179-188
    [3]Bredehft, J. D. etal. Gronud water Model, The Vnesco Press,1982
    [4]Manath N. Pands等.关振良,谢丛胶译.用粒度分布参数计算单相渗透率[J].地质科技译丛,1995,12(3):61-65
    [5]Hoekse ma R, Kitanidis P. Comparison of Gaussian conditional mean and kriging estimation in the geostatistical solution to the inverse problem[J]. Water Resources Research,1985,21(6):825-836
    [6]Wrren J E, H S Price. Flow in heterogenous porous media[J]. Soc Petrol Eng J,1961,1:153-169
    [7]R. A. Freeze. Groung water[M]北京:地震出版社,1987,12
    [8]杜强,康永尚,万力等.渗透性参数非均质的研究进展[J].地学前缘,1996,3(1-2):182-190
    [9]De msaily G. Quantitative hydrogeology[M]. Academic Press, Orlando, Fla.1986
    [10]Kitanidis P K, Vomvoris E G.A geostatistical approach to the inverse problem in groundwater modeling (steadystate)and one-dimensional simulations[J].water Resourres,1983,19(3):677-690
    [11]Amleto A P, Murashige E. Applications of universal kriging to an aquifer study in New Jersey[J]. Geological Survey,1986,22(4):499-507
    [12]Ababou R, Gelhar L, W.Scale-dependent variability in subsurface hydrology; self-similarity and Spectral conditioning[J]. Eos, Transactions, American Geophysical Union.1988,44:1191-1192
    [13]Marian W. k, Ching-Min Chang. Infiltration in Soils with Fractal Permeability Distribution. Groundwater,1993,31(2):187-192
    [14]叶含春,陈国新,涂昭荣.松散介质渗透系数研究进展[J].塔里木农垦大学学报,2001,13(3):31-34
    [15]汪自力,杨静熙.黄河大堤渗透系数的反演分析[J].人民黄河,1994,17(10):13-15
    [16]王富庆,沈荣开.大田土壤水平渗透系数自动测量系统[J].节水灌溉,1998,(05):13-15
    [17]李金中,裴铁.森林流域土壤饱和渗透系数与有效孔隙度模型的研究[J].应用生态学报,1998,9(06):597-602
    [18]李佩成.黄土含水层给水度合理取值的研究[J],水利学报,1999,(11):37-41
    [19]马文波,曹志超,齐占东.农田地下排水土壤渗透系数的验证[J].黑龙江水利科技,2002,2:36-37
    [20]高正夏,李景波,刘震等.宁夏青铜峡河西灌区地下水调控标准研究(一)[J].水资源保护,2002,4:15-17
    [21]邵景力,崔亚莉,李慈君.包头市地下水——地表水联合调度多目标管理模型[J].资源科学,2003,25(4):49-55
    [22]赵景波,童心刚.陕西长安县杨湾剖面黄土含水条件研究[J].陕西师范大学学报(自然科学版), 2002.30:109-113
    [23]刘希亮,罗静,朱维中.深部含水层渗透系数均匀试验研究[J].岩石力学与工程学报,2005,16:2989-2993
    [24]张力春,肖长来,梁秀娟.稳定井流直线图解法确定含水层参数[J].世界地质,2006,25(01):67-70
    [25]蔡书鹏,李修树.遗传算法在潜水含水层底高分布确定及参数识别中的应用[J].水利与建筑工程学报,2004,4:34-37
    [26]邵龙潭.相间相互作用原理与土壤水动力学基本方程[J].水科学进展,2002,13(05):606-610
    [27]侯玉新,黄皓莉.试论渗流场和渗流理论[J].工程勘察,2004,6:20-24
    [28]邓友生,何平,周成林.含盐土渗透系数变化特征的试验研究[J].冰川冻土,2006,8(21):772-775
    [29]王洪涛,殷勇,王昊.生活垃圾非饱和渗透性质测定的多步出流方法[J].环境科学,2006,10:205-210
    [30]孙蓉琳,梁杏,靳孟贵.基于野外水力试验的玄武岩渗透性及尺度效应[J].岩土力学,2006,9:56-60
    [31]李佩成等.再论渗流计算的“割离井法”及其微机实现[J].灌溉排水,1998(1):1-5
    [32]陈雨孙,颜明志等.抽水试验原理与参数测定[M].水利电力出版社,1985:1-6
    [33]Theis, C. V., The relations between the lowing of piezometric surface and the rate and duration of discharge of a well using groundwaterstorage[J]. rans. Am. Geophys. U-nion,1935:19-524
    [34]Jacob, C. E., On the flow if water in an elastic artesian aquifer, Pysical hydrogeology[J]. Hatchinson Ross Publishing Company,1983:14-126
    [35]Boulton, N. S. Analsis of data from nonequilibrium pumping test allowing for delayed yield from storage, Inst[J]. Civil Engineers Proc,1963,26:469-482
    [36]Hantush M. S., Growth and decay of groundwater-mounds in response to uniform percolation[J], Water Resour. Rrs.1967,3(1):227-234
    [37]Boulton, N. S. And Strelsonva, T. D., New equations for determining the formation constants of an aquifer from pumping test data[J], Water Resour. Res.,1975,11(1):141-153
    [38]Hautush, M.S. Hydraulics if well, In Chow, Ven. Te. ed., Advence in Hydroscience[J]. Academic Press, New York,1964,Vol. (1):281-442
    [39Neuman, S. P. And P. A. Witherspoon. Analysis of non-steady flow with a free surface using the finite element method[J], Water Resour. Res,1971, Vol(7):57-59
    [40]常安定,左大海.非齐次贝塞尔方程的解[J],纺织高校基础科学学报,2000,9(3):273-275
    [41]张景林.水文地质参数与井径设计[J].水文地质工程地质,1993,20(1):58-60
    [42]蒋亚萍,陈余道.南京某深基坑降水设计与效果分析[J].桂林工学院学报,2000,S1:102-106
    [43]俞言祥,许忠淮.地应力信息在改善油田井网布局中的应用[J].石油勘探与开发,1997,24(4):80-82
    [44]刘大海.等价裘布衣半径及其单孔抽水试验解算方法[J].地下水,1987,3:3-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700